EFFECTIVE ESTIMATION OF SOME OSCILLATORY INTEGRALS
RELATED TO INFINITELY DIVISIBLE DISTRIBUTIONS

S. BETTIN AND S. DRAPPEAU

ABSTRACT. We present a practical framework to prove, in a simple way, two-terms asymptotic
expansions for Fourier integrals

70 = [ @ - 1aute)
R

where p is a probability measure on R and ¢ is measurable. This applies to many basic
cases, in link with Levy’s continuity theorem. We present applications to limit laws related
to rational continued fractions coefficients.

1. INTRODUCTION

Let pu be a probability measure on R, and ¢ : R — R be py-measurable. The present paper is
concerned with asymptotic formulae for the Fourier integrals associated with ¢ near the origin,

(11) Z(gl(t) i= [ (")~ Ddua), (- 0).

Such estimates are connected with the question of whether the push-forward measure ¢.(u)
belongs to the bassin of attraction of a stable law, see Chapter 2 of [IL71]. Our interest in this
question originates from this point of view, and more specifically from the work [BD] where
we study the convergence towards stable laws of the value distribution of invariants related to
modular forms. In the setting of [BD], the measure p is the Gauss-Kuzmin distribution

dz
(1+z)log2
and this measure is invariant under the Gauss map T'(x) = {1/x}, where {x} =z — |z] is the
fractional part of z. More precisely, in [BD], we are interested in Birkhoff sums

du(z) = (z € [0,1]),

(1.2) i:qﬁ(T’"(x)), (T"=To---0oT),
j=1

where x varies among rationals and r > 0 is the length of the continued fractions expansion
of x. In the set of rationals we consider, these sums are found to typically behave as sums of
the shape

> d(Xy)
j=1

where (X;)i<j<r are i.i.d. random variables distributed according to the Gauss-Kuzmin mea-
sure p. Then effective estimates for the integral (1.1)), in conjunction with [BD) Theorem 3.1]

Date: October 30, 2020.

2010 Mathematics Subject Classification. 41A60 (Primary); 60E07, 60E10 (Secondary).

Key words and phrases. Fourier integral, characteristic function, infinitely divisible distribution, asymptotic
expansion, limit law.

The authors thank the referee for his or her remarks and a careful reading of the paper. This paper was
partially written during a visit of of S. Bettin at the Aix-Marseille University and a visit of S. Drappeau at the
University of Genova. The authors thank both Institution for the hospitality and Aix-Marseille University and
INdAM for the financial support for these visits. S. Bettin is member of the INAAM group GNAMPA and his
work is partially supported by PRIN 2017 “Geometric, algebraic and analytic methods in arithmetic”.

1
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and the Berry-Esseen inequality [Fel71l equation (XVI.3.13)] are used to obtain uniform limit
theorems for the rational Birkhoff sums .

We return to the setting where p is an arbitrary probability measure on R. Integrals
are related to the methods of asymptotic analysis mentioned e.g. in Chapter 9 of the mono-
graph [OIv97]. When expressed as convolution integrals [ h(tx)f(x)dx, they are refered to
as h-transforms in [BH86], and are also the topic of interest of the recent work [Lop08]. The
variety in assumptions and methods seems to prevent us from having a uniform framework for
estimating .

The goal of the present paper is to present and prove several basic estimates through which
one can give a streamlined and simple proof of an effective asymptotic expansion of the inte-
gral , including the terms of interest in central limit theorems.

Definition 1.1. Given o € (0,3] and two positive functions L, R defined in a neighborhood
of 0 in R%, we denote by G(a, L, R) the set of functions ¢ : R — R such that for some
numbers c1,co € R and ¢, € C, and all small enough t > 0, there holds

(1.3) T[¢](t) = icit + cot® + e, t®L(t) + O(t® + t*R(t)).

Remark. — If R = O(t%) for any ¢ > 0 and o < 1, the term ¢t in is part of the error
term, and likewise for cot? if a < 2.

