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Abstract. We present a practical framework to prove, in a simple way, two-terms asymptotic
expansions for Fourier integrals

I(t) =
∫
R
(eitφ(x) − 1) dµ(x)

where µ is a probability measure on R and φ is measurable. This applies to many basic
cases, in link with Levy’s continuity theorem. We present applications to limit laws related
to rational continued fractions coefficients.

1. Introduction

Let µ be a probability measure on R, and φ : R→ R be µ-measurable. The present paper is
concerned with asymptotic formulæ for the Fourier integrals associated with φ near the origin,

(1.1) I[φ](t) :=
∫

(eitφ(x) − 1) dµ(x), (t→ 0).

Such estimates are connected with the question of whether the push-forward measure φ∗(µ)
belongs to the bassin of attraction of a stable law, see Chapter 2 of [IL71]. Our interest in this
question originates from this point of view, and more specifically from the work [BD] where
we study the convergence towards stable laws of the value distribution of invariants related to
modular forms. In the setting of [BD], the measure µ is the Gauss-Kuzmin distribution

dµ(x) = dx
(1 + x) log 2 (x ∈ [0, 1]),

and this measure is invariant under the Gauss map T (x) = {1/x}, where {x} = x− bxc is the
fractional part of x. More precisely, in [BD], we are interested in Birkhoff sums

(1.2)
r∑
j=1

φ(T r(x)), (T r = T ◦ · · · ◦ T ),

where x varies among rationals and r ≥ 0 is the length of the continued fractions expansion
of x. In the set of rationals we consider, these sums are found to typically behave as sums of
the shape

r∑
j=1

φ(Xr)

where (Xj)1≤j≤r are i.i.d. random variables distributed according to the Gauss-Kuzmin mea-
sure µ. Then effective estimates for the integral (1.1), in conjunction with [BD, Theorem 3.1]
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and the Berry-Esseen inequality [Fel71, equation (XVI.3.13)] are used to obtain uniform limit
theorems for the rational Birkhoff sums (1.2).

We return to the setting where µ is an arbitrary probability measure on R. Integrals (1.1)
are related to the methods of asymptotic analysis mentioned e.g. in Chapter 9 of the mono-
graph [Olv97]. When expressed as convolution integrals

∫
x h(tx)f(x) dx, they are refered to

as h-transforms in [BH86], and are also the topic of interest of the recent work [Lóp08]. The
variety in assumptions and methods seems to prevent us from having a uniform framework for
estimating (1.1).

The goal of the present paper is to present and prove several basic estimates through which
one can give a streamlined and simple proof of an effective asymptotic expansion of the inte-
gral (1.1), including the terms of interest in central limit theorems.

Definition 1.1. Given α ∈ (0, 3] and two positive functions L,R defined in a neighborhood
of 0 in R∗+, we denote by G(α,L,R) the set of functions φ : R → R such that for some
numbers c1, c2 ∈ R and c∗ ∈ C, and all small enough t > 0, there holds
(1.3) I[φ](t) = ic1t+ c2t

2 + c∗t
αL(t) +O(t3 + tαR(t)).

Remark. – If R = O(tε) for any ε > 0 and α < 1, the term c1t in (1.3) is part of the error
term, and likewise for c2t

2 if α < 2.
– We will be interested in the largest one or two terms in the expansion (1.3). The case α = 3,
L = R ≡ 1 corresponds to an order 2 Taylor expansion.

– Whenever the expansion (1.3) holds for φ, we will denote the coefficients by c1(φ), c2(φ),
c∗(φ) respectively.

Theorem 1.2. (1) If
∫
|φ(x)|α dµ(x) <∞ for some α ∈ (0, 3], then φ ∈ G(α, 1, 1).

