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Abstract. A number is said to be y-friable if it has no prime factor greater than y. In
this paper, we prove a central limit theorem on average for the distribution of divisors
of y-friable numbers less than x, for all (x, y) satisfying 2 ≤ y ≤ e(log x)/(log log x)1+ε .
This was previously known under the additional constraint y ≥ e(log log x)5/3+ε , by work
of Basquin. Our argument relies on the two-variable saddle-point method.

1. Introduction

An integer n ≥ 1 is said to be y-friable, or y-smooth, if its greatest prime factor P (n)
is less than or equal to y, with the convention P (1) = 1. We denote

S(x, y) :=
{
n ≤ x : P (n) ≤ y

}
,

Ψ(x, y) := card S(x, y).
Friable integers are a recurrent object in analytic number theory: we refer the reader
to the surveys [HT93, Gra08, Mor12] for an overview of recent results and applications.
An important aspect of results about friable numbers is their uniformity with respect
to y. The difficulty in this context is the fact that y-friable numbers tend to rarefy very
rapidly – much more so than what would be expected from sieve heuristics, for instance.
In this respect, analytic methods have proven to be very effective. The object of this
paper is to study, using these analytic methods, the distribution of divisors of friable
numbers on average.

For any n ≥ 1, define Dn to be the random variable taking the value log d where d
is chosen among the τ(n) divisors of n with uniform probability. It was shown by
Tenenbaum [Ten80] thatDn/ log n does not converge in law on any sequence of integers n
of positive upper density in N. However it can be expected that the discrepancies
arising from the erratic behaviour of the multiplicative structure are smoothed out upon
averaging over n. When one averages over all the integers, this question was settled by
Deshouillers, Dress and Tenenbaum [DDT79] who established

(1.1) 1
x

∑
n≤x

Prob(Dn ≤ t log n) = 2
π

arcsin
√
t+O

( 1√
log x

)
, (t ∈ [0, 1]).

The error term here is optimal if one seeks full uniformity with respect to γ. See
also [BM07] for a generalization (where one changes the probability measure one puts
on the divisors).

Expectedly, the analog problem for friable numbers has a different structure. Choosing
a divisor of n at random is equivalent to choosing an integer k ∈ {0, . . . , ν} uniformly at
random for every factor pν‖n appearing in the decomposition of n. We may thus write
(1.2) Dn =

∑
pν‖n

Dpν

Date: December 1, 2015.
1



2 SARY DRAPPEAU

where the variables Dpν on the right-hand side are independent. As is known from work
of Alladi [All87] and Hildebrand [Hil87], the number ω(n) of prime factors of n ∈ S(x, y)
typically tends to grow with n, in such a way that we may expect the sum (1.2) to satisfy
the central limit theorem. We are therefore led to the prediction that

(1.3) Prob
(
Dn ≥ 1

2 log n+ v%n
)
≈ Φ(v) :=

ˆ ∞
v

e−z2/2dz√
2π

for all fixed v ∈ R and almost all integers n ∈ S(x, y), where %n denotes the standard
deviation of Dn, given by

(1.4) %2
n =

∑
pν‖n

ν(ν + 2)
12 (log p)2.

La Bretèche and Tenenbaum [dlBT02, Corollaire 2.2] consider the case of the primorial
number N1(y) := ∏

p≤y p (which is the largest square-free y-friable number). They obtain

(1.5) Prob
(
DN1 ≥ 1

2 logN1 + v%N1(y)
)

= Φ(v)
{

1 +O
( 1 + v4

y/ log y

)}
for 0 ≤ v � (y/ log y)1/4. Note that %2

N1(y) ∼ (y log y)/4. We emphasize that there is
no average over the integers under study. Another related example considered recently
by Tenenbaum [Ten14, Corollaire 1.4], is the case of N2(y) := ∏

p≤y p
b(log y)/ log pc. There,

Tenenbaum obtains an analogous result to (1.5).
Such a law obviously does not hold for all y-friable numbers, as illustrated by the

example of N3(y) = 2by/ log 2c (which is roughly of the same size as N1 and N2, but for
which DN3 converges to the uniform law). It is therefore natural to ask what the output
is, if we on average over friable numbers. One option would be to study the average

1
Ψ(x, y)

∑
n∈S(x,y)

Prob(Dn ≥ 1
2 log n+ v%n).

However, a more interesting variant is deduced from observing that an additive function
of n naturally appears in the formula (1.4). A fundamental result in probabilistic number
theory, the Turán-Kubilius inequality, developped in the context of friable numbers
by La Bretèche and Tenenbaum [dlBT05a], ensures the existence of a quantity %(x, y)
independent of n such that

(1.6) %n ∼ %(x, y)

for a relative proportion 1+o(1) of integers n ∈ S(x, y), when y →∞ and y = xo(1). The
exact definition of %(x, y) involves the saddle-point α(x, y), defined as the only positive
solution to the equation ∑

p≤y

log p
pα − 1 = log x.

Then the approximation (1.6) holds with

% = %(x, y) :=
(1

4
∑
p≤y

pα − 1
3

(pα − 1)2 (log p)2
)1/2

.

We will prove below that

%(x, y)2 ∼ (log x)(log y)
(1

4 + log x
6y

)
(y →∞, y = xo(1)).
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In view of the above, we consider for v ∈ R the quantity

D(x, y; v) := 1
Ψ(x, y)

∑
n∈S(x,y)

Prob(Dn ≥ 1
2 log n+ v%)(1.7)

= 1
Ψ(x, y)

∑
n∈S(x,y)

1
τ(n)

∑
d|n

d≥n1/2ev%

1 (2 ≤ y ≤ x, v ∈ R).

The asymptotic behaviour of D(x, y; v) was studied previously by Basquin [Bas14]1 for
relatively large values of y. There, Basquin quantifies the shift from the arcsine law (1.1)
to a contracted normal law similar to (1.5): we refer the reader to [Bas14, Théorème 1.1]
for more details about this transition. We shall focus on the gaussian behaviour for small
values of y: let

u := (log x)/ log y, ū := min{u, π(y)},
where π(y) denotes the counting function of primes. Then Theorem 1.1 and Corollary 1.3
of [Bas14] (along with [HT86, equation (7.19)] to relate % with the quantity ξ′(u) involved
there) imply the following.

Theorem A. Then for all ε > 0 and all x and y satisfying
(Hε) exp{(log log x)5/3+ε} ≤ y ≤ x,

we have

(1.8) D(x, y; v) = Φ(v) +Oε

(1
u

+ 1√
log y

+ log(u+ 1)
log y

)
(v ∈ R).

The range of validity in x and y here is inherent to the method used, which is based
on the “indirect” saddle-point method (see also [Sai89]). The purpose of the present
work is to introduce a variant of the two-variable (direct) saddle-point method which
allows us to obtain a significant improvement of the range of validity and of the error
term in Theorem A.

Theorem 1. Let ε > 0. Whenever
(Gε) x ≥ 3, 2 ≤ y ≤ e(log x)/(log log x)1+ε

,

and 0 ≤ v � (ū)1/4, we have

(1.9) D(x, y; v) = Φ(v)
{

1 +Oε

(1 + v4

ū

)}
.

The condition y ≤ e(log x)/(log log x)1+ε is purely technical. For x and y in the comple-
mentary range u ≤ (log log y)1+ε, the Gaussian approximation is less relevant and the
methods of [Bas14] are better suited.

The range v � (ū)1/4 is the natural range of validity of the Gaussian approximation.
As is typically the case in large deviation theory, one could expect an asymptotic formula
to hold in the range v � (ū)1/2−ε by adding correction terms to the exponent z2/2 in
the definition (1.3) of Φ(v). We prove that such is indeed the case.

Theorem 2. Let (x, y) ∈ (Gε). There exists a sequence of numbers (bj(x, y))j≥0 satis-
fying

b0(x, y) = −1/2, bj(x, y)�j (ū)−j,
1To be precise, in [Bas14], Basquin studies the slight variant where ev% is replaced by nv%/ log x. This

change does not affect the estimate of Theorem A.
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such that the following holds. Let k ≥ 1 and

vmax � (ū)k/(2k+2)

be given, and assume that 0 ≤ v ≤ vmax. Letting

(1.10) Rk(z) = Rk(x, y; z) :=
k−1∑
j=0

bj(x, y)z2(j+1) (z ≥ 0),

we have

(1.11) D
(
x, y; v

)
=
{

1 +Ok

(1 + v2

ū
+ v2(k+1)

(ū)k
)}ˆ 2vmax

v

eRk(z) dz√
2π
.

Remark. Note that Rk(z) = −z2/2 + O(z4/ū), which explains the shape of the error
term in (1.9).

The coefficients bj(x, y) for j ≥ 1 could be expressed, if one wished, as an explicit
but complicated expression involving sums over primes less than y and the saddle-
point α(x, y) defined below. As ū → ∞, they can be approximated by elementary
expressions involving x and y, in the same shape as formula (1.17) below. We refrain to
do so here.

1.1. The saddle-point method. We now recall the explanation for the limitation on y
in the estimate of Basquin [Bas14]. The range (Hε) is classical in the study of friable
numbers: it is typically linked to the approximation of Ψ(x, y) by Dickman’s function2 ρ:

(1.12) Ψ(x, y) = xρ(u)
{

1 +Oε

( log(u+ 1)
log y

)}
((x, y) ∈ (Hε)).

This estimate is a theorem of Hildebrand [Hil86], improving in particular De Bruijn’s
work [dB51]. The range (Hε) is tighly linked to the best known error term in the prime
number theorem: it was shown by Hildebrand [Hil84] that if one could prove the weaker
estimate Ψ(x, y) = xρ(u) exp{O(yε)} for y ≥ (log x)2+ε, for all fixed ε > 0, then the
Riemann hypothesis would follow.

