NOTES ON THE DOMAIN OF EXPONENT PAIRS

JULIEN CASSAIGNE, SARY DRAPPEAU, OLIVIER RAMARE

ABSTRACT. The theory of exponent pairs as initiated by Phillipps in 1933 pro-
poses pairs of exponents (k, A) so that onehas >, n e2ime(n) « Frte NAte
for any positive €, where ¢ is a 'monomial-like’ smooth function whose first
derivative is of size about F. We propose to explore the domain of avail-
able pairs (k, A) through a very geometrical approach. We prove in particular
that this domain is the convex hull of a connected curve in the classical case.
We also show that a possible choice for A, for any x € [0,1/2], is given by
A=1-— 10’;2 log 2';:1. We finally recall rapidly how this theory has been
adapted to the higher dimensional setting. In passing, we take the opportu-
nity of this slow-paced paper to describe some usage of the SageMath software.

1. INTRODUCTION AND RESULTS

Ezponent pairs in the large. E. Phillipps developped in [8] a theory of exponent
pairs by furthering and simplifying the notion of exponent system introduced by
J.G. van der Corput in [12]. The reader will find a modern account of this theory
in the reference book [6] by S.W. Graham and G. Kolesnik. Roughly speaking a
couple (k,A) € [0,1] x [3,1] is said to be an exponent pair when, given a regular
function ¢ that is 'monomial-like’ and whose first derivative on the interval [V, 2N]
is of size F', the upper bound

S = Z e2i7r<p(n) <, FK,-‘rEN)\-I—E.
N<n<2N

holds for any € > 0. The following exponent pairs are known:

11 1 2 1 11 9 37 89 369
(1) (071)7 (7a7)a(777)7(777)5(7a7)7(7a7)'

272 6’3 147 14 56" 56 560" 560
An example. In [2], Dekking and Mendes-France propose a geometrical approach to
exponential sums. The reader will find there several examples and some compelling
drawings. A most classical example is ¢(n) = t(logn)/(27) where ¢ is some large
parameter and for instance N = t!/3. The sum S is then often called a zeta-
sum. A first trivial bound for S is N + 1. Since ¢'(n) = t/(27n), we see that

t2/3 < 4’ (n) < 2t2/3) so that we may select F = N2. We thus get the bound
S <. N2+t +e and with the pairs given in (1) above, this gives the exponents

3 13 55 547
2 1.21.2220928--- .22 =0.982--- . —L = 0.976-- -
(2) v Loy = 09280, 20 = 0982, o0 = 0.976
of which 13/14 is the best one for our problem.
We encourage the readers to find the best bound obtainable in shorter ranges,

and for instance when N = /5.

The domain of exponent pairs. It follows from the theory that, given an exponent
pair (k,\), we may build another one by the two formulas

® (s 25D (- heed)
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The first five pairs above are obtained by using these two processi while the last
two have been obtained respectively by M.N. Huxley and N. Watt in [7] and by
N. Watt in [13]. Furthermore, any convex combination of exponent pairs is again
an exponent pair. When using the pair (0, 1) and the processi described in (3), we
call the convex hull of the domain obtained the van der Corput Domain denoted
by 2.

Theorem 1.1. The domain P is the convex hull of the curve C defined in (9) and
which is the graph of a continuous non-increasing function.

When we add the point (%, %), the domain will be called the Watt Domain
in the sequel and denoted by Z*.

In [9], R.A. Rankin started to describe the set of accessible exponent pairs, a
study furthered by S.W. Graham in [5]. The viewpoint taken in both papers is to
compute optimal values in a specific problem. The aim of the present note is to
continue this work from a more geometric viewpoint. Nonetheless it is fair to say
that a large part of the material we present here can be found in the previous two
papers in some form or some other.

Since we also strive to describe the situation with pictures, it may be better to
provide the readers with the means to play themselves with these pictures. We
shall be using SageMath, see [11]; the script we use is available on the web at:

https://ramare-olivier.github.io/Maths/ExpPairsNote-01.sage

Copy this code is a file named, say, ExpPairs.sage, without forgetting the sage
suffix, start SageMath and load this via the command load("ExpPairs.sage").
We give in the text some pointers on to how to code in SageMath, as well as
commands that we write in the form

ExpPairs.sage/plotC(12, 6)[1]

to mean that the reader should type the command plotC(12, 6) [1] in SageMath,
once the main file ExpPairs.sage has been duly loaded.