(2) Suppose that dµ = f dν where ν is the Lebesgue measure and f ∈ C1([0, 1]). Then for
all a ∈ R∗, β > 3 and λ ≥ 0, the function

φ : (0, 1]→ R, φ(x) = ax−β|log x|λ,

belongs to G( 1
β , |log|λ/β+v, |log|λ/β+v−1+ε) for any ε ∈ (0, 1], where v = 1 for β ∈

{1/2, 1} and v = 0 otherwise.
(3) Given two measurable functions φ1, φ2, such that φj ∈ G(αj , Lj , Rj) with tα2L2(t) =

O(tα1L1(t)) as t → 0, then φ1 + φ2 ∈ G(α1, L1, R+) for some positive function R+
explicit in terms of L1, L2 and R1.

The three items here are special cases of Proposition 2.1, Corollary 2.3 and Proposition 2.5
below, respectively. The coefficients c1, c2 and c∗ and the function R+ are explicitly described
in the precise versions below.

The proofs of all three result are rather short, but together they allow for a simple proof of
the expansion (1.1) in several concrete cases:
– In Corollary 3.1, we study a function φ : (0, 1] → R2 having an asymptotic behaviour

around 0 of the shape x−1/2|log x|. The ensuing estimate we obtain is used in [BD, Theo-
rem 2.1] to deduce a central limit theorem for central values {D(1/2, x), x ∈ Q ∩ (0, 1]} of
the analytic continuation of the Estermann function

(1.4) D(s, x) =
∑
n≥1

τ(n)
ns

e2πinx, (Re(s) > 1),

where τ is the divisor function.
– In Corollaries 3.3 and 3.2, we study the functions of the shape φ(x) = b1/xcλ where λ ≥ 1/2.

These functions occur when studying the values {Σλ(x), x ∈ Q ∩ (0, 1]} of the moments of
the continued fractions coefficients,

Σλ(x) =
r∑
j=1

aλj , (x = [0; a1, . . . , ar] = 1
a1 + 1

a2+···
, ar > 1),
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see [BD, Theorems 2.5 and 9.4]. This, in turn, is applied to obtain a law of large numbers
for the values of the Kashaev invariants of the 41 knot [BD, Corollary 2.6].

– In Corollary 3.4, we study the function φ on (0, 1] given by φ(x) = b1/xc − b1/T (x)c,
where T : (0, 1] → (0, 1], T (x) = {1/x} is the Gauss map. The estimate we obtain is used
in [BD, Theorem 2.7] to obtain an independent proof, using dynamical systems, of a theorem
of Vardi [Var93] on the convergence to a Cauchy law of the values of Dedekind sums.

2. Estimation of (1.1) in general

2.1. Basic estimates.

2.1.1. Taylor estimate. The first and simplest method to obtain an estimate for (1.1) is to
insert and integrate a Taylor expansion for the exponential.

Proposition 2.1. Assume that for some α ∈ (0, 3], we have

K :=
∫
|φ(x)|α dµ(x) <∞.

Then φ ∈ G(α, 1, 1), and more precisely

(2.1) I[φ](t) = ic1t+ c2t
2 +O(Ktα)

with c1 =
∫
φ dµ if α ≥ 1, and c2 = −1

2
∫
|φ|2 dµ if α ≥ 2. The implied constant is absolute.

Proof. We use the bound
∣∣∣eiu −∑0≤k<α

(iu)k
k!

∣∣∣� |u|α with u = tφ(x), and integrate over x. �

Although it will not be useful for us here, we note that in the precise bound (2.1), the value
of α could be taken as a function of t. For example, if µ is the Lebesgue measure on (0, 1)
and φ(x) = 1/x, we can take α = 1− 1/|log t| and obtain I[φ](t) = O(t|log t|).

2.1.2. Using properties of the Mellin transform. When the moment
∫
|φ|α dµ diverges at some

particular α, we can often extract a useful expansion from the Cauchy formula and the polar
behaviour of the Mellin transform. For x ∈ R, s ∈ C and η ∈ [0, 1], let

φs,η(x) := 1φ(x)6=0|φ(x)|s exp(−sπi2 (1− η) sgnφ(x)), φs(x) := φs,0(x).