In many applications however, including that of interest here, one seeks a control on
the local variations of Ψ(x, y) with respect to x, rather than a control of Ψ(x, y) itself.
By “local variations” we mean, for instance, quantities of the shape Ψ(x/d, y)/Ψ(x, y)
for relatively small d ≥ 1. The saddle-point approach to estimating Ψ(x, y), developped
by Hildebrand and Tenenbaum [HT86], is very suitable for such applications: it enabled
very substantial progress to be made in the last decades regarding the uniformity with
respect to y, for example in friable analogs of the Turán–Kubilius inequality [dlBT05a]
or distribution of friable numbers in arithmetic progressions [Sou08].

We now recall Hildebrand and Tenenbaum’s result. When 2 ≤ y ≤ x, the saddle-
point α(x, y) is defined as the positive real number satisfying

(1.13)
∑
p≤y

log p
pα − 1 = log x.

It is therefore the positive number optimizing Rankin’s simple but remarkably efficient
upper bound
(1.14) Ψ(x, y) ≤ min

σ>0
ζ(σ, y)xσ,

2Dickman’s function ρ is the unique continuous function on R+ which is differentiable on (1,∞),
satisfies ρ(u) = 1 for u ∈ [0, 1], and uρ′(u)+ρ(u−1) = 0 for u > 1. We have ρ(u) = u−u+o(u) as u→∞.
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where
ζ(s, y) :=

∏
p≤y

(1− p−s)−1 =
∑

P (n)≤y
n−s (Re(s) > 0).

Here and in what follows, the letter p always denotes a prime number. As was pointed
out in [HT86], the point s = α(x, y) is a saddle point for the Mellin transform xsζ(s, y)
relevant to Ψ(x, y):

Ψ(x, y) = 1
2πi

ˆ σ+i∞

σ−i∞
xsζ(s, y)ds

s
, (x 6∈ N, σ > 0).

Letting

φ2(s, y) =
∑
p≤y

(log p)2ps

(ps − 1)2 (Re(s) > 0),

they obtain for 2 ≤ y ≤ x the following estimate [HT86, Theorem 1] :

(1.15) Ψ(x, y) = ζ(α, y)xα

α
√

2πφ2(α, y)

{
1 +O

(1
ū

)}
.

The denominator α
√

2πφ2(α, y) in (1.15) may be estimated using [HT86, Theorem 2.(ii)].
We have

(1.16) α(x, y) = log(1 + y/(log x))
log y

{
1 +O

( log log(1 + y)
log y

)}
,

(1.17) φ2(x, y) =
(

1 + log x
y

)
(log x) log y

{
1 +O

( 1
log(u+ 1) + 1

log y

)}
.

However, the question of approximating ζ(α, y)xα up to an factor (1+o(1)) by a smooth
and explicit function of x and y – for instance, in terms of the Dickman function ρ, is
tightly related to the error term in the prime number theorem. In a way, α encodes
the irregularities in the distribution of prime numbers that prevent us from having a
smooth, explicit estimate for Ψ(x, y) when (x, y) 6∈ (Hε) for all ε > 0.

On the other hand, the local variations of α(x, y) with respect to x are relatively well
controlled : such local estimates were obtained by La Bretèche–Tenenbaum [dlBT05b].
We note however that at the current state of knowledge, when (x, y) 6∈ (Hε), we are not
able to deduce from them an equivalent e.g. of the quantity

√
Ψ(x2, y)/Ψ(x, y), or the

quantity

(1.18) 1
Ψ(x, y)

∑
n∈S(x,y)

1
τ(n) .

This is hinted, for instance, by the fact that the error terms of [dlBT05b, Théorème 2.4],
which result from the estimation of Ψ(x/d, y)/Ψ(x, y), are of the same size as the main
term if d =

√
x. Note that if y ≥ (log x)3, say, the saddle-point relevant to the sum

in (1.18) is roughly of the same size as α(x2, y) (because 1/τ(p) = 1/2 for prime p). The
issue at hand when studying D(x, y; γ) is precisely the estimation of such sums as the
one in (1.18); in our case however, as will be apparent, the upper bound on n will be
roughly of size x1/2+o(1), and the relevant saddle-point will indeed be well-approximated,
to some extent, by α(x1+o(1), y).
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1.2. A truncated convolution and the two-variable saddle-point method. We
now sketch our proof of Theorem 1. Inverting summations yields

D(x, y; γ) = S

Ψ(x, y) ,

where
S :=

∑∑
P (nd)≤y
nd≤x,

d1/2≥n1/2eγ

1
τ(nd) .

The obvious approach here consists in first approximating the sum over n by a “nice”
function of d, and then estimating the remaining sum over d. This is the method
followed e.g. in [Bas14]. There, one relies on estimates for friable sums of multiplicative
functions from [Smi93], which are a generalization of (1.12). These however are still
subject to the limitation (x, y) ∈ (Hε).

One could presumably follow the same strategy by using the estimate (1.15) along with
local estimates for the saddle-point. The need for uniformity in d for the estimation of
the inner sum, however, is likely to produce significant technical complications due to
the dependence of the summand on the multiplicative structure of d. Here instead we
study the double sum as a whole by applying the Perron formula twice, which yields

(1.19) S = 1
(2πi)2

ˆ σ+i∞

σ−i∞

ˆ κ+i∞

κ−i∞
xse−γwFy(s+w/2, s−w/2)dw

w

ds
s
, (2σ > κ > 0),

provided x 6∈ N and e2γ 6∈ Q. Here Fy(s, w) is the Dirichlet series relevant to our
problem

Fy(s, w) :=
∑

P (nd)≤y

1
τ(nd)nsdw , (Re(s),Re(w) > 0),

and γ = v%. One wishes to apply the saddle-point method for the double-integral
in (1.19). A linear change of variables yields

S = 2
(2πi)2

ˆ σ+i∞

σ−i∞

ˆ κ+σ+i∞

κ+σ−i∞
x(s+w)/2eγ(w−s)Fy(s, w) dwds

(s− w)(s+ w) .

The effect of the factor 1/(s − w) cannot be fully neglected; although a direct analysis
would likely be possible (as in [dlBT02, Corollary 2.2]), we circumvent this issue by
truncating off values of s and w with large imaginary parts, and differentiating with
respect to v. Therefore, for some T > 0 of a suitable size and for some optimal choice
of (σ, κ) (depending on x, y and γ), one wishes to estimate

2%
(2πi)2

ˆ σ+iT

σ−iT

ˆ κ+σ+iT

κ+σ−iT
x(s+w)/2eγ(w−s)Fy(s, w) dwds

s+ w
.

The integrals there can be analyzed by the saddle-point method, which eventually yields
the expected approximation Ψ(x, y)e−v2/2/

√
2π.

Finally, we note that very recently Robert and Tenenbaum [RT13] used a variant of
the two-variable saddle-point method to study the distribution of integers with small
square-free kernel. Compared with theirs, our setting is simplified by the fact that the
series Fy(s, w) is symmetric and to some extent comparable to ζ(s, y)1/2ζ(w, y)1/2 (for
the study of which we can use the work of Hildebrand and Tenenbaum [HT86]).
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2. Preliminary remarks and notations

We will keep throughout the notation
s = σ + iτ, w = κ+ it, ((σ, τ, κ, t) ∈ R4).

We write A� B or A = O(B) whenever A and B are expressions where B assumes non-
negative values, and there exists a positive constant C such that |A| ≤ CB uniformly.
The constant C may depend on various parameters, which are then displayed in subscript
(e.g. A �ε B if the constant depends on ε). Moreover, the letters c1, c2, . . . designate
positive constants, which are tacitly assumed to be absolute, unless otherwise specified.

At various places in our arguments, functions such as z 7→ 1/(log z) − 1/(z − 1) are
involved, which are regular at some particular point of their domain of definition, where
the explicit expression diverges (here z = 1). It will be implicit that one should consider
the holomorphic extension at said point.

Finally, every instance of the complex logarithm function we consider is, unless oth-
erwise specified, the principal determination defined on C r R−. For all r > 0 and
any function f defined on C r R−, we denote f(−r + 0i) := limε→0+ f(−r + iε) and
similarly f(−r − 0i) := limε→0+ f(−r − iε), whenever those limits exist.

3. Saddle-point estimates for ζ(s, y)

For all k ∈ N, s ∈ C with Re(s) > 0 and y ≥ 2, we define

φ0(s, y) := log ζ(s, y) = −
∑
p≤y

log(1−p−s), φk(s, y) := ∂kφ0

∂sk
(s, y), φ̃k(s, y) :=

∑
p≤y

(log p)k
(ps − 1)k ,

σk := φk(α, y), σ̃k := φ̃k(α, y).
Bear in mind that σk and σ̃k depend on x and y, the values of which will be clear from
the context. In particular, by the definition of α,

(3.1) σ1 = − log x, σ2 =
∑
p≤y

(log p)2pα

(pα − 1)2 , σ̃2 =
∑
p≤y

(log p)2

(pα − 1)2 .

We quote the following useful estimates on α(x, y) and φk(α, y) from Theorem 2 and
Lemmas 2, 3 and 4 of [HT86]. They will be implicitly used thoughout our argument.
Uniformly for 2 ≤ y ≤ x, we have

σk � (u log y)k(ū)1−k, α � ū

u log y (y � log x), α� 1
log y (y � log x),

(1− α) log y � log ū,
√
ū� α

√
σ2 � min{

√
ū log y,

√
y/ log y}.