— We will be interested in the largest one or two terms in the expansion . The case a = 3,
L = R =1 corresponds to an order 2 Taylor expansion.

— Whenever the expansion holds for ¢, we will denote the coefficients by ¢1(¢), ca2(¢),
¢« () respectively.

Theorem 1.2. (1) If [ |o(x)|* dp(z) < oo for some o € (0,3], then ¢ € G(a,1,1).
(2) Suppose that du = f dv where v is the Lebesgue measure and f € C*([0,1]). Then for
alla € R*, B> 3 and A\ > 0, the function

¢:(0,1] =R,  ¢(z) = azP|logz|",

belongs to g(%, log| M+ [log|MAHv—1+e)
{1/2,1} and v =0 otherwise.

(3) Given two measurable functions ¢1,¢2, such that ¢; € G(ay, Lj, Rj) with t*2Ly(t) =
O(t* Li(t)) as t — 0, then ¢1 + ¢p2 € G(a1, L1, Ry) for some positive function Ry
explicit in terms of L1, Ly and Ry.

The three items here are special cases of Proposition Corollary and Proposition [2.5
below, respectively. The coefficients c¢1, co and ¢, and the function Ry are explicitly described
in the precise versions below.

The proofs of all three result are rather short, but together they allow for a simple proof of
the expansion in several concrete cases:

— In Corollary we study a function ¢ : (0,1] — R2 having an asymptotic behaviour
around 0 of the shape z~/2|logz|. The ensuing estimate we obtain is used in [BD, Theo-

rem 2.1] to deduce a central limit theorem for central values {D(1/2,z),2 € QN (0,1]} of
the analytic continuation of the Estermann function

for any € € (0,1], where v = 1 for B €

(1.4) D(s,z) =Y ng)e%m% (Re(s) > 1),
n>1

where 7 is the divisor function.

—In Corollaries and we study the functions of the shape ¢(z) = [1/2]|” where A > 1/2.
These functions occur when studying the values {X)(z),z € Q N (0,1]} of the moments of
the continued fractions coefficients,

1
—,a; > 1),
ay + ag+--

,
Z,\(x):z:a?, (x =1[05a1,...,a;] =
j=1
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see [BD, Theorems 2.5 and 9.4]. This, in turn, is applied to obtain a law of large numbers
for the values of the Kashaev invariants of the 4; knot [BD) Corollary 2.6].

— In Corollary we study the function ¢ on (0,1] given by ¢(x) = |1/x] — [1/T(z)],
where T : (0,1] — (0,1], T(xz) = {1/} is the Gauss map. The estimate we obtain is used
in [BD), Theorem 2.7] to obtain an independent proof, using dynamical systems, of a theorem
of Vardi [Var93|] on the convergence to a Cauchy law of the values of Dedekind sums.

2. ESTIMATION OF ([1.1)) IN GENERAL

2.1. Basic estimates.

2.1.1. Taylor estimate. The first and simplest method to obtain an estimate for (1.1 is to
insert and integrate a Taylor expansion for the exponential.

Proposition 2.1. Assume that for some « € (0, 3], we have

K = [16(@)" du(x) < .
Then ¢ € G(a, 1,1), and more precisely
(2.1) T[¢](t) = icit + cot® + O(Kt®)
with ey = [¢dp if a > 1, and ca = —5 [ |2 dp if o > 2. The implied constant is absolute.

Proof. We use the bound

. i\ k
e — 3 0<k<a %‘ < |u|® with u = t¢(z), and integrate over z. [

Although it will not be useful for us here, we note that in the precise bound ({2.1)), the value
of a could be taken as a function of ¢t. For example, if p is the Lebesgue measure on (0, 1)
and ¢(z) = 1/x, we can take o = 1 — 1/|log t| and obtain Z[¢|(t) = O(t|logt|).