Note that for k ∈ N>0, φk(x) = (−iφ(x))k. Define further

Gη(s) :=
∫
φs,η(x) dµ(x).

Proposition 2.2. Let α ∈ (0, 3), ρ ∈ (0, 1), δ, η0 > 0 and ξ ∈ R. Assume that for some c > 0,
we have

(2.2)
∫
φ(x) 6=0

(|φ(x)|c + |φ(x)|−c) dµ(x) <∞

and that the functions Gη(s) for η ∈ [0, η0], initially defined for Re(s) ∈ (−c, c), can be
analytically continued to the set{

s ∈ C, 0 < Re(s) ≤ α+ δ, s 6∈ [α, α+ δ]
}
.

Assume further that

sup
0≤η≤η0

∫
τ∈R

s=α+δ+iτ
|Γ(−s)Gη(s)|dτ <∞,

and that there is an open neighborhood V of [α, α+ δ] for which

(2.3) (α− s)ξG0(s) = %+O(|s− α|ρ), s ∈ V r [α, α+ δ], Re(s) ≤ α+ δ.
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Then, φ ∈ G(α, |log|ξ−1+υα , |log|ξ−1+υα−ρ), where υα = 1 if α = 1, 2 and υα = 0 otherwise, and
with coefficients given by

(2.4) c1 = iG0(1) if α > 1, c2 = 1
2G0(2) if α > 2, c∗ =


−%/Γ(ξ + 1), α = 1,
1
2%/Γ(ξ + 1), α = 2,
%Γ(−α)

Γ(ξ) , α /∈ {1, 2}.

Proof. We write

I[φ](t) + 1 =
∫

eitφ(x) dµ(x) = J+ + J− + J0,

where J± corresponds to the part of the integral restricted to ±φ > 0.
For all ε ∈ (0, π2 η0), define

J+(ε) :=
∫
φ(x)>0

e(−ε+i)tφ(x) dµ(x), J−(ε) :=
∫
φ(x)<0

e(ε+i)tφ(x) dµ(x).

By dominated convergence, we have J+ := limε→0+ J+(ε), and similarly for J−. We use the
Mellin transform formula for the exponential

e−y = 1
2πi

∫ −c/2+i∞

−c/2−i∞
Γ(−s)|y|ses arg(y) ds

valid for Re(y) > 0, see [GR07, eq. 17.43.1] (the extension to non-real y is straightforward by
the Stirling formula [GR07, eq. 8.327.1]). Inserting this in J±(ε), we obtain

J+(ε) + J−(ε) = 1
2πi

∫ −c/2+i∞

−c/2−i∞
Γ(−s)Gη(s)|1 + iε|sts ds,

where η = 2
π arctan ε ≤ 2ε

π ≤ η0. We move the contour forward to Re(s) = α + δ. The simple
pole at s = 0 contributes

∫
φ(x) 6=0 dµ(x), and therefore by adding the contribution from J0 we

get

J0 + J+(ε) + J−(ε) = 1 +R+ 1
2πi

∫
H(α,α+δ)

Γ(−s)Gη(s)ts|1 + iε|s ds

+ 1
2πi

∫
Re(s)=α+δ

Γ(−s)Gη(s)ts|1 + iε|s ds,

where R consists of the contribution of the residues at 1 (if α > 1) and 2 (if α > 2).
Here H(α, α + δ) is a Hankel contour, going from α + δ − i0 to α + δ + i0 passing around α
from the left. The last integral is bounded by the triangle inequality, using our first hypothesis
on Gη, which gives

1
2πi

∫
Re(s)=α+δ

Γ(−s)Gη(s)ts|1 + iε|s ds� tα+δ,

uniformly in ε. Passing to the limit ε→ 0, there remains to prove
1

2πi

∫
H(α,α+δ)

Γ(−s)G0(s)ts ds = c∗t
α|log t|ξ−1+υα +O(tα|log t|ξ−1+υα−ρ).