A simple continuous bound. A consequence of our study is the next flexible esti-
mate.

Theorem 1.2. Let S be an exponential sum of monomial type and parameters N
and F. Then, for every k € [0, 3] and every € > 0, we have S <. FrreNvo(m)te

where o+ 1
K K
9 =1-—1 .
o(x) log 2 8 2K

We have 99(0) =1, 9¢(1/2) = 1/2 and ¥o(1/6) = 2/3.

This is proved in Lemma 2.8 below. The upper bound § <, F¥A+2)=g3+e yite
also holds true for every A € [%, 1] and every £ > 0, and this one is better than the
above one when A < 2/3. Theorem 5.1 belows offers a generalization of this result
to higher dimensional exponential sums. Contrarily to S.W. Graham’s approach
that leads to optimal values at some specific points, Theorem 1.2 allows real-valued
optimization at a small numerical loss in the exponent. The approximation is
however very tight as shown by Figure 1.
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FiGure 1. Difference between 1y and the optimal exponent
pair from the van der Corput domain, drawing obtained via
ExpPairs.sage/compareModelConvHull (12).

On our example, we get S <. N2 T70(%)+¢ which is minimal when £ = 0.0566 865 - - -

with value N%926 whence

(4) Z nit < t0’926/3

t1/3<n<2t1/3

improving on (2), though still far from the expected tste.

Preparing for the proofs: a change of variables. We prefer to change of
variables and to use

(5) (u,v) = (2r,2X = 1).

The pairs above become (0,1), (1,0), (%, %), (%, %), (2%7 2%), (%, %), while the
transformations (3) read

U v+1

® o0 = (it

>, c(u,v) = (v, u).

As ¢ is an involution, it is better to consider the transform g = co f and to consider
iterations of f and g. It is noteworthy that f and g preserve segments. One
can consider these transforms as restrictions of linear transforms on the projective
plane Ps:

1 00 011
(7) ¢c=1011), D=[1 0 0
1 0 2 1 0 2
u
so that f(u,v) can be read on the first two coordinates of C' |v (when we divide by
1

the third one); a similar link holds between g and D.
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2. A FIRST PLAYER: THE CURVE C

There are two ways to describe the van der Corput Domain. Both rest on a curve
C that we now build: either by taking a limit from above, or by taking the closure
of the set of points obtained by iterating f and g when starting from {(0,1), (1,0)}.

Getting to C from outside. The construction we now describe will for instance make
clear that we reach a connected curve.

In this section, we consider the transformation of the unit square [0, 1]2 under the
two transforms f and g. Let us first notice that these transforms are contracting.

Lemma 2.1. When P,Q € [0,1]?, we have | f(P) — f(Q)|l2 < pl|P — Q||2 where
= /35 <13/16. Th hold

p= 22 < 13/16. e same holds true for g.

Proof. The Jacobian reads, with U =u+2and V =v+1,

&= — 4+V2 UV
— [ U2 U2 4 *
J—(O 157) so that U*JJ _<—UV U2>

The largest eigenvalue of JJ* is

A4 U+ V24 U+ (2V2 - 8)U2 + (4 + V?)?

B 204 ’

It is largest when V = 2, so we are left with finding the maximum over W € [4, 9]

of the quantity
8+ W + V644 W2
2W2 '
As this function of W is non-increasing, the worst case is W = 4. The lemma
follows readily. O

A

Let K([0,1]?) be the compact space of the compact subsets of [0, 1]2, equipped
with the usual Hausdorff distance (see for instance Exercise 3 of Section 16, Chap-
ter 3 of the reference book [3] by J. Dieudonné), i.e.