We will also require the following two bounds, which are corollaries of the calculations
of [HT86, page 281]. We have

(3.2)

ˆ ∞
(ū)2/3/(log x)

(
1 + τ 2σ2

y/(log y)

)−cy/(log y)
dτ � 1

ū
√
σ2
,

ˆ ∞
0

(
1 + t2σ2

y/(log y)

)−cy/(log y)
dt � 1

√
σ2
.
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Regarding φ̃k(x, y), using prime number sums in the same way as [HT86, Lemma 4
and 13], we deduce that

φ̃k(σ, y)�k |φk(σ, y)| (k ≥ 2, σ > 0, y ≥ 2).
Note that we trivially have σ̃2 ≤ σ2. The next lemma relates more precisely the two
quantities.

Lemma 1. As y, u→∞,

(3.3) σ̃2

σ2
= 1

1 + (y/ log x) + o(1).

Proof. When α ≥ 0.6, we certainly have y/(log x)→∞ as well as σ̃2 = O(1) and σ2 →
∞, so that the desired estimate holds. We may thus assume that α < 0.6.

Let ε ∈ (0, 1/10]. By [HT86, Lemma 3], we have φ2(α, y) � y1−α log y when-
ever 1/(log y)� α ≤ 0.6. The same conditions are satisfied when one replaces y by y1/2;
we deduce
(3.4) φ2(α, y1/2) � y−(1−α)/2φ2(α, y) ≤ y−α/3φ2(α, y).
Suppose first that y ≥ (1/ε) log x. Then log(1/ε)/ log y � α < 0.6, and we have

φ̃2(α, y) =
∑

p≤y1/2

(log p)2

(pα − 1)2 +
∑

y1/2<p≤y

(log p)2

(pα − 1)2 ≤ φ2(α, y1/2)+y−α/2φ2(α, y)� εcφ2(α, y)

for some absolute constant c > 0, because of our assumption on α.
Assume next that y ≤ ε log x. Then α � ε/ log y and pα = 1 + O(ε) uniformly

for p ≤ y, so that
φ̃2(α, y) = {1 +O(ε)}φ2(α, y).

Finally assume that y = t log x where t varies inside (ε, 1/ε) and let ū → ∞. Then
we have α ∼ log(1 + t)/ log y, so that yα ∼ε (1 + t) (the decay of the implied o(1)
there may depend on ε). Evaluating the sum over primes defining φ2(α, y) using [HT86,
Lemma 13], we have

φ2(α, y) = 1 + o(1)
(1− y−α)2

ˆ y

2

(log z)dz
zα

+O(1) ∼ε
y1−α log y
(1− y−α)2 ∼ε (t−1 + t−2)y log y.

The same set of calculations show that, on the other hand,

φ̃2(α, y) = 1 + o(1)
(1− y−α)2

ˆ y

2

(log z)dz
z2α +O(1) ∼ε

y1−2α log y
(1− y−α)2 ∼ε t

−2y log y.

We deduce φ̃2(α, y) ∼ε (1 + t)−1φ2(α, y).
Grouping our estimates, we have in any case

lim sup
ū→∞

(
σ̃2

σ2
− 1

1 + (y/ log x)

)
� εc

for some absolute c > 0 and all ε > 0, and we conclude by letting ε→ 0. �

Having the above facts at hand, we let % = %(x, y) be defined for 2 ≤ y ≤ x by

(3.5) % := 1
2(σ2 − σ̃2/3)1/2 � (log x)/

√
ū.

As ū→∞, we therefore have

%2 ∼ (log x) log y
(1

4 + log x
6y

)
.
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4. Lemmas

The following lemma is a truncated Perron formula suited for sparse sequences, cf. [Ten07,
Exercices II.2.2 and II.2.3]. Let

K(τ) := max{0, 1− |τ |} (τ ∈ R).

Lemma 2. Let (an) be any sequence of complex numbers, and assume that the series

F (s) :=
∑
n≥1

an
ns

is absolutely convergent on the half-plane Re(s) > σ0 for some σ0 > 0. For all such s,
let F0(s) := ∑

n≥1 |an|n−s. Then for all x ≥ 2, σ > σ0 and T ≥ 2, we have

∑
n≤x

an = 1
2πi

ˆ σ+iT

σ−iT
F (s)x

sds
s

+O
(
xσ√
T

{
F0(σ) +

ˆ √T
−
√
T

xiτF0(σ + iτ)K(τ/
√
T )dτ

})
.

Remark. The integral is the error term is a non-negative real number, as is apparent
from the proof.

Proof. The estimate follows classically from the formula, valid for all z > 0,

(4.1) 1
2πi

ˆ σ+iT

σ−iT

zsds
s

= 1z≥1 +O
(
zσ min{1, (T | log z|)−1}

)
� zσ.

Indeed the error term is O
(
zσ{T−1/2 + 1| log z|≤T−1/2}

)
, and we have

(4.2) 1| log z|≤T−1/2 �
(sin(

√
T (log z)/2)√
T (log z)/2

)2
=
ˆ 1

−1
ziτ
√
TK(τ)dτ.

We then specialize at z = x/n and sum over n against the coefficients an. �

4.1. Basic properties of Fy(s, w). Let

H := {s ∈ C : Re(s) > 0}, U := {z ∈ C : |z| < 1}.

For all (s, w) ∈ H2, we write

Fy(s, w) :=
∑

P (nd)≤y

1
τ(nd)nsdw .

Note that we have the Euler product expansion

Fy(s, w) =
∏
p≤y

( ∑
k,`≥0

p−ks−`w

k + `+ 1

)
=
∏
p≤y

( log(1− p−s)− log(1− p−w)
p−w − p−s

)
.

In what follows, the letters a, b and z shall denote complex numbers.
Whenever z ∈ C r R−, taking principal determinations of the logarithms, we have

Re
(
z1/2 − z−1/2

log z

)
> 0

where the fraction is analytically extended with value 1 at z = 1. It follows that the
function

(4.3) g(z) := log
(
z1/2 − z−1/2

log z

)
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is a well-defined analytic function of z ∈ C r R−. Since we have (1−a)/(1−b) ∈ C r R−
for all (a, b) ∈ U2, it follows that the function

(4.4) Ξ(a, b) := −1
2 log(1− a)− 1

2 log(1− b)− g
(1− a

1− b

)
is an analytic function of (a, b) ∈ U2. When a, b ∈ (−1, 1), we have

exp{Ξ(a, b)} = log(1− a)− log(1− b)
b− a

.

This identity therefore holds on U2 by analytic continuation. Putting

(4.5) fy(s, w) :=
∑
p≤y

Ξ(p−s, p−w),

we obtain that fy(s, w) is an analytic function of (s, w) ∈ H2, and

Fy(s, w) = exp{fy(s, w)}.

For any (k, `) ∈ N2 and function f(a, b) of class Ck+`, we shall use the notation

∂k`f := ∂k+`f

∂ak∂b`
.

The hessian will play an important role: for a class C2 function f of two variables, we
denote

Hess[f ] := (∂20f)(∂02f)− (∂11f)2.

In the rest of the paper, Ξ(a, b) will always denote the function defined by equa-
tions (4.4) and (4.3) in the proof of the previous lemma. The next lemma regroups some
useful facts concerning the power series expansion of Ξ(a, b).

Lemma 3. (i) For some sequence of positive coefficients (dk,`)k+`≥1 with d1,0 = d0,1 =
1/2, the power series expansion of Ξ(a, b) at (0, 0) is

(4.6) Ξ(a, b) =
∑

k+`≥1
dk,`a

kb` ((a, b) ∈ U2).

(ii) For some analytic function ξ(a, b) of (a, b) ∈ U2, we may write

(4.7) g
(1− a

1− b

)
= (a− b)2ξ(a, b) ((a, b) ∈ U2).

(iii) For some sequences (d′k,`)k,`≥0 and (d′′k,`)k,`≥0 of positive numbers with d′′0,0 = d′0,0 =
1/24, we have

(4.8) ξ(a, b) =
∑
k,`≥0

d′k,`a
kb` ((a, b) ∈ U2),

(4.9) ∂k`ξ(a, a) =
d′′k,`

(1− a)k+`+2 (a ∈ U).

(iv) For all (a, b) ∈ (0, 1), we have

(4.10) [(∂20Ξ)(∂02Ξ)− (∂11Ξ)2](a, b) > 0.

The useful feature in points (i) and (iii) is the positivity of the coefficients, which will
provide a neat way to establish bounds on Fy(s, w).
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Proof. Recall that the function g is defined by (4.3). Note that g(z) = O(log(|z|+ |z|−1))
uniformly for z ∈ C r R−, and g(1) = 0. Thus, whenever z 6∈ R− and Γ is an oriented
circle inside C r R− circling around z counter-clockwise, the Cauchy formula yields

g(z) = z − 1
2πi

˛
Γ

g(w)dw
(w − z)(w − 1) = z − 1

2πi

ˆ 0

−∞

g(w + 0i)− g(w − 0i)
(w − z)(w − 1) dw,

where the last equality follows from modifying the contour of integration into a Hankel
contour, first from −∞ to 0 with argument π, then from 0 to −∞ with argument −π.
Setting t = 1/(1− w), we obtain

g(z) = (1−z)
ˆ 1

0

K(t)dt
1− t(1− z) , where K(t) = 1

π
arctan

( 1
π

log
(

t

1− t

))
(t ∈ (0, 1))

which we extend by continuity at t = 0 and 1. Letting z = (1 − a)/(1 − b), we deduce
that

(4.11) g
(1− a

1− b

)
= (a− b)

ˆ 1

0

K(t)dt
1− (ta+ (1− t)b) .