2.1.2. Using properties of the Mellin transform. When the moment [ |¢|“ du diverges at some
particular «, we can often extract a useful expansion from the Cauchy formula and the polar
behaviour of the Mellin transform. For z € R, s € C and 7 € [0, 1], let

Ps.n(2) = Ly(y0ld(@)]” exp(=sF (1 =) sgn d(2)),  ds(2) := dsp(x).
Note that for k € Nsg, ¢(2) = (—i¢(x))*. Define further

Gols) i= [ ol dpo).

Proposition 2.2. Let o € (0,3), p € (0,1), 6,m0 > 0 and £ € R. Assume that for some ¢ > 0,
we have

(22) [ 6@+ o)) due) < o0
¢ (2)#0
and that the functions Gy(s) for n € [0,no], initially defined for Re(s) € (—c,c), can be
analytically continued to the set
{s€C,0<Re(s) <a+d,s¢a,a+0d]}.
Assume further that

sup / eR IT'(=s)Gp(s)|dr < o0,
0=n<mo s=a+0+itT

and that there is an open neighborhood V of [a, a + 8] for which
(2.3) (= 5)5Go(s) = 0+ O(|s — ), seV o, a+9], Re(s) <a+d.
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Then, ¢ € G(a, [log|> v [log|* 1T ™), where va = 1 if e = 1,2 and vy = 0 otherwise, and
with coefficients given by
—o/T(€+1), a=1,
(24) ¢1 =iGo(1) if a > 1, e =1Go(2) if a > 2, ce=1{30/T(E+1), a=2,
T'(—

Proof. We write
T[o)(t) +1 = /e”qﬁ(x) dp(x) = Jy + J- + Jo,

where J1 corresponds to the part of the integral restricted to +¢ > 0.
For all € € (0, o), define

Ti(e) i= / D@ qy(z), T (e) = / oD@ ().
$(x)>0 $(2)<0

By dominated convergence, we have J; := lim,_,o+ J1 (), and similarly for J_. We use the
Mellin transform formula for the exponential

1 —c/2+i00
e V= —/ [(—s)|y[fe*®8®) ds
2mi —c/2—ico
valid for Re(y) > 0, see [GROT, eq. 17.43.1] (the extension to non-real y is straightforward by
the Stirling formula [GRO7, eq. 8.327.1]). Inserting this in J4 (), we obtain
1 —c/2+i00
Ji(e) + J-(¢) —/ ['(=s)Gy(s)[1 + ie|*t* ds,

2mi —c/2—ioc0

where n = %arctans < % < np. We move the contour forward to Re(s) = a + 0. The simple

pole at s = 0 contributes | ()0 dp(z), and therefore by adding the contribution from Jy we
get

1
Jo+Ji(e)+J_(e) = 1+R+—/ ['(—s)Gy(s)t°|1 +ig|* ds
H(o,046)

211
1
21

/ T(—8)Gy(s)E°|1 + ie]* ds,
Re(s)=a+d

where R consists of the contribution of the residues at 1 (if & > 1) and 2 (if o > 2).
Here H(o, o + 0) is a Hankel contour, going from « + ¢ — i0 to a + ¢ + i0 passing around «
from the left. The last integral is bounded by the triangle inequality, using our first hypothesis
on G, which gives

1

— T(—5)Gy(s)t5[1 4 ic|® ds < 2+,
27 Re(s)=a+4d

uniformly in €. Passing to the limit ¢ — 0, there remains to prove

1 _ _
— [(—s)Go(s)t° ds = et [log t|* 10 + O(t%[log t|s 1T 77P),
271 H(a,a+96)
This is done by using our second hypothesis along with a standard Hankel contour integration
argument; we refer to e.g. Corollary I1.0.18 of [Tenl5] for the details. O

An important special case is the following.