(8) d(Ky,Ks) = max(klzneal)((l d(k1, Ks), ax d(ks, K1)>.
We, rather obviously, still call f the function induced by f on K. And f U g is the

function that, to any set A, associates f(A) U g(.A). This is a continuous function.
We set

(9) C=[)(fug(o,1?
n>0

where notation (f U g)°™ means that we compose (f U g) iteratively n times with
itself. This set C corresponds to the set & of S.W. Graham in [5]. Plotting C is
not difficult.
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FIGURE 2. The first three iterations, drawing obtained via

ExpPairs.sage/transformSquare([[0,0],[0,1],[1,1],[1,0]],3,2,False).

Here are some details on the SageMath code that produces it.

#H###EEE Common handlers H#H##HEHHHHHHHHH#IH
def £C(p):
return([p[0]/(p[01+2), (p[1]1+1)/(p[0]1+2)]1)

def gD(p):
return([(p[1]1+1)/(p[0]1+2), p[01/(p[0]+2)1)

#########H Building of the C-curve from up ######
def actonD(InitDom, nbsteps, myz, doplot = True, shade = 0):
# When doplot = False, be sure nbsteps > 0
acolor = Color(0/255, (70 + 40*(nbsteps + shade))/255, 200/255)
DomfC = list(map(f£C, InitDomain))
DomgD = list(map(gD, InitDomain))
ToPlot = Graphics() # empty graphical object
if doplot:
ToPlot = polygon(InitDom, color = acolor, zorder = myz)
if nbsteps > O:
ToPlot += actonD(DomfC, nbsteps-1, myz+l, True, shade)
ToPlot += actonD(DomgD, nbsteps-1, myz+1l, True, shade)
else:
if nbsteps > O:
ToPlot = actonD(DomfC, nbsteps-1, myz+l, True, shade)
ToPlot += actonD(DomgD, nbsteps-1, myz+l, True, shade)
return(ToPlot)
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MyInitialDomain = [[0,0], [0,1], [1,1], [1,0]]
actonD(MyInitialDomain, 6, 2, False, 110).show(figsize = 15,
gridlines = "automatic", xmin = 0, xmax = 1,
ymin = 0, ymax = 1, aspect_ratio = 1)
Copy this code is a file CCurve.sage, without forgetting the sage suffix, start
SageMath and run the file by using the command load("CCurve.sage"). It is
then possible to increase nbsteps, say to 10, and to zoom on a particular region
by changing the quadruple (xmin, xmax, ymin, ymax). Let us take the oppor-
tunity of this note to explain part of the help system of Sagemath. If we set P =
actonD(MyInitialDomain, 1, 1, False, 0), then we may use P.<tab> to get
access to all the methods associated with the object P (a plot). And to see all the
tons of options associated with the show method, enter P.show?. The 2D-plotting
reference guide is available there:
https://doc.sagemath.org/pdf/en/reference/plotting/plotting.pdf
Let us comment on this picture. Introducing an adhoc definition will simplyfy
our task.

Definition 2.2. A tile is the convezr hull of four points.

Since the functions f and g transform segments into segments, tiles are trans-
formed into tiles by any composition-product of these two.
We start from the tile [0,1]2, which we transform by f, getting the new tile

Conv((0,1), (3, 2), (3, %), (0,3)) and then similarly by g, getting the tile Conv((3, ), (3, %), (1,0), (3,0))).

3°3/\33 373
These resulting tiles join in (%, %) On applying repeatedly the transforms f and
g, we get a connected necklace of tiles. Here is a lemma that helps structure the
situation.

Lemma 2.3. Let K be a connected compact subset of [0,1]2 that contains the points
(0,1) and (1,0). The set f(K)Ug(K) is again a connected compact subset of [0, 1]?
that contains the points (0,1) and (1,0).

Proof. Indeed f(K) and g(K) are both connected and compact. Both sets contain
the point f((1,0)) = (3,3) = ¢((0,1)), so that f(K)U g(K) is connected. It
contains the points f((0,1)) = (0,1) and ¢((0,1)) = (1,0). O

At each step, we get a succession of tiles h(0,1) — h(1,1) — h(1,0) — h(0,0); the
distance between h(1,1) and h(0,0) is at most p™v/2, when h is a product of n
terms from {f,g}. This shows an exponential rate, and the actual rate is faster
(meaning the practical 'p’ is smaller). One shows readily that we end up with a
curve. To plot it, we may only consider the transforms of the lower part of the
initial square. Let us state formally a theoretical consequence of this discussion.