Note that the function K is differentiable in (0, 1) and

K′(t) = 1
t(1− t)

{
π2 + log(t/(1− t))2

} > 0 (0 < t < 1).

Expanding the rational fraction in the RHS of (4.11) as a power series, and taking into
account the factor (b− a), we obtain for some coefficients (d̃j)j≥0 the expression
(4.12)

g
(1− a

1− b

)

=
∑
j≥0

d̃j{aj + bj}+
ˆ 1

0
K(t)

∑
k,`≥1

akb`
(
`+ k

k

)
1

k + `

{
ktk−1(1− t)` − `tk(1− t)`−1

}
dt

=
∑
j≥0

d̃j{aj + bj} −
∑
k,`≥1

akb`
(
k + `

k

)
1

k + `

ˆ 1

0
K′(t)tk(1− t)`dt

by an integration by parts. The point here is that the coefficients of terms akb` with
positive exponents are negative. We return now to Ξ(a, b). Setting b = 0, we have

Ξ(a, 0) = log
(
− log(1− a)

a

)
(a ∈ U).

By considering the derivative of this expression, it is easily obtained that the coeffi-
cients (dj,0)j≥1 in the expansion Ξ(a, 0) = ∑

j≥1 dj,0a
j are positive, and d1,0 = 1/2. Using

this expansion, the expression (4.12) for g and equation (4.4) (as well as the symmetry
between a and b), we finally get

Ξ(a, b) =
∑
j≥1

dj,0
(
aj + bj) +

∑
k,`≥1

akb`
(
k + `

k

)
1

k + `

ˆ 1

0
K′(t)tk(1− t)`dt =

∑
k+`≥1

dk,`a
kb`

say, where the coefficients (dk,`)k+`≥1 are positive and d1,0 = d0,1 = 1/2. This yields (4.6).
We continue with the expression (4.11). Since K(1− t) = −K(t), we deduce

g
(1− a

1− b

)
= (a− b)2

ˆ 1

0

(t− 1/2)K(t)dt
(1− (tb+ (1− t)a))(1− (ta+ (1− t)b))
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from which we deduce the existence of the function ξ(a, b) satisfying (4.7) and its ana-
lyticity. Note that (t− 1/2)K(t) ≥ 0 for t ∈ [0, 1]. For all t ∈ [0, 1], we let

Rt(a, b) := 1
(1− (tb+ (1− t)a))(1− (ta+ (1− t)b)) =

∑
k,`≥0

rk,`(t)akb`,

for some numbers rk,`(t), by expanding the rational fraction as a power series in ta +
(1 − t)b and tb + (1 − t)a, which in turn is a power series in a and b whose coefficients
are polynomial combinations of t and 1 − t with positive coefficients. Therefore, for
all k, ` ≥ 0, rk,`(t) is a non-zero polynomial in t with rk,`(t) ≥ 0 (t ∈ [0, 1]). Setting

d′k,` :=
ˆ 1

0
(t− 1/2)K(t)rk,`(t)dt,

the expansion (4.8), along with the positivity of the coefficients, follows at once. Fur-
thermore, it is easily seen by induction that for all k, ` ≥ 0,

∂k,`Rt(a, b) =
∑

1≤j≤k+`+1

P
(j)
k,` (t)

(1− (tb+ (1− t)a))j(1− (ta+ (1− t)b))k+`+2−j

for some non-zero polynomials P (j)
k,` (t) ≥ 0 (t ∈ [0, 1]). This yields the equation (4.9).

The fact that d′0,0 = 1/24 is a simple calculation; it implies that d′′0,0 = 1/24 by special-
ization at a = 0.

The inequality (4.10) is proved by a direct computation. Let z := (1− a)/(1− b) > 0.
Then

[(∂20h)(∂02h)− (∂11h)2](a, b) =
1+z
z−1 log z − 2

(1− a)2(1− b)2(log z)2

which is extended by continuity as 1/(6(1−a)4) when a = b. When z 6= 1, the positivity
of the numerator is easy to establish.

�

We introduce for δ ≥ 0 the subset

Dδ(α; y) :=
{

(σ, κ) ∈ (0, 1]2 : (σ−α)(α−κ) ≥ 0, 1
1 + δ

≤ 1− 2−σ
1− 2−κ ≤ 1+δ and |σ−κ| log y ≤ δ

}
.

The first condition simply means that α is between is σ and κ. The other guaran-
tee that σ and κ are adequately close to each other. Note that Dδ′(α; y) ⊂ Dδ(α; y)
whenever δ′ ≤ δ, and that if (σ, κ) ∈ Dδ(α; y), then uniformly for p ≤ y, we have
(4.13)
1−p−σ = (1−p−α){1+O(δ)}, σ = α{1+O(δ+(log y)−1)}, pσ = pα{1+O(δ)},
and similarly for κ.

In the next lemma, we deduce from the properties of the series Ξ(a, b) some information
about the function fy(s, w) defined in (4.5). Recall that σ2 and σ̃2 were defined by (3.1).

Lemma 4. For some absolute constant δ0 > 0 and all 2 ≤ y ≤ x, the following
assertions hold.

(i) For all (s, w) ∈ H2 and k, ` ≥ 0, we have Re
{
∂k`fy(s, w)

}
≤ ∂k`fy(σ, κ).

(ii) For all σ, κ > 0, we have
[∂20fy + ∂11fy](σ, κ) > 0 and Hess[fy](σ, κ) > 0.

(iii) For all non negative integers k, ` with (k, `) 6= (0, 0), we have
∂k`fy(σ, κ)�k,` |φk+`(α, y)| ((σ, κ) ∈ Dδ0(α; y)).
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(iv) Whenever 0 ≤ δ ≤ δ0 and (σ, κ) ∈ Dδ(α; y), we have

∂20fy(σ, κ) + ∂11fy(σ, κ) = σ2

2 +O(δσ2),

Hess[fy](σ, κ) = σ2

4
{
σ2 −

σ̃2

3
}

+O(δσ2
2).

Proof. Part (i) follows immediately from part (i) of Lemma 3. Indeed, for all fixed
indices k, ` ≥ 0, we can write ∂k`Ξ(a, b) = ∑

j1,j2≥0 d̃j1,j2a
j1bj2 for some non-negative

coefficients d̃j1,j2 depending on k and `. Then

Re
{
∂k`fy(s, w)− ∂k`fy(σ, κ)

}
= −

∑
j1,j2≥0

d̃j1,j2
∑
p≤y

1− cos((j1τ + j2t) log p)
pj1σ+j2κ

≤ 0

by positivity. Regarding part (ii), the inequality [∂20fy + ∂11fy](σ, κ) > 0 also follows
immediately by linearity from the equality

[∂20fy + ∂11fy](σ, κ) =
∑
p≤y

(log p)2
[
a∂10Ξ(a, b) + a2∂20Ξ(a, b) + ab∂11Ξ(a, b)

]
a=p−σ
b=p−κ

and the positivity of the coefficients in the expansion (4.6). Concerning the hessian, we
apply the Cauchy–Schwarz inequality, getting

[(∂20fy)(∂02fy)](σ, κ) ≥
(∑
p≤y

(log p)2
√[

(a∂10Ξ(a, b) + a2∂20Ξ(a, b))(b∂01Ξ(a, b) + b2∂02Ξ(a, b))
]
a=p−σ
b=p−κ

)2

≥
(∑
p≤y

(log p)2
√[
a2b2∂20Ξ(a, b)∂02Ξ(a, b)

]
a=p−σ
b=p−κ

)2
.

By (4.10), the last sum over p is strictly greater than∑
p≤y

(log p)2p−σ−κ∂11Ξ(p−σ, p−κ) = ∂11fy(σ, κ)

as required.
We now turn to estimating the derivatives of fy. Assume that (σ, κ) ∈ Dδ(α; y) for

some small δ. Recall that

Ξ(a, b) = −1
2 log(1− a)− 1

2 log(1− b)− (a− b)2ξ(a, b).

Let k, ` ≥ 0 be fixed with k + ` ≥ 1. Then the derivative ∂k`Ξ(a, b) can be written as
a linear combination with bounded coefficients of terms assuming one of the following
four shapes:

(4.14)



(1− a)−k if ` = 0, or (1− b)−` if k = 0,
(a− b)2∂k`ξ(a, b),
(a− b)∂j1j2ξ(a, b) with j1 + j2 = k + `− 1 and ji ≥ 0,
∂j1j2ξ(a, b) with j1 + j2 = k + `− 2 and ji ≥ 0.

Suppose for simplification that a ≤ b. Then for any j1, j2 ≥ 0, we have
(4.15) ∂j1j2ξ(a, a) ≤ ∂j1j2ξ(a, b) ≤ ∂j1j2ξ(b, b)�j1j2 (1− b)−j1−j2−2

by virtue of (4.8) and (4.9). Noting that |a− b| ≤ 1− a, It follows that each of the four
expressions given in (4.14) is bounded by Ok,`((1− a)2(1− b)−k−`−2), so that

∂k`Ξ(a, b)�k,` (1− a)2(1− b)−k−`−2 (k + ` ≥ 1, a ≤ b).
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By symmetry, when b ≤ a the same estimate holds if we swap a and b in the right-hand
side. Next, we specialize a = p−σ, b = p−κ. By the property (4.13), if δ is small enough,
we have for all k, ` ≥ 0 with k + ` ≥ 1

(4.16) ∂k`Ξ(p−σ, p−κ)�k,` (1− p−α)−k−`.