This is done by using our second hypothesis along with a standard Hankel contour integration
argument; we refer to e.g. Corollary II.0.18 of [Ten15] for the details. �

An important special case is the following.

Corollary 2.3. Let µ be defined on [0, 1] by dµ(x) = f(x) dx where f ∈ C1([0, 1]). Let a ∈
Rr {0}. For all β > 1

3 , λ ≥ 0, and φ given by

φ(x) = ax−β|log x|λ
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one has φ ∈ G(1/β, |log|λ/β+υ1/β , |log|λ/β+υ1/β−1+ε) for any ε ∈ (0, 1) and with

c∗ = f(0) |a|
1/βe

−πi sgn a
2β

βλ/β+1 ×


−(λ+ 1)−1, β = 1,
(4λ+ 2)−1, β = 1/2,
Γ(−1/β), β /∈ {1, 1/2}.

and c1 =
∫
φ dµ if β < 1 and c2 = −1

2
∫
|φ|2 dµ if β < 1

2 .

Proof. First, we write dµ(x) = f(0)χ(x) dx + xg(x) dx, where χ is the characteristic function
of the interval [0, 1] and g ∈ C([0, 1]). For the contribution of χ dx we apply Proposition 2.2
with any fixed c < 1/β, α = 1/β, ξ = λ/β + 1, any fixed ρ ∈ (0, 1) and δ > 0. By [GR07,
4.272.6], for Re(s) < 1/β and η ∈ [0, 1] we have

Gη(s) = e−s
πi
2 (1−η) sgn(a)|a|s

∫ 1

0
x−βs|log x|λs dx = e−s

πi
2 (1−η) sgn(a)|a|s Γ(λs+ 1)

(1− βs)λs+1 .

Notice also that by Stirling’s formula Gη(s) � eπ( 1−η
2 )|τ ||τ |−1/2 as |τ | = | Im s| → ∞, so that

in any case Γ(−s)Gη(s)� |τ |−1−Re(s). Therefore the hypotheses of Proposition 2.2 are easily
verified with

% = |a|1/βe
−πi sgn a

2β
Γ(λ/β + 1)
βλ/β+1 .

Thus, ∫ 1

0
(eitφ(x) − 1) dx = itc′1 + c′2t

2 + c∗t
1/β|log t|λ/β+υ1/β +O(t1/β|log t|λ/β+υ1/β−ρ)

with coefficients as given in (2.4) with G0(1) = −i
∫
φχdx and G0(2) = −

∫
φ2χdx. Finally,

as in Proposition 2.1 we deduce∫
(eitφ(x) − 1)xg(x) dx = ic′′1t+ c′′2t

2 +O(Ktα′)

for any 0 < α′ < min(3, 2
β ) and with c′′1 =

∫
φ(x)xg(x) dx if α′ > 1 and c′′2 = −1

2
∫
φ(x)2xg(x) dx

if α′ > 2. The result then follows. �

2.2. Addition.

Lemma 2.4. For j ∈ {1, 2}, let δj(x) = eitφj(x) − 1. Then

I[φ1 + φ2](t) = I[φ1](t) + I[φ2](t) +
∫
δ1(x)δ2(x) dµ(x)(2.5)

= I[φ1](t) + I[φ2](t) +O
( ∏
j∈{1,2}

|Re I[φj ](t)|1/2
)

Proof. The first equation is simply the relation eit(φ1(x)+φ2(x))− 1 = δ1(x) + δ2(x) + δ1(x)δ2(x)
integrated over x. The last term is bounded using the Cauchy-Schwarz inequality( ∫

|δ1(x)δ2(x)| dµ(x)
)2
≤

∏
j∈{1,2}

∫
|δj(x)|2 dµ(x)

and expanding the square on the right-hand side. �

Proposition 2.5. For j ∈ {1, 2}, let αj ∈ (0, 2], let Lj , Rj be positive functions defined on
a neighborhood of 0 in R∗+, and φj ∈ G(αj , Lj , Rj). If α1 ≤ α2, and under the following
assumptions:
– Rj(t), Lj(t) = to(1) as t→ 0,
– Rj(t) = O(Lj(t)),
– t2 = O(tα1L1(t)),
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we have