Lemma 2.4. The curve C is the graph of a continuous non-increasing function.

We shall now see that this seemingly regular curve C contains a dense subset of
rational points (i.e. points whose coordinates are rational numbers).

Getting to C from inside, I. We may get points that are on the final curve by two
processi. Here is a first one.

The construction above shows also that each point of C may be reached in a
unique manner either from any point with a infinite sequence of f and g, giving an
adapted ’binary’ writing for these points. For instance the point (1,0) is fff---,
while (0,1) is ggg - - - : indeed, the first f reduces the unit square [0, 1]? to a smaller
parallelepiped that lies inside [0,1/3] x [1/3,1]. On applying f again, we get an
even smaller parallelepiped that still contains the point (0,1). The intersection

() Fom (0, 1)

n>1
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then reduces to the point (0, 1). Please notice that when we associate the sequence
fff--- to this points, the order is reverse to the one we use for the composition of
functions.

The point (%, %) isgffff--- = fgggg---. The same construction shows that
any finite combination of f and ¢ applied to (0,1) or (1,0) belongs to C. We
get rational points by considering a finite sequence, say ffgfg, and completing it
on the right either by fff--- if we want to refer to the upper left point of the
parallelepiped gfgff([0,1]?), or by ggg--- if we want to refer to the lower right
point of the same parallelepiped. We get in this manner rational points that are on
the curve C. The reader will readily see that we get a dense family of such points.
Indeed, specifying a prefix, like ffgfg, localizes the point inside gfgf f([0, 1]?) and
any continuation, say ffgfgffggffgg, leads to points that are inside this set.

—The curve (s from words of length 12 ‘

0.8

0.6

v axis

0.4

0.2 1

0 0.2 0.4 0.6 0.8 1
u axls

FI1GURE 3. Approximation of the curve C with words of length 12,
drawing obtained through ExpPairs.sage/plotC(12, 6)[1].

Getting to C from inside, II. We now describe a second process to get points that
are on the final curve.

A point of the curve may be attained by some sequence, say ffgfg---. Rather
than considering the transforms f and g, we could equivalently make the corre-
sponding product of matrices C and D. These and the resulting product is a
non-singular matrix with (integer) non-negative coefficients. As such it has a sin-
gle dominant eigenvalue, the so-called Perron-Frobenius (see Chapter XIII of the
book [4] by Gantmacher) eigenvalue and a corresponding eigenvector. So, if we
iterate the transform go fogo fo f, or equivalently DCDCC, the image in Py of
the cone corresponding to the square [0, 1]> accumulates around the line contain-
ing this eigenvector. This line is indeed a point of C; it corresponds to the code
ffaofaffafaffgfg--- where we repeat the pattern ffgfg. The points we now
obtain are cubic, since so is the eigenvalue as a root of a cubic polynomial, namely
the characteristic polynomial (of DCDCC in our example). Here again, we can
localize these points by choosing a proper prefix.

Additional properties. Here are three additional properties of C.

Lemma 2.5. If f(P) belongs to C, then P belongs to C.
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Proof. We may assume that f(P) # (%,1). Indeed, if f(P) is in C, then f(P) is

313
a limit point of a sequence f*g f*2g%.... As f(P) # (%, %) and the image of
[0,1]% by f and g only intersect on this point, we deduce that a; > 0. By injectivity,
we see that P = f@1~1g%1 fazga2 ... completing the proof. O

Lemma 2.6. The three areas that are (1) the points that are strictly above C, (2)
the points that are on C and (3) the points that are strictly below C are stable under
the action of f and g.

Proof. Indeed f and g are injective maps. Let P = (u,v) be above C. This
means that the segment [P, Py] where Py = (u, 1) does not cross C. The segment
[(0,1),(1,1)] on which P, lies remains above our curve by construction after apply-
ing f or g. The segment [f(P), f(Py)] may not cross C, as a crossing point would be
a f(Q), and by Lemma 2.5, @ would belong to C and to [P, Py], a contradiction. [

Lemma 2.7. If a point P is below (resp. up of) the curve C, then f(P) and g(P)
are also there.