Differentiating the function (σ, κ) 7→ Ξ(p−σ, p−κ), k times with respect to σ and ` times
with respect to κ yields a linear combination of terms of the shape

(log p)k+`p−j1σ−j2κ∂j1j2Ξ(p−σ, p−κ) (1 ≤ j1 + j2 ≤ k + `)

each of which is bounded by O((log p)k+`(pα−1)−j1−j2) (here we used (4.13) and (4.16)).
Summing over p ≤ y, we obtain

∂k`fy(σ, κ)�k,`

∑
p≤y

(log p)k+`
{ 1

(pα − 1)k+` + 1
pα − 1

}
≤ φ̃k+`(α, y) + u(log y)k+`.

Each of the last two terms is bounded from above byO(|φk+`(α, y)|) = O((u log y)k+`(ū)1−k−`)
and this proves part (iii).

We now estimate the hessian. A direct calculation reveals that

∂20fy(σ, κ) = 1
2φ2(σ, y)−

∑
p≤y

(log p)2
[
2a(a−b)ξ+a(a−b)2∂10ξ+2a2ξ+4a2(a−b)∂10ξ+a2(a−b)2∂20ξ

]
a=p−σ
b=p−κ

,

∂11fy(σ, κ) = −
∑
p≤y

(log p)2
[
ab
{
− 2ξ + 2(a− b)(∂10ξ − ∂01ξ) + (a− b)2∂11ξ

}]
a=p−σ
b=p−κ

,

where we abbreviated for simplicity ∂k`ξ = ∂k`ξ(a, b). Using (4.13) and the proper-
ties (4.9) and (4.15), we obtain

∂20fy(σ, κ) = 1
2φ2(α, y)− 2

∑
p≤y

(log p)2p−2αξ(p−σ, p−κ) +O(δφ2(α, y)),

∂11fy(σ, κ) = 2
∑
p≤y

(log p)2p−2αξ(p−σ, p−κ) +O(δφ2(α, y)).

Using once more the properties (4.8) and (4.9), along with the value d′′0,0 = 1/24, we get

∂20fy(σ, κ) = σ2

2 −
σ̃2

12 +O(δσ2), ∂11fy(σ, κ) = σ̃2

12 +O(δσ2).

Using the symmetry of fy with respect to σ ↔ κ, we finally obtain

Hess[fy](σ, κ) =
(
σ2

2 −
σ̃2

12

)2
−
(
σ̃2

12

)2
+O(δσ2

2) = σ2

4

{
σ2 −

σ̃2

3
}

+O(δσ2
2)

which gives part (iv) of the lemma. �

4.2. Decay estimates along vertical lines. For the saddle-point method to succeed,
it is required that the tails of the integrals in (1.19) contribute a negligible quantity.
The following lemma, which provides sufficient information for this purpose, states that
the decay of Fy(s, w) away from the to-be saddle-points is reasonnably good compared
with what a Taylor formula at order 2 would predict, even in a range where the Taylor
formula turns out not to be relevant. It is an analog of [HT86, Lemma 8]. We recall our
notation that c1, c2, . . . denote constants, which are absolute unless otherwise specified.
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Lemma 5. (i) Whenever
|σ − κ| ≤ c1σ, max{σ + |τ |, κ+ |t|} ≤ c1/(log y),

we have

Re
{
fy(s, w)− fy(σ, κ)

}
≤ −c1

y

log y

{
log

(
1 +

(
τ

σ

)2)
+ log

(
1 +

(
t

κ

)2)}
.

(ii) When σ ≤ c1/ log y and |τ | ≤ e(log y)3/2−ε, we have

Re
{
fy(s, w)− fy(σ, κ)

}
≤ −c1

y

log y
{

log
(
1 +

(τ log x
y

)2)
+O(1)

}
.

(iii) For all ε > 0, there exists c2(ε) > 0 depending only on ε such that whenever
min{σ, κ} ≥ ε/ log y, max{σ, κ} ≤ 0.6, max{|τ |, |t|} ≤ c2(ε)/ log y,

we have

Re
{
fy(s, w)− fy(σ, κ)

}
≤ −c2(ε)

{
τ 2φ2(σ, y) + t2φ2(κ, y)

}
.

Although it is elementary, the proof of this lemma is somewhat lengthy and otherwise
unrelated to the rest of the argument: it is postponed to the appendix. We deduce the
following estimate for Fy(s, w).

Corollary 1. Let |τ |, |t| ≤ exp{(log y)4/3}. For some absolute constants δ, c3 > 0,
whenever (σ, κ) ∈ Dδ(α; y), the following holds.
(i) For max{|τ |, |t|} � 1/ log y, we have

(4.17)
∣∣∣∣Fy(s, w)
Fy(σ, κ)

∣∣∣∣� exp
{
− c3ū

(
τ 2

(1− α)2 + τ 2 + t2

(1− α)2 + t2

)}
.

(ii) For max{|τ |, |t|} ≤ c3/ log y, we have

(4.18)
∣∣∣∣Fy(s, w)
Fy(σ, κ)

∣∣∣∣ ≤ {(1 + τ 2φ2(α, y)
y/ log y

)(
1 + t2φ2(α, y)

y/ log y

)}−c3
y

log y
.

(iii) For α ≤ c3/ log y and |τ | ≤ e(log y)3/2−ε, we have

(4.19)
∣∣∣∣Fy(s, w)
Fy(σ, κ)

∣∣∣∣ ≤ eO(y/ log y)
(
1 + (τ log x)2

(1 + τ 2)y2

)−c4(ε)y/ log y

with c4(ε) > 0 depending only on ε > 0.

Proof. First suppose α ≥ 0.55. Then if δ is sufficiently small, we have σ, κ ≥ 0.54. On
the other hand, from (4.7) we see that Ξ(p−s, p−w) = −1

2 log(1− p−s)− 1
2 log(1− p−w) +

O(p−2σ + p−2κ), from which it follows that Fy(s, w) = ζ(s, y)1/2ζ(w, y)1/2 exp{O(1)}. In
this case, Corollary 1 is a direct consequence of Lemma 8 of [HT86].

Next let c1 be the constant in Lemma 5.(ii), and suppose that |τ |, |t| ≤ c1/(2 log y)
and α ≤ c1/(4 log y). If δ is sufficiently small, this implies σ, κ ≤ c1/(2 log y). If more-
over δ is sufficiently small in terms of c1, then the conditions of Lemma 5.(i) are fulfilled
and for some constant c > 0, we have

|Fy(s, w)| ≤ Fy(σ, κ) exp
{
− c y

log y

(
log

(
1 +

(
τ

σ

)2)
+ log

(
1 +

(
t

κ

)2))}
.

Since under our hypotheses σ2 � α2 � y/(φ2(α, y) log y), and similarly for κ, we have
the required estimate
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Assume next that η/(4 log y) < α < 0.55, and |τ |, |t| ≤ c1/(2 log y). In this case,
assuming δ is small enough, we deduce c1/(5 log y) ≤ σ ≤ 0.6 and similarly for κ, so that
the conditions of Lemma 5.(iii) (with ε < c1/5 being absolute) are satisfied: for some
absolute constant c > 0, we have

|Fy(s, w)| ≤ Fy(σ, κ) exp
{
− c

(
τ 2φ2(σ, y) + t2φ2(κ, y)

)}
.

Note that φ2(σ, y) � φ2(α, y) and similarly for κ. Furthermore, we have under the
current hypotheses τ 2φ2(α, y) log y/y � u(log y)/y � 1. Therefore

y

log y log
(

1 + τ 2φ2(α, y)
y/(log y)

)
� τ 2φ2(α, y)

and similarly for t. This yields the required estimate
Suppose next that α < 0.55, |t| ≤ |τ | and |τ | � 1/ log y (as we may without loss of

generality). Then from part (i) of Lemma 3 we deduce

Re
{
fy(s, w)−fy(σ, κ)

}
= −

∑
k+`≥1

dk`
∑
p≤y

1− cos((kτ + `t) log p)
pkσ+`κ ≤ −

∑
p≤y

1− cos(τ log p)
2pσ

dropping all but one term by positivity. Note that pσ � pα. It follows from Lemma 8 of
[HT86] that for some c > 0, we have

∑
p≤y

1− cos(τ log p)
pα

� cūτ 2

(1− α)2 + τ 2 .

(Note that the condition |τ | ≥ 1/(log y) in the statement of [HT86] may be relaxed
to |τ | � 1/ log y without changing the proof). Since the fraction in the right-hand side
is an increasing function of |τ | and |τ | ≥ |t|, we obtain the required result.

Finally, if α ≤ c3/ log y and |τ | ≤ e(log y)3/2−ε , exponentiating the upper bound of
Lemma 5.(iii) immediately yields the desired result. �

We shall use the first estimate of the previous corollary in the form of the following
bounds.

Corollary 2. Suppose (σ, κ) ∈ Dδ(α; y) for some sufficiently small δ ≥ 0. Then the
following assertions hold.
(i) For all 1 ≤ X ≤ exp{(log y)4/3} and λ ∈ R,

ˆ X

−X
|Fy(σ + iλτ, κ+ iτ)|dτ � Fy(σ, κ)

{
1 +Xe−c5ū

}
.

(By symmetry the same bound holds for the analogous integral over t).
(ii) For all 0 < δ ≤ 1, (µ1, µ2) ∈ (0, 2]2, (λ1, λ2) ∈ R2 and 5 ≤ X ≤ exp{(log y)4/3},

we have

(4.20)

¨
(∗)
|Fy(σ+i(τ + λ2t), κ+ i(τ + λ1t))|

dτ
µ1 + |τ |

dt
µ2 + |t|

�δ Fy(σ, κ) log(X/(µ1µ2))2H(ū)−c5δ2(log x)−1,

where the integration domain is (∗) =
{

(τ, t) : max{|τ |, |t|} ≤ X,
max{|τ + λ1t|, |τ + λ2t|} ≥ δ/ log y

}
.
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Proof. The proof is very similar to the calculations of [HT86, pages 277 and 279]. We
only sketch the details.