φ1 + φ2 ∈ G(α1, L1, R+), R+ =


R1 if α1 < α2,

R1 + L2 +
√
L1L2 if α1 = α2 < 2,

R1 + L2 +
√
L1(
√
L2 + 1) if α1 = α2 = 2.

Moreover,

c1(φ1 + φ2) = c1(φ1) + c1(φ2),
c∗(φ1 + φ2) = c∗(φ1).

Proof. We use Lemma 2.4; when computing the real part in (2.5), the term ic1t vanishes. �

Remark. Note that using this result might induce a slight quantitative loss in the two cases
when α1 = α2. What is gained at this price is that we are only required to study each φj
separately, which simplifies the analysis.

We also remark that this estimate is useful only when the term c2t
2 is not relevant in (1.3).

In the complementary case, Proposition 2.1 can be used, although the ensuing error term will
typically be worse than optimal by a factor of |log t|.

It is straightforward to generalize Proposition 2.5, affecting to each φj a different value of
the frequency: under the same hypotheses and notations, and additionally that Lj , Rj tend
monotonically to +∞ at 0,∫

eit1φ1(x)+it2φ2(x) dµ(x) = 1 + ic1(φ1)t1 + ic1(φ2)t2 + c∗t
α1
1 L1(t1) +O(t2+ + tα1

+ R+(t+)),

where c1, c∗ are as in the conclusion of Proposition 2.5, and t+ = max{t1, t2}.

3. Applications

We now describe the applications we will be interested in. The measure is the Gauss-Kuzmin
distribution

dµ(x) = dx
(1 + x) log 2 (x ∈ [0, 1]).

The measure µ is invariant under the Gauss map T (x) = {1/x} on (0, 1), in particular,

(3.1) I[φ ◦ T ](t) = I[φ](t).

3.1. Central values of the Estermann function. The first application we discuss is the
“period function” φ : R→ C associated with the Estermann function (1.4), namely

φ(x) = D(1
2 , 1/x)−D(1

2 , x),

initially defined in Q∩(0, 1]. By [Bet16], this function can be extended to a continuous function
on (0, 1], more precisely given by an expression of the shape (3.2) below. Interpreting φ to
be R2-valued, the analogue of the integral (1.1) is estimated using the following.

Corollary 3.1. Let ε > 0, E : [0, 1]→ C be a bounded, continuous function, and

(3.2) φj(x) :=
(1

2x
−1/2( log(1/x) + γ0 − log(8π)− π

2
)

+ ζ(1
2)2 + Re E((−1)jx)

(−1)j−1

2 x−1/2( log(1/x) + γ0 − log(8π) + π
2
)

+ Im E((−1)jx)

)
.

Let also uj :=
( 1

(−1)j−1
)
. Then for some vector µ ∈ R2, and all t ∈ R2, we have∫ 1

0
ei〈t,φ1(x)+φ2(T (x))〉 dµ(x)

= 1 + i〈t,µ〉 − 1
3 log 2

∑
j∈{1,2}

〈t,uj〉2|log |〈t,uj〉||3 +Oε(‖t‖2|log ‖t‖|2+ε).