A simple continuous bound. We now present a readily exploited upper bound for

C.

Lemma 2.8. The graph of the function 6y : x — 1 — xlog(1+ 1/x)/log?2 is stable
under f and remains above C. It crosses C in three points: (0,1), (3,%) and (1,0).

—The curve ., from words of length 12 ‘

0.8

0.6

v axis

0.4

0.2 1

4] 0.2 0.4 0.6 0.8 1
u axis

FIGURE 4. The curve C in green (below) and the graph of 6 in red
(above), drawing obtained through ExpPairs.sage/plotC(12,
6) [1]+plotUpper(6).
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Fi1cURE 5. Difference between 6y and C, drawing obtained by using
ExpPairs.sage/compareModelCurve (12).

Proof. Indeed, let us consider the region R = {(u,v),v < Op(u)}. If a point P
belongs to R, then f(P) also belongs to this region. Indeed, we compute that

v+1 U 2u+2
—|1- log
u+2 (u+2)log2 u

1

u+1
=— —1)log2 1
(u+2)10g2((v Jlog 2+ ulog u )

_ —ulo u+1—|—u10 utl =0
~ (u+2)log2 S w7

This proof also shows that the graph of 6y is invariant under f. It is easy to show
that this graph is above C when w € [1/2,1]. The other parts of this graph are
obtained by applying f, and since the region upper to C is stable under f, the
graph of 6y remains there. O

Remark 2.9. When P belongs to this region then g(P) also belongs to it. Indeed,
we have

u v+1 v+u+3
_ _ og
u+2 (u+2)log2 v+1

1 v+u+3
= (-2 1)log 222
(u+2)10g2( + (vt Dlog v+1 )

The function w +— wlog(l 4+ U/w) is non-decreasing when w € [1,2] and U € [2,3]
(its derivative is (logz) + L — 1 for z = (w+U)/w € [2,4]). We thus only have to
prove our assertion when v = 0y(u) and a simple plot is enough.

Remark 2.10. We note that upon choosing x = 1/(28t1 —1) for a positive integer
k, we get the exponent pair

1 2k+L _ e —2
(2, 00(z)) = (2k+1 S S R )

which is f*(1,0), see page 60 of Graham-Kolesnik [6]. The actual definition of 6
was extrapolated from this formula.
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Proof of Theorem 1.2. Translating Lemma 2.8 in terms of (x, A) and the definition
of exponent pairs are all that is required to complete this proof. We note that
Do(k) = (Bo(26) +1)/2 O

3. CONVEX HULL

Given a symmetric subset S C [0, 1]2 that contains (0, 1), we consider the smallest
closed convex set €(S) that contains all the images of S under f and g. Since our
set contains (0,1) it contains (1,0) and (1/3,1/3). These are the vertices of the
image of [0,1]2 by f and g. On iterating, we find all the (opposite) vertices of
the small parallepipedes that we used to build C, from which we conclude that the
convex hull of C is indeed in %' ({(0,1)}) which we denote by 2. Note that, since f
and g preserve segments, it is enough to first iterate f and g and, in a second step,
to take the convex hull of the final set.

As we see in Figure 2, the curve C has a singular point at (%, %) But since any
other location on the curve in a smooth image of the full curve, the set of points
where this phenomenom occurs is in fact dense on C.

Let us describe an algorithmical way of computing 2. We start from (0, 1) and
(1,0), apply f and g, get the convex hull and repeat on the set of vertices obtained.
Here is a plot of the first three steps.

1
0.8
0 06
<
©
=
0.4
0.2
0 T T T T T
0 0.2 0.4 0.6 0.8 1
u axis
FIGURE 6. Approximate domain 9 with
words of length 3, drawing obtained via

ExpPairs.sage/plotDomainC(1)+plotDomainC(2)+plotDomainC(3).