Part (i) follows in a straightforward way from bounding trivially by O(Fy(σ, κ)) the
contribution to the integral of |τ | ≤ 1, and bounding by O(Xe−cūFy(σ, κ)), for some c >
0, the contribution of |τ | ≥ 1 using Corollary 1.(i).

Regarding part (ii), first note that log x = H(ū)o(1) as ū → ∞ as soon as the two
conditions y ≥ (log log x)1+ε and u ≤ (log log y)1+ε. The second was assumed from the
outset of our argument. Let us first assume that y > (log log x)2. Then Corollary 1.(ii)
yields ¨

(∗)
|Fy(σ + i(τ + λ1t), κ+ i(τ + λ2t))|

dτ
µ1 + |τ |

dt
µ2 + |t|

� Fy(σ, κ)
 sup
ν∈R

ˆ X

δ/ log y
exp

{
− cū τ 2

(1− α)2 + τ 2

} dτ
min{µ1, µ2}+ |τ − ν|

2

for some c > 0. Since for any |τ | ≥ δ/ log y, we have
τ 2

(1− α)2 + τ 2 ≥
δ2

δ2 + ((1− α) log y)2 �
δ2

(log ū)2 ,

we obtain the bound
� Fy(σ, κ)H(ū)−c′δ2 log(X/(µ1µ2))2

for some c′ > 0. Since (log x)�δ,ε H(ū)c′δ2/2, the above is an acceptable error term.
If on the contrary y ≤ (log log x)2, then by Corollary 1.(iii), we have¨

(∗)
|Fy(σ + i(τ + λ1t), κ+ i(τ + λ2t))|

dτ
µ1 + |τ |

dt
µ2 + |t|

� eO(y/ log y)Fy(σ, κ)
 sup
ν∈R

ˆ X

δ/ log y

(
1 + (τ log x)2

(1 + τ 2)y2

)−cy/ log y dτ
min{µ1, µ2}+ |τ − ν|

2

for some c > 0. We certainly have, for τ ≥ δ/ log y,(
1 + (τ log x)2

(1 + τ 2)y2

)
� δ2 log(u/y) � δ2 log x,

so that for some c′ > 0, we have a bound

�δ Fy(σ, κ)(log x)−c′δ2y/ log y log(X/(µ1µ2))2.

This is clearly acceptable since y ≤ (log log x)2. �

4.3. The saddle-points. Let 2 ≤ y ≤ x, and γ = v% with v ∈ R, |v| ≤ (log x)/%. We
are interested in the properties of the pair of positive abscissæ satisfying

(β1, β2) = argmin
(σ,κ)∈(R∗+)2

(
x(σ+κ)/2eγ(w−s)Fy(σ, κ)

)
.

This pair will be more easily dealt with if defined by extrapolation from the case v = 0.
We let

β : (−v0, v0)→ R
be the maximal solutions (here v0 ∈ R∗+ ∪ {∞}) to the differential equation

(4.21) β′(v) = %
[∂02fy + ∂11fy](β(v), β(−v))

Hess[fy](β(v), β(−v))



18 SARY DRAPPEAU

satisfying the initial condition
β(0) = α(x, y).

Lemma 6. For all |v| < v0, the couple (β(v), β(−v)) satisfies the saddle-point equation

(4.22)


∂10fy(β(v), β(−v)) + log x

2 − v% = 0,

∂01fy(β(v), β(−v)) + log x
2 + v% = 0.

Moreover, the function β is defined in the interval
(4.23) V = V(x, y) = [−c6

√
ū, c6
√
ū],

and for v ≥ 0, v ∈ V, we have

(β(v), β(−v)) ∈ Dδ0(α; y), 0 ≤ β(v)− β(−v) � v
√
σ2

where δ0 > 0 is an absolute constant such that Lemma 4.(iii)-(iv) hold.

Proof. That (β(v), β(−v)) satisfies the saddle-point equation can be seen by differenti-
ating the system (4.22) with respect to v, granted that it is satisfied at v = 0. To check
this last fact, we remark that from the definitions (4.5), (4.4) and Lemma 3.(ii) (more
specifically, using the fact that g((1 − a)/(1 − b)) vanishes at order 2 when a = b), we
have

∂10fy(σ, σ) = ∂01fy(σ, σ) = 1
2φ1(σ, y) (σ > 0).

Then, when v = 0, both equations in (4.22) reduce to the definition of α(x, y).
From Lemma 4.(ii), we have that β′(v) > 0 for |v| < v0. Let δ0 > 0 be, as in the

statement, an absolute constant such that Lemma 4.(iii)-(iv) hold, and let

(4.24) vm := inf
{
v ∈ (0, v0) : β(v)− β(−v) = c7ū

u log y or 2−β(−v) − 2−β(v)

1− 2−β(−v) = δ0
}
> 0

where c7 > 0 is absolute and such that 0 < c7 ≤ δ0 and α ≥ 2c7ū/(u log y). Since ū ≤ u,
we have

(β(v), β(−v)) ∈ Dδ0(α; y), (0 ≤ v < vm).
In particular, β1, β2 and their derivatives have a limit at v = vm and the theorem of
Cauchy–Lipschitz yields vm < v0. Lemma 4.(iv) ensures that for 0 ≤ v ≤ vm we
have β′(v) � (log x)/(%σ2) � 1/√σ2. It follows that

(4.25) β(v)− β(−v) � v
√
σ2

(0 ≤ v ≤ vm).

We claim that vm �
√
ū. Indeed, assume first that the limiting condition in (4.24)

is β(vm)−β(−vm) = c7ū/(u log y). Then from (4.25) it follows that vm/
√
ū� 1. If on the

contrary the limiting condition in (4.24) is (2−β(−vm)−2−β(vm))/(1−2−β(−vm)) = δ0, then
we write this condition as f(vm) = 0, where f(v) := δ0 + 2−β(v) − (1 + δ0)2−β(−v) (0 ≤
v ≤ vm). We have

f(0) = δ0(1− 2−α)� α, f ′(v)� |β′(v)| � 1/√σ2 (0 ≤ v ≤ vm)
from which we deduce that vm � α

√
σ2 �

√
ū. This proves the lemma. �

The next lemma describes more precisely the variations of β and of the quanti-
ties x(β1+β2)/2eγ(β2−β1)Fy(β1, β2) and Hess[fy](β1, β2) (where (β1, β2) = (β(v), β(−v)))
with respect to v.
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Lemma 7. Define for all 2 ≤ y ≤ x and v ∈ V
(4.26)
E(v) = E(v;x, y) := log(x(β1+β2)/2eγ(β2−β1)Fy(β1, β2)) ((β1, β2) = (β(v), β(−v)).

Then for some sequence of functions (bj(x, y))j≥0 satisfying
b0(x, y) = −1/2, bj(x, y)�j (ū)−j,

and for each fixed k ≥ 1, we have the Taylor expansion

(4.27) E(v) = E(0) +
k−1∑
j=0

bj(x, y)v2j+2 +O
(
v2k+2

(ū)k
)

(v ∈ V).

Moreover, we have

(4.28) Hess[fy](β1(v), β2(v)) = Hess[fy](α, α)
{

1 +O
(
v2

ū

)}
,

(4.29) β1(v) = α− v

%
+O

(
v2

u log y

)
.

Proof. First we note that

E(v) = fy(β(v), β(−v)) + β(v) + β(−v)
2 log x− v(β(v)− β(−v))%.

By the saddle-point property (4.22), we have
E ′(v) = −%

(
β(v)− β(−v)

)
(v ∈ V).

We wish to differentiate this expression further. In order to simplify the presentation,
we introduce the following temporary notation. For m ≥ 2, let Dm be the set of linear
combinations with coefficients independent of x and y of functions of the shape v 7→
∂k`fy(β1(v), β2(v)) defined for v ∈ V , where k + ` = m. We also denote by Dm1 · · ·Dmk

the set of products f1 · · · fk where for each j, fj ∈ Dmj ; and we write Dr
m = Dm · · ·Dm

(r times). Using the shorthand
H : v 7→ Hess[fy](β(v), β(−v)), H ∈ D2

2

we have from (4.21)

(4.30) β′ ∈
(
%

H

)
·D2.

(which reads “the function v 7→ (H(v)/%)β′(v) is in D2”, etc.) It follows that

E ′′ ∈
(
%2

H

)
·D2.

By differentiating further with respect to v, we obtain

E ′′′ ∈
(
%3

H3

)
·
(
D3

2D3
)
, E(4) ∈

(
%4

H5

)
·
(
D6

2D4 + D5
2D2

3

)
.

More generally, an induction over j readily yields

E(j) ∈
(

%j

H2j−3

)
·
( ∑∑

mrm=7j−12∑
rm=3j−5

∏
m

Drm
m

)
(j ≥ 2)

where the summation is over sequences of non-negative integers (rm)m≥2 satisfying∑
m≥2

mrm = 7j − 12,
∑
m≥2

rm = 3j − 5.
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Recall that σm := |φm(α, y)|. The definition of % and Lemma 4 imply that for v ∈ V ,
%� σ2

2, H(v) � σ2
2,

‖f‖∞ �m |σm| �m (u log y)m(ū)1−m (m ≥ 2, f ∈ Dm).
It follows that for all j ≥ 2,

E(j)(v)�j σ
6−7j/2
2

∑∑
mrm=7j−12∑
rm=3j−5

∏
m

σrmm �j (ū)1−j/2.