Corollary 2.3. Let p be defined on [0,1] by du(z) = f(x)dx where f € C*([0,1]). Let a €
R~ {0}. For all g > %, A >0, and ¢ given by

o) = az P flog x|
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one has ¢ € G(1/8, [log|P+v1/8 |log|MP+v1/8714) for any € € (0,1) and with

1/6 —misgna _()\_’_1)—1’ B:17

_ ja| "e > -1 _

o= FO S — X @D =172,
r(=1/8),  B¢{1,1/2}.

and c1 = [ ¢dp ifﬁ<1(md62:—%f|¢|2du Zfﬂ<%

Proof. First, we write du(x) = f(0)x(x) dz + zg(x) dz, where x is the characteristic function
of the interval [0,1] and g € C([0,1]). For the contribution of x dz we apply Proposition
with any fixed ¢ < 1/8, a = 1/8, £ = A\/B + 1, any fixed p € (0,1) and § > 0. By |[GRO7,
4.272.6], for Re(s) < 1/ and n € [0, 1] we have

—sT (1 b A —sTh(1- L(As+1)
Gi(s) = e DOl [ g = o F g LA
Notice also that by Stirling’s formula G)(s) < e’r(%)|7||7'|_1/2 as |7] = |Im s| — oo, so that

in any case T'(—s)Gy(s) < |7|717Re(). Therefore the hypotheses of Proposition are easily
verified with
1/p, e DA/ +1)

2

0= lal A
Thus,
1
/0 () — 1) da = itc) + cht® + cut'/P|logt|NPTo1e 4 O /P 1og t|M PtV =r)

with coefficients as given in ([2.4)) with Go(1) = —i [ ¢x dz and Go(2) = — [ ¢?*x dwx. Finally,
as in Proposition 2.1 we deduce

/(eitd’(m) — Dag(z)dz = idlt + It? + O(Kt™)
for any 0 < o/ < min(3, %) and with ¢} = [ ¢(2)zg(z)dzif o’ > Land f = —3 [ ¢(z)*xg(z) dz
if @ > 2. The result then follows. O

2.2. Addition.
Lemma 2.4. For j € {1,2}, let §;(x) = ¢%(*) — 1. Then

(2.5) Zlgn + 62)(t) = Zon](1) + Tlal(1) + [ 61(2)6ax) dp(a)
= Z[pi)(t) + Zlga) () + O( T [ReZlg))(t)"?)

Jje{1,2}

Proof. The first equation is simply the relation e®(#1()+62(2)) _ 1 = §, (2) + do(x) + 01 ()do(x)
integrated over x. The last term is bounded using the Cauchy-Schwarz inequality

([10@s@lan) < T [ 16 dut)

J€{1,2}

and expanding the square on the right-hand side. O

Proposition 2.5. For j € {1,2}, let oj € (0,2], let L;j, R; be positive functions defined on
a neighborhood of 0 in R%, and ¢; € G(oy, Lj, Rj). If aq < oo, and under the following
assumptions:

~ R;(t), L;(t) = t°M) as t — 0,

- R;(t) = O(L;(t)),

~- 2= 0@t Ly (1)),
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we have
R, ifozl < a9,
1+ ¢2 € Gay, Ly, Ry), Ry ={Ri+ Lo+ +L1Ly if o = ag < 2,
Ri+ Lo+ VLi(VLa+1) ifag =as=2.
Moreover,

ci(d1 + ¢2) = c1(d1) + c1(p2),
cx(d1 + ¢2) = cu(r).

Proof. We use Lemma when computing the real part in (2.5)), the term icit vanishes. [

Remark. Note that using this result might induce a slight quantitative loss in the two cases
when a1 = as. What is gained at this price is that we are only required to study each ¢,
separately, which simplifies the analysis.

We also remark that this estimate is useful only when the term cot? is not relevant in .
In the complementary case, Proposition [2.1| can be used, although the ensuing error term will
typically be worse than optimal by a factor of |logt|.

It is straightforward to generalize Proposition affecting to each ¢; a different value of
the frequency: under the same hypotheses and notations, and additionally that L;, R; tend
monotonically to 400 at 0,

[t du(e) = 1 i (1)t + ier (2)t2 + et Laltr) + O + 15 R (14),
where ¢, ¢, are as in the conclusion of Proposition and t4 = max{t;,t2}.