At this level, the point (%, %) is becoming useless, and in later steps, it will even
become an interior point. So have reached the points
(0,1), (1/15,11/15), (1/7,4/7), (2/9,4/9), (4/9,2/9), (4/7,1/7), (11/15,1/15), (1,0)

Here is the situation when we reached the step 6, and which shows that finding a
pattern to determine which points to keep and which to discard may be intricate.
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(a) (b)

FIGURE 7. Approximate Domain Z. In blue round shape, the
points of C that are on the border, and in red star shape, the ones
that are not needed anymore; zoom in (b) on the central part,
drawing obtained via ExpPairs.sage/plotDomainC(5, False)
and adding .show(xmin=0.2,xmax=0.5,ymin=0.2,ymax=0.5,
aspect_ratio=1) for the second one.

4. ADDING THE HUXLEY AND WATT POINT

In [1], E. Bombieri and H. Iwaniec improved the Lindel6f exponent beyond what
was accessible through the exponent pair method. Their work was extended to
yield an exponent pair by M.N. Huxley and N. Watt in [7] and by N. Watt in [13].
This gives us the two (u,v)-points

9 9 89 8§89
1 . o2 29,
(10) (28’28)’ (280’280)
We should thus consider 2* = €'({(0,1), (£%, 22)}). We find that

(o 20)) = G i) (s 20) = (5o

Since the points given in (10) are below the curve C, further points obtained by
applying f and or g still stays there. Moreover, as we saw previously, a start like
ffgfg localizes the image.
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14
0.8
« 0.6 \
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0.4
0.2
~_
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0 0.2 0.4 0.6 0.8 1
u axis
FiGurRE 8. Domain  Z*. In  blue, the  part
added by Watt’'s exponent pair, drawing  obtained
through ExpPairs.sage/plotSimpleDomainCS([[0,1],
’blue’) +

[89/280,89/280]1],12, 6,
plotSimpleDomainCS([[0,1]1], 12).

The next figure (in (x,A)) shows that the adequation of our model 6, to this
case is not as good as before but still within an acceptable magin.

A axis
0.015 \

I — ~

IlI '\.\ - \.‘:\.

[N N
0.01 \

\
0.005 - [\
, , , K axis
1 0.2 0.3 0.4 0.5

and the optimal expo-

FIGURE 9. Difference between 1,
nent pair from the Watt (resp. van der Corput) domain
in red [top] (resp. in blue [below]), drawing obtained via

ExpPairs.sage/compareModelConvHull (8) +compareModelConvHull(8).
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The question then is to find some equivalent form to Theorem 1.2. The function
0o (resp. ¥ if we express it in the variables (k, A)) has (rather strickingly) a simple
form, but we may as well replace it by 8* (resp. ¥*) which parametrizes the (lower)
border of Z*.

Theorem 4.1. The 6* be the continuous decreasing convex function on [0,1] that
parametrizes the lower border of 2* and ¥* be the continuous decreasing convex
function on [0,1/2] defined by 9*(k) = (20*(2k) + 1)/2. Let S be an exponential
sum of monomial type and parameters N and F. Then, for every k € [0, %] and
every € > 0, we have S <. FrteNY (8+e  The functional equation 0* o 6* = §*
holds, as a consequence of the symetry (u,v) — (v,u).

An upper bound for §* is provided by the step-function 6y (or ¥, in the variables
(k,A)) that links the following points:

0., [0, 1005] [0 so0) [ T,
| 1387 1387 649" 649 1667 1667
[89 89
s ) [0 8 [1008 80
| 1667 1667 | 649’ 649 ' | 13877 1387’

This leads to a rather decent approximation of our border, as shown by the next
plots.

0.8

0.6

v axis

0.4

0.2 1

T T
4] 0.2 0.4 0.6 0.8 1
u axis

FIGURE 10. The Watt (resp. van der Corput) domain in blue (resp.
in green) and the rational upper bound in brown.