OSCILLATORY INTEGRALS RELATED TO INFINITELY DIVISIBLE DISTRIBUTIONS 7

Proof. Let ε ∈ (0, 1). Using Corollary 2.3 with β = 1/2 and λ ∈ {0, 1}, and Proposition 2.1,
we obtain

(x 7→ ±1
2x
−1/2|log x|) ∈ G(2, |log|3, |log|2+ε),

(x 7→ (γ0 − log(8π) + π
2 )x−1/2) ∈ G(2, |log|, |log|ε),
(x 7→ Im E(±x)) ∈ G(3, 1, 1),

as well as c∗(x 7→ ±1
2x
−1/2|log x|) = − 1

3 log 2 . From Proposition 2.5 and the ensuing remark,
and using the property (3.1), we obtain for j ∈ {1, 2}∫ 1

0
(ei〈t,φj(x)〉 − 1) dµ(x) = i〈t,µj〉+ c∗〈t,uj〉2|log |〈t,uj〉||3 +Oε(‖t‖2|log ‖t‖|2+ε),

where µ1,µ2 ∈ R2. On the other hand, we have

∆(t) :=
∫ 1

0
(ei〈t,φ1(x)〉 − 1)(ei〈t,φ2(T (x))〉 − 1) dµ(x) =

∫ 1

0
(ei〈t,φ2(x)〉 − 1)Fx(t) dx,

where
Fx(t) = 1

log 2
∑
n≥1

ei〈t,φ1(1/(n+x))〉 − 1
(n+ x)(n+ x+ 1) .

By a Taylor expansion at order 1, we have |Fx(t)| � ‖t‖ uniformly in x, and therefore

|∆(t)| � ‖t‖2
∫ 1

0
‖φ2(x)‖ dx� ‖t‖2.

By (2.5), we deduce∫ 1

0
ei〈t,φ1(x)+φ2(T (x))〉 dµ(x) = 1 +

∫ 1

0
(ei〈t,φ1(x)〉 + ei〈t,φ2(T (x))〉 − 2) dµ(x) +O(‖t‖2),

whence the claimed estimate. �

3.2. Moments of continued fractions coefficients. The next application we consider per-
tains to the moments functions Σλ of continued fractions coefficients, where λ ≥ 0 is the order
of the moment. The function of interest to us here is

φλ(x) = b1/xcλ.
The case λ < 1/2 can be easily dealt with using Proposition 2.1, so we do not focus on it here.

A first approach is to use Proposition 2.5 to approximate b1/xc by 1/x, and then use
Corollary 2.3. This leads to the following.

Corollary 3.2. Let λ ≥ 1/2. The function φλ given by φλ(x) = b1/xcλ satisfies the following.
– If λ = 1/2, then with c∗ = −1/(log 2), we have
(3.3) I[φ1/2](t) = ic1t+ c∗t

2|log t|+Oε(t2|log t|ε).
– If λ > 1/2 and λ 6= 1, then with c∗ = − exp(−πi/(2λ))Γ(1− 1/λ)/ log 2, we have

I[φλ](t) = (1λ<1)ic1t+ c∗t
1/λ +Oε(t1/λ|log t|−1+ε)

When 1/2 ≤ λ < 1, we have c1 =
∫ 1

0 φλ(x) dµ(x).

Proof. We write φλ(x) = pλ(x) + rλ(x), where pλ(x) = x−λ and rλ(x) �λ b1/xcλ−1. By
Proposition 2.1, we have rλ ∈ G(min(3, 1

λ−1/3), 1, 1).
We consider first the case λ > 1/2, λ 6= 1. By Corollary 2.3, we have pλ ∈ G( 1

λ , 1, |log|−1+ε).
We deduce, by Proposition 2.5, that φλ ∈ G( 1

λ , 1, |log|−1+ε), and this yields the second and
third cases.

If λ = 1/2, then Corollary 2.3 implies p1/2 ∈ G(2, |log|, |log|ε), and by Proposition 2.1, for
some c ∈ R, we have

I[r1/2](t) = ict+O(t2)
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On the other hand, since
∣∣∣(eitp1/2(x) − 1)(eitr1/2(x) − 1)

∣∣∣� t2
∣∣∣p1/2(x)r1/2(x)

∣∣∣� t2, we get∫ 1

0
(eitp1/2(x) − 1)(eitr1/2(x) − 1) dµ(x) = O(t2).