Since the function E is even, the estimate (4.27) and the bound bj(x, y) � (ū)−j are a
consequence of the Taylor formula, and there remains to compute b0(x, y). Lemma 4.(iv)
applied with the parameters (σ, κ) = (α, α) ∈ D0(α; y) yields

E ′′(0) = −2%β′(0) = − 4%2

σ2 − σ̃2/3
= −1

by definition of %. This proves that b0(x, y) = −1/2.
Estimate (4.28) follows on the same lines. Indeed, since H ∈ D2

2, we have

H′ ∈
(
%

H

)
·
(
D2

2D3
)
, H′′ ∈

(
%2

H3

)
·
(
D5

2D4 + D4
2D2

3

)
.

We deduce ‖H′′‖∞ � σ4 + σ2
3σ
−1
2 � H(0)/ū. Since H is even, H′(0) = 0 and the

estimate (4.28) follows from a Taylor formula at order 2.
Finally, from (4.30) we obtain

(4.31) β′′ ∈
(
%2

H3

)
·
(
D3

2D3
)

so that a Taylor formula at order 2 yields

β(v) = α + v

%
+O

(
v2σ3

σ2
2

)
= α + v

%
+O

(
v2

u log y

)
as claimed. �

5. Proof of Theorem 1

Let 2 ≤ y ≤ x be large numbers, v ≥ 0 such that v ∈ V (which we recall was defined
in (4.23)), and

γ := v% ∈ [−(log x)/2, (log x)/2]
if the constant c6 in the definition of V was chosen small enough. Recall that β = β(v)
is defined by (4.21). By the definition (1.7), swapping the sums over n and d, we recall
that

D(x, y; γ) = S(x, y; γ)
Ψ(x, y) ,

where
S(x, y; γ) :=

∑∑
P (nd)≤y

ne2γ≤d≤x/n

1
τ(nd) .

Let
R(v) = R(x, y; v) := E(v)− E(0), (v ∈ V),

where E(v) is the quantity defined in (4.26).
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Proposition 1. Let vm ∈ V, vm ≥ 1 be fixed. Assume 2 ≤ y ≤ x and 0 ≤ v ≤ vm.
Then we have

(5.1) S(x, y; γ)
Ψ(x, y) =

ˆ vm

v

{
1 +O

(1 + z2

ū

)}
eR(z) dz√

2π
+O

(eR(vm)

vm
+ eR(v)

ū

)
.

Proof that Proposition 1 implies Theorems 1 and 2. Let vm = vmax � (ū)k/(2k+2) be given.
Recall that Rk(v) is defined by (1.10). By Lemma 7, we have

R(z) = Rk(z) +O
(
z2k+2

(ū)k
)

(0 ≤ z ≤ vm).

The error term is absolutely bounded. Let

I(v) :=
ˆ 2vm

v

eRk(z) dz√
2π
, (0 ≤ v ≤ vm).

Then it is easily verified that for 0 ≤ v ≤ vm,

eR(v) � (1 + v)I(v), I(vm)� 1 + v2k+2

(ū)k I(v),
ˆ vm

v

z`eRk(z)dz � (1 + v`)I(v) (` ∈ {2, 2k + 2}).

We deduce thatˆ vm

v

{
1 +O

(1 + z2

ū

)}
eR(z) dz√

2π
=
{

1 +O
(1 + v2

ū
+ v2k+2

(ū)k
)}
I(v),

eR(vm)

vm
� 1 + v2k+2

(ū)k I(v).

This implies Theorem 2. Theorem 1 follows by specialization at k = 1. �

We define
T := min{H(u), exp((log y)5/4)}.

Note that α√σ2 � T o(1) as ū→∞.

Small values of v. Let
v1 := 1

(log x)ūα√σ2

and consider first the case when 0 ≤ v ≤ v1. Note that log(1/v1) � log log x. The
right-hand side of (5.1) varies by an amount at most O(Ψ(x, y)/ū). The left-hand side
of (5.1) varies by at most ∑∑

P (nd)≤y
nd≤x

1≤ d
n
≤x2v1

1
τ(nd)

where we used the rough bound % � (log x)2. By Rankin’s trick and (4.2) for z = d/n
at the height T = (ūα√σ2)2 ≤ exp((log y)4/3) (for y large enough), the quantity above
is bounded by

�
∑

P (nd)≤y

1
τ(nd)

(
x

nd

)α ˆ 1

−1

(
d

n

)iτ/(v1 log x)
K(τ)dτ

≤ xα

ūα
√
σ2

ˆ ūα
√
σ2

−ūα√σ2

|Fy(α + iτ, α− iτ)|dτ.
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By (1.15), Corollary 2.(i) and the fact that Fy(α, α) = ζ(α, y), this is

� Ψ(x, y)α√σ2
{ 1
ūα
√
σ2

+ e−c8ū
}
� Ψ(x, y)

ū
.

Therefore, the estimate (5.1) for 0 ≤ v ≤ v1 is implied by the trivial case v = 0, and we
can suppose from now on that v ≥ v1.

Applying the Perron formula. For all n ∈ S(x1/2e−γ, y), we apply Lemma 2 at the
abscissa

σ = 1
2(β(v) + β(−v))

and height T , with the choices

x← x/n, ad ←
1P (n)≤y and ne2γ≤d

τ(nd) ,

which yields

∑
P (d)≤y

ne2γ≤d≤x/n

1
τ(nd) = 1

2πi

ˆ σ+iT

σ−iT

∑
P (d)≤y
ne2γ≤d

xs

τ(nd)(nd)s
ds
s

+O
( 1√

T

∑
P (d)≤y
ne2γ≤d

xσ

τ(nd)(nd)σ
)

+O
( 1√

T

ˆ √T
−
√
T

( ∑
P (d)≤y
ne2γ≤d

xσ+iτ

τ(nd)(nd)σ+iτ

)
K(τ/

√
T )dτ

)
.

Let κ := β(v)− β(−v) > 0. We sum the previous estimate over all y-friable d ≥ 1. By
using Rankin’s trick 1ne2γ≤d ≤ e−κγ(d/n)κ/2 on the error terms, we obtain

S(x, y; γ) = 1
2πi

ˆ σ+iT

σ−iT

∑
P (d)≤y

∑
n∈S(de−2γ ,y)

xs

τ(nd)(nd)s
ds
s

+O
(
x(β1+β2)/2eγ(β1−β1)Fy(β1, β2)√

T

)

+O
(
x(β1+β2)/2
√
T

ˆ √T
−
√
T

Fy(β1 + iτ, β2 + iτ)K(τ/
√
T )dτ

)

where, here and in what follows, we abbreviate

(β1, β2) = (β(v), β(−v)).

Next we express the inner sum over n in the main term using again Lemma 2, at the
abscissa κ/2 and the height T/2. By similar calculations and using∣∣∣∣∣∣

ˆ σ+iT

σ−iT

(
x

nd

)sds
s

∣∣∣∣∣∣�
(
x

nd

)σ
,

as well as the triangle inequality, we obtain

(5.2) S2 = M +O(R1 +R2 +R3),
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where

M := 1
(2πi)2

ˆ σ+iT

σ−iT

ˆ κ+iT

κ−iT
xse−γwFy(s+ w/2, s− w/2)dw

w

ds
s
,(5.3)

R1 := x(β1+β2)/2eγ(β2−β1)Fy(β1, β2)√
T

� x(β1+β2)/2eγ(β2−β1)Fy(β1, β2)T−c9 ,

R2 := x(β1+β2)/2eγ(β2−β1)
√
T

ˆ √T
−
√
T

|Fy(β1 + iτ, β2 + iτ)|dτ,

R3 := x(β1+β2)/2eγ(β2−β1)
√
T

ˆ √T
−
√
T

|Fy(β1 − it/2, β2 + it/2)|dt.

First truncation. By Corollary 2.(i), we have

R1+R2+R3 � x(β1+β2)/2eγ(β2−β1)Fy(β1, β2)
{
T−1/2+e−c10ū

}
� x(β1+β2)/2eγ(β2−β1)Fy(β1, β2)T−c11 .

By (4.27), we obtain

(5.4) R1 +R2 +R3 � xαζ(α, y)eR(v)T−c11 � Ψ(x, y)eR(v)

ū
.

Second truncation. We now considerM , defined at (5.3). Let c3 be the absolute constant
given by Corollary 1, and put T1 := c3/(2 log y). We write the integration domain in the
double integral (5.3) as the disjoint union

[−T, T ]2 = D1 tD2,

where
D1 := {(τ, t) : |τ − t/2| ≤ T1 and |τ + t/2| ≤ T1},

D2 := {(τ, t) : max{|τ |, |t|} ≤ T, and |τ − t/2| > T1 or |τ + t/2| > T1)}.
Accordingly, we call I1 the contribution of (τ, t) ∈ D1 to (5.3), and I2 the contribution
of D2, so that M = I1 + I2. The hypotheses of Corollary 2 are satisfied for I2, with the
parameters

(X, δ, λ1, λ2, µ1, µ2) = (T, c3/2,−1/2, 1/2, β1 + β2, β1 − β2).
We deduce

I2 � x(β1+β2)/2eγ(β2−β1)Fy(β1, β2)(log(T (log x)/(α2v1))2(log x)−1H(ū)−c12

�ε x
(β1+β2)/2eγ(β2−β1)Fy(β1, β2)T−c13

since β1 − β2 � v1
√
ū/ log x and log(1/v1)� log log x. As for (5.4), we conclude that

(5.5) I2 � Ψ(x, y)eR(v)

ū
.