3. APPLICATIONS

We now describe the applications we will be interested in. The measure is the Gauss-Kuzmin
distribution

dx
d = 1]).
Wo) = ey @€
The measure p is invariant under the Gauss map 7'(z) = {1/x} on (0, 1), in particular,
(3.1) Z[¢ o T|(t) = ZIo)(t).

3.1. Central values of the Estermann function. The first application we discuss is the
“period function” ¢ : R — C associated with the Estermann function (1.4), namely

¢(x) = D(3,1/x) — D(5,2),

initially defined in QN (0, 1]. By [Bet16], this function can be extended to a continuous function
on (0,1], more precisely given by an expression of the shape (3.2) below. Interpreting ¢ to
be R2-valued, the analogue of the integral (1.1)) is estimated using the following.

Corollary 3.1. Let e >0, £ :1]0,1] — C be a bounded, continuous function, and

%a:fl/?(log(l/x) + 0 — log(8m) — §) + C(%)2 + Reé’((—l)jx)> .

(3.2) ¢J<1’) = ( (71%J_1x_1/2(10g(1/$) +7 —10g(87r) + %) —|—Im5((—1)jx)

Let also uj := ((_Sj_l ) Then for some vector u € R2, and all t € RQ, we have

/ ' ilb b1 (@ 02(T @) ()
0

D (b [log [(t,ug)|I* + O= (18] log [1£]]%).
e{1,2}

=1+i(t,p) — 3T0g2
J
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Proof. Let € € (0,1). Using Corollary with f = 1/2 and X\ € {0,1}, and Proposition
we obtain

—-1/2 2tey
)

log z|) € G(2, |log|*, [log]|
(x> (0 — log(87) + 5)z /%) € G(2, |log], [log|*),
(x —Im&(+x)) € G(3,1,1),

(x> 32

as well as c.(z — £s271/2|logz|) = _nga' From Proposition and the ensuing remark,
and using the property (3.1]), we obtain for j € {1,2}

.
/0 (" 0P5 N — 1) dpu() = it pg) + eult, ug)*[log (8, uy)|* + O=(|¢]]* [log [1¢]]***),
where g1, o € R2. On the other hand, we have
L . T
A(t) = / (e BO1@) _ 1) t02T@)) _ 1) dpy(z) = / (652 _ 1), (2) da,
0 0

where
1 it (1/(n+x))) _ 1

F.(t) = .
®) log2 & (n+x)(n+z+1)

By a Taylor expansion at order 1, we have |F,(¢)| < |[¢|| uniformly in z, and therefore

1
A)] < ||t|!2/0 1po ()| dar < 18],
By (2.5), we deduce

1 . 1 )
/0 (B @HDT@)) 4 () = 1 + /0 (i(t:61) | it:82T@)) _ 9) du(x) + O(||#]]?),

whence the claimed estimate. O

3.2. Moments of continued fractions coefficients. The next application we consider per-
tains to the moments functions ¥y of continued fractions coefficients, where A > 0 is the order
of the moment. The function of interest to us here is

A
oa(z) = [1/x]".
The case A\ < 1/2 can be easily dealt with using Proposition so we do not focus on it here.
A first approach is to use Proposition to approximate |[1/z] by 1/z, and then use
Corollary This leads to the following.

Corollary 3.2. Let A > 1/2. The function ¢y given by ¢x(x) = Ll/xj’\ satisfies the following.
- If \=1/2, then with c, = —1/(log2), we have
(3.3) I o] (t) = ic1t + cut?|logt| + Oc(t*|log t|).
~ If A\ >1/2 and X # 1, then with ¢, = —exp(—mni/(2X))I'(1 —1/X)/log2, we have
Z[pal(t) = (Lacr)iert + et/ + O-(¢"*log ¢|71F)
When 1/2 < X < 1, we have ¢; = fol oa(z) dp(z).
Proof. We write ¢x(z) = pa(z) + ra(z), where py(z) = =z~ and ry(z) < Ll/xJAfl. By
Proposition we have ry € G(min(3, /\%1/3), 1,1).