This is obtained via
BasePlot = plotSimpleDomainCS([[0,1], [89/280,89/280]1],10, 6, ’blue’)
BasePlot += plotSimpleDomainCS([[0,1]], 10)
BasePlot += list_plot(rationalCHullW(2), zorder=3, color=’brown’,
plotjoined = True, figsize =6)
BasePlot.show()
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FIGURE 11. Difference min(dy,9¥;) and the optimal expo-
nent pair from the Watt domain,, drawing obtained via
ExpPairs.sage/compareFiniteModelConvHull (8)

5. A REMARK CONCERNING p-DIMENSIONAL EXPONENT PAIRS

In [10], B.R. Srinivasan developped a multi-dimensional theory of exponent
pairs. Roughly speaking, let ¢(z1,x2,...,2,) be a smooth "polynomial-like’ func-
tion whose partial derivative with respect to x; remains of size F; when z; is
about N;. Then a pair (k,\) € [0, m] X [2’;;1 , 1] is said to be a p-dimensional
exponent pair when, given the above data and € > 0, we have

S et < (T1R) (V).

Vi,n;~N;

B.R. Srinivasan continues by showing that one can form two other p-dimensional
exponent pairs from a given one, say (x, ), by the expressions

K (2p—Dr+A+1 1.1
<2(1—|—p/€)7 2(1—|—p,‘§) )’ ()\ 3 +2).

The change of variables

u=2pr, v=2p\—2p+1

leads to the rules (6), and the geometrical problem is thus unchanged! We then
infer the next result from Theorem 1.2 and Theorem 4.1.

Theorem 5.1. For any k € [0, m], the couple (Ii,

sional exponent pair. The same is true of (I*i, %), where U is defined in
Theorem 4.1.

¥ 1y .
%) is a p-dimen-

REFERENCES

[1] E. Bombieri and H. Iwaniec. On the order of C(% + it). Ann. Scuola Norm. Sup. Pisa Cl.
Sci. (4), 13(3):449-472, 1986.

[2] F. M. Dekking and M. Mendes France. Uniform distribution modulo one: a geometrical
viewpoint. J. Reine Angew. Math., 329:143-153, 1981.

[3] J. Dieudonné. Foundations of modern analysis. Pure and Applied Mathematics, Vol. 10-I.
Academic Press, New York-London, 1969. Enlarged and corrected printing.



(4]
[5]
[6]
7]
(8]
[9]
(10]
(11]
(12]

(13]

NOTES ON THE DOMAIN OF EXPONENT PAIRS 15

F. R. Gantmacher. The theory of matrices. Vols. 1, 2. Chelsea Publishing Co., New York,
1959. Translated by K. A. Hirsch.

S. W. Graham. An algorithm for computing optimal exponent pairs. J. London Math. Soc.
(2), 33(2):203-218, 1986.

S. W. Graham and G. Kolesnik. Van der Corput’s Method of Exponential Sums. Number 126
in London Math. Soc. Lect. Note. Cambridge University Press, 1991.

M. N. Huxley and N. Watt. Exponential sums and the Riemann zeta function. Proc. London
Math. Soc. (8), 57(1):1-24, 1988.

Eric Phillips. The zeta-function of Riemann: Further developments of van der Corput’s
method. Q. J. Math., Ozf. Ser., 4:209-225, 1933.

R. A. Rankin. Van der Corput’s method and the theory of exponent pairs. Quart. J. Math.
Ozford Ser. (2), 6:147-153, 1955.

B. R. Srinivasan. The lattice point problem of many dimensional hyperboloids. III. Math.
Ann., 160:280-311, 1965.

The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.5), 2022.
https://www.sagemath.org.

J.G. van der Corput. Verschiarfung der Abschéatzung beim Teilerproblem. Math. Ann., 87:39—
65, 1922.

N. Watt. Exponential sums and the Riemann zeta-function. II. J. London Math. Soc. (2),
39(3):385-404, 1989.

CNRS/ INSTITUT DE MATHEMATIQUES DE MARSEILLE, AIX MARSEILLE UNIVERSITE, U.M.R.

7373, SITE SUD, CAMPUS DE LUMINY, CASE 907, 13288 MARSEILLE CEDEX 9, FRANCE.

Email address: olivier.ramare@univ-amu.fr
Email address: sary-aurelien.drappeau@univ-amu.fr
Email address: julien.cassaigne@math.cnrs.fr



	1. Introduction and results
	Preparing for the proofs: a change of variables

	2. A first player: the curve C
	3. Convex hull
	4. Adding the Huxley and Watt point
	5. A remark concerning p-dimensional exponent pairs
	References