By (2.5), we conclude (3.3) as claimed. �

The case λ = 1 could be analyzed by the same method, but we chose to study it separately
to obtain a more precise error term by another approach, using Proposition 2.2 directly. The
associated Mellin transform G0(s) is related to the Riemann ζ-function.

Corollary 3.3. The function φ given by φ(x) = b1/xc satisfies

I[φ](t) = − it
log 2(log t+ γ0 − πi

2 ) +Oε(t2−ε).

Proof. The integral (2.2) converges for all c < 1. A quick computation shows that an analytic
continuation of Gη(s) is given by

Gη(s) =
exp(−sπi2 (1− η))

log 2
{
ζ(2− s) +H(s)

}
,

where H(s) =
∑
n≥1 n

s(log(1+ 1
n(n+2))− 1

n2 ) is analytic and uniformly bounded in Re(s) ≤ 2−ε.
We have ∫

Re(s)=2−ε
|Γ(−s)Gη(s)||ds| �ε 1 +

∫ ∞
0
|ζ(ε+ iτ)| dτ

1 + τ2 �ε 1

by the Stirling formula. The polar behaviour (2.3) is given by

G0(s) =
exp(−sπi2 )

log 2
{
ζ(2− s) +H(s)

}
=

exp(−sπi2 )
log 2

{ 1
1− s +A+O(s− 1)

}
for s in a neighborhood of 1, where

A =
∑
n≥1

(
n log

(
1 + 1

n(n+ 2)
)
− log

(
1 + 1

n

))

= − lim
N→∞

N∑
n=1

(
n log

(
1 + 1

n+ 1
)
− (n− 1) log

(
1 + 1

n

))
= − 1.

Applying Proposition 2.2 with δ = 1/2 and α = 1 yields the claimed result up to O(t). Our
more precise statement follows from noting that there is no branch cut along s ≥ 1 in this
case, so that the residue theorem may be used. We obtain

Res
s=1

Γ(−s)G0(s)ts = it
log 2(γ0 − πi

2 + log t),

whence the claimed estimate. One could go further, isolating a pole of order 2 at s = 2, and
this would give an error term O(t2|log t|). �

3.3. Dedekind sums. The final example we discuss is related to Dedekind sums, for the
definition of which we refer to [BD, Section 2.4]. The “period function” φ relevant to us here
is

φ(x) = b1/xc − b1/T (x)c.
Compared with the case of x 7→ b1/xc studied in Corollary 3.3, the relevant exponent α is
again 1, but the leading term turns out to be t (the terms t log t vanish).

Corollary 3.4. The map φ on (0, 1) given by φ(x) = b1/xc − b1/T (x)c satisfies

I[φ](t) = − π

log 2 t+O(t2|log t|2).
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Proof. We consider

∆(t) :=
∫ 1

0
(e−itb1/T (x)c − 1)(eitb1/xc − 1) dµ(x)

=
∫ 1

0
(e−itb1/xc − 1)Fx(t) dx,

with Fx(t) = 1
log 2

∑
n≥1

eitn−1
(n+x)(n+1+x) . Since

∣∣eiu − 1
∣∣� |u|1−1/|log t| for all u ∈ R, we find

Fx(t)� t
∑
n≥1

1
n1+1/|log t| � t|log t|.

Similarly, ∫ 1

0

∣∣∣e−itb1/xc − 1
∣∣∣ dx� t

∫ 1

0
x−1+1/|log t| dx� t|log t|.

We thus obtain ∆(t) = O((t log t)2). Using Corollary 3.3 with the improved error termO(t2|log t|),
(3.1) and (2.5), we deduce∫ 1

0
eit(b1/xc−b1/T (x)c) dµ(x) = 1 + 2 Re I(t) +O((t log t)2),

where I(t) =
∫ 1

0 (eitb1/xc − 1) dµ(x). Corollary 3.3 allows us to conclude. �
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