We consider first the case A > 1/2, A # 1. By Corollary we have p) € g(%, 1, \log\_1+5).

We deduce, by Proposition that ¢y € Q(%, 1, \log]_Hg), and this yields the second and
third cases.
If A\ = 1/2, then Corollary implies py 5 € G(2, [log|, [log|*), and by Proposition for
some ¢ € R, we have
Tlryo)(t) = ict + O(2)
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On the other hand, since ‘(eitpm(x) — 1) (2@ 1)’ < tQ‘p1/2(a:)r1/2(az)‘ < 2 we get

1 .
/ (eiP1/2(@) _ 1)(etr1/2(*) _ 1) dp(z) = O(t2).
0

By (2.5)), we conclude (3.3)) as claimed. O

The case A = 1 could be analyzed by the same method, but we chose to study it separately
to obtain a more precise error term by another approach, using Proposition |2.2| directly. The
associated Mellin transform Gg(s) is related to the Riemann (-function.

Corollary 3.3. The function ¢ given by ¢p(x) = |1/z] satisfies
Z[6)(t) = — oz (logt + 70 — ) + Oc(t°79).

Proof. The integral (2.2)) converges for all ¢ < 1. A quick computation shows that an analytic
continuation of Gy (s) is given by

exp(—s% (1 —n))
log 2

Gn(s) = {C2—s)+ H(s)},

where H(s) =, n°(log(1+ n(n+2)) 1) is analytic and uniformly bounded in Re(s) < 2—¢.
We have

o dr
I‘—sGsds<<1—|—/ e+iT)|—— < 1
S, TSI @IAs] <2 1 [ (e il <

by the Stirling formula. The polar behaviour (2.3)) is given by

Gols) = explﬁw{c )+ H(s)} = explf);gi){lis +A+0(s—1)
for s in a neighborhood of 1, where
1 1
A= ;(nlog( n(n +2))—10g(1+g))
N
- _ A}E}nw; (nlog (1 + n—li—l) —(n—1)log (1 + %))
= — 1

Applying Proposition with 6 = 1/2 and a = 1 yields the claimed result up to O(t). Our
more precise statement follows from noting that there is no branch cut along s > 1 in this
case, so that the residue theorem may be used. We obtain

Res T(~5)Go(s)t* = ity (h0 — 5 + logt),

whence the claimed estimate. One could go further, isolating a pole of order 2 at s = 2, and
this would give an error term O(t?|logt|). O

3.3. Dedekind sums. The final example we discuss is related to Dedekind sums, for the
definition of which we refer to [BD| Section 2.4]. The “period function” ¢ relevant to us here
is

¢(x) = [1/z] = [1/T(x)].
Compared with the case of x — |1/x] studied in Corollary the relevant exponent « is
again 1, but the leading term turns out to be t (the terms ¢logt vanish).

Corollary 3.4. The map ¢ on (0,1) given by ¢(x) = |1/x| — |1/T(z)] satisfies

To)(t) = —ét + O(2[logt[?).
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Proof. We consider

1 . .
A(t) — / (e—thl/T(a:)J _ 1)(ezt|_1/a:j _ 1) du(x)
0

1 .
_ / (e~ l/=) _ 1) By (t) da,
0

. itn _ : ; 1-1/[1
with F(t) = @ don>1 Wn-ﬁ}l-ﬁ-x) Since [e™ — 1| < |u] /Moetl for all u € R, we find

1
Fx(t) <t Z W < t|10gt|
n>1

Similarly,

1 1
/ et/ 1] do < 1 / 2 /ostl 4« fllog ).
0 0
We thus obtain A(¢) = O((tlogt)?). Using Corollary|3.3|with the improved error term O(#2[log t|),
(3.1) and (2.5)), we deduce

1
/ G/21=1/T@D qy(2) = 1+ 2Re I(t) + O((tlog1)?),
0

where I(t) = fol (el /=) —1)du(zx). Corollary allows us to conclude. O
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