Bounds for large v. By the change of variables (s, w)← (s+ w/2, s− w/2), we write

I1(v) := 2
(2πi)2

ˆ β1+iT1

β1−iT1

ˆ β2+iT1

β2−iT1

x(s+w)/2eγ(w−s)Fy(s, w) dwds
(s− w)(s+ w) .

We first give a rough bound for I(vm). Consider first, then, that v = vm. By the triangle
inequality,

I1(vm)� x(β1+β2)/2eγ(β2−β1)
ˆ T1

−T1

ˆ T1

−T1

|Fy(β1 + iτ, β2 + it)| dτdt
(β1 − β2)α (v = vm).
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From Corollary 1 and (3.2), we haveˆ T1

−T1

ˆ T1

−T1

|Fy(β1 + iτ, β2 + it)| dτdt
(β1 − β2)α �

Fy(β1, β2)
ακσ2

(v = vm).

Since we have κ � vm/
√
σ2, we conclude that

(5.6) I1(vm)� xαζ(α, y)eR(vm)

vmα
√
σ2

� Ψ(x, y)eR(vm)

vm
.

Differentiation, third truncation. Now we let v vary inside [v1, vm]. For all such v, the
quantity I1 is differentiable at v and

I ′1(v) = − 2%
(2πi)2

ˆ β1+iT

β1−iT

ˆ β2+iT

β2−iT
x(s+w)/2eγ(w−s)Fy(s, w) dwds

s+ w
.

Let T0 := (ū)2/3/(u log y). We split the previous integrals as

I ′1(v) = J0(v) + J̃0(v),

where J0 is the integral over the box D0 := {(τ, t) : |τ |, |t| ≤ T0}, and J̃0 is the comple-
mentary contribution.

Taylor range. When (τ, t) ∈ D0, we Taylor expand the integrand : the calculations are
very much similar to [HT86, page 280]. Letting

Q(τ, t) := τ 2

2 ∂20fy(β1, β2) + τt∂11fy(β1, β2) + t2

2 ∂02fy(β1, β2),

we have by a Taylor expansion at order 4, using Lemma 4.(i) and (iv),

fy(s, w) = fy(β1, β2)+iτ∂10fy(β1, β2)+it∂01fy(β2, β2)−Q(τ, t)+
3∑
j=0

λjτ
jt3−j+O((|τ |+|t|)4σ4)

for some coefficients λj � σ3. Since T 4
0 σ4 and T 3

0 σ3 are O(1), we have

exp
{ 3∑
j=0

λjτ
jt3−j+O((|τ |+|t|)4φ4(α, t))

}
= 1+

3∑
j=0

λjτ
jt3−j+O

(
(|τ |+|t|)6σ2

3+(|τ |+|t|)4σ4
)
.

Moreover,
1

s+ w
= 1
β1 + β2

(
1− i t+ τ

β1 + β2
+O

(( |τ |+ |t|
α

)2))
.

Since we have σ3α
−1 � σ4, we obtain for some numbers µ1, µ2 independent of τ and t,

(5.7)
x(s+w)/2eγ(w−s)Fy(s, w)

s+ w
= x(β1+β2)/2eγ(β2−β1)Fy(β1, β2)

β1 + β2
e−Q(τ,t)

{
1 +

3∑
j=0

λjτ
jt3−j

+ µ1τ + µ2t+O
(

(|τ |+ |t|)6σ2
3 + (|τ |+ |t|)4σ4 + (|τ |+ |t|)2α−2

)}
.

Note that we have the formulæ (see also [RT13, formula (11.13)]):¨
(τ,t)∈R2

e−Q(τ,t)dτdt = 2π√
Hess[fy](β1, β2)

� 1
σ2
,

(5.8)
¨

(τ,t)∈R2
|τ |k|t|`e−Q(τ,t)dτdt�k,`

1
(σ2)1+(k+`)/2 , (k, ` ∈ N).
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We integrate the quantity (5.7) over the square D0. By the symmetry of D0, the con-
tribution of terms involving λj and µj vanishes. Therefore, using (5.8), we have

J0 = −2%
{

1 +O
(1
ū

)}
x(β1+β2)/2eγ(β2−β1)Fy(β1, β2)

(2π)2(β1 + β2)

¨
(τ,t)∈D0

e−Q(τ,t)dτdt.

On the other hand, following again [RT13, section 11.3], we have

(5.9)

¨
max{|t|,|τ |}≥T0

e−Q(τ,t)dτdt

≤
¨

max{|t|,|τ |}≥T0

exp
{
− Hess[fy]

4

(
τ 2

∂02fy
+ t2

∂20fy

)}
dτdt

where the partial derivatives of fy are evaluated at (β1, β2). By Lemma 4, we have
that Hess[fy](β1, β2) � σ2

2 and ∂20(β1, β2) � σ2 (similarly for ∂02fy). Therefore, for
some c > 0, the right-hand side of (5.9) is

≤
¨

max{|t|,|τ |}≥T0

e−cσ2(τ2+t2)dτdt� e−cσ2T 2
0

T0σ
3/2
2

.

Since T 2
0 σ2 � ū1/3, the above is certainly O((σ2ū)−1). We conclude that

J0 = −2%
{

1 +O
(1
ū

)}
x(β1+β2)/2eγ(β2−β1)Fy(β1, β2)

2π(β1 + β2)
√

Hess[fy](β1, β2)
.

Now by equations (4.28) and (4.29), we have

Hess[fy](β1, β2) = Hess[fy](α, α)
{

1 +O
(
v2

ū

)}
,

β1 + β2 = 2α +O
(
v2

log x

)
,

and by definition of % we have Hess[fy](α, α) = %2φ2(α, y). We obtain

(5.10)
J0 = −

{
1 +O

(1 + v2

ū

)}
x(β1+β2)/2eγ(β2−β1)Fy(β1, β2)

2π√σ2α

= −Ψ(x, y)
{

1 +O
(1 + v2

ū

)}eR(v)
√

2π
by (4.27) and (1.15). This is our expected main term. We note that

(5.11) J0 � Ψ(x, y)eR(v).

Bounds away from the Taylor range. It remains to estimate J̃0, which is the contribution
to I ′1(v) of those (τ, t) which satisfy max{|τ |, |t|} ≥ T0. By Corollary 1.(ii) and symmetry,
we have

J̃0 �
√
σ2
x(β1+β2)/2eγ(β2−β1)Fy(β1, β2)

α

ˆ T1

0

ˆ T1

T0

{(
1+ τ 2σ2

y/ log y

)(
1+ t2σ2

y/ log y

)}−cy/ log y
dtdτ.

By (3.2), we have

(5.12) J̃0 �
x(β1+β2)/2eγ(β2−β1)Fy(β1, β2)

ūα
√
σ2

� Ψ(x, y)eR(v)

ū
� J0

ū
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by (4.27) and (1.15). Regrouping our estimates (5.12) and (5.10), we conclude that

(5.13) I ′1(v)
Ψ(x, y) = −eR(v)

√
2π

+O
(1 + v2

ū
eR(v)

)
(v1 ≤ v ≤ vm).

Integration. Since I1(v) = I1(vm)−
´ vm
v

I ′1(z)dz, estimates (5.13) and (5.6) imply

(5.14) I1(v)
Ψ(x, y) =

ˆ vm

v

eR(z) dz√
2π

+O
(eR(vm)

vm
+ 1
ū

ˆ vm

v

(1 + z2)eR(z)dz
)

We regroup estimate (5.14) with (5.5) and (5.4) to obtain the required result
S

Ψ(x, y) =
ˆ vm

v

eR(z) dz√
2π

+O
(eR(vm)

vm
+ eR(v)

ū2 + 1
ū

ˆ vm

v

(1 + z2)eR(z)dz
)
.

Appendix A. Proof of Lemma 5

Proof of part (i) of Lemma 5. We shall actually prove that for all p ≤ y,

Re
{

Ξ(p−s, p−w)− Ξ(p−σ, p−κ)
}
≤ − 1

100

{
log

(
1 +

(
τ

σ

)2)
+ log

(
1 +

(
t

κ

)2)}
from which the lemma follows by summing over p ≤ y. For this proof, it will be more
convenient to depart slightly from the notation used in the rest of this paper. We put

µ1 ← σ log p, τ ← τ/σ,

µ2 ← κ log p, t← t/κ.

Our objective is to prove that

(A.1) Re
{

Ξ(e−µ1(1+iτ), e−µ2(1+it))−Ξ(e−µ1 , e−µ2)
}
≤ − 1

100

{
log

(
1+τ 2

)
+log

(
1+t2

)}
under the hypotheses
(A.2) |µ1 − µ2| ≤ ηµ1, max{µ1(1 + |τ |), µ2(1 + |t|)} ≤ η.

We abbreviate further
a := e−µ1(1+iτ), b := e−µ2(1+it), z := (1− a)/(1− b).

The equation (A.1) is trivially satisfied at τ = t = 0. Replacing τ by λτ and t by λt
with λ varying in [0, 1], and then differentiating with respect to λ, we have that it will
be sufficient to establish that under the same hypotheses,

(A.3) Im
{
µ1τa∂10Ξ(a, b) + µ2tb∂01Ξ(a, b)

}
≤ − 1

50

{
τ 2

1 + τ 2 + t2

1 + t2

}
.

The quantity on the LHS can be written as

S := Im
{
− µ1τa

1− a

( 1
log z −

z

z − 1

)
− µ2tb

1− b

( 1
z − 1 −

1
log z

)}
where the parentheses involving z are interpreted as −1/2 if z = 1. Let r(z), s(z) ∈ R
be defined for z ∈ C r R− by

(A.4) r(z) + is(z) := −1/2 + 1
log z −

1
z − 1 .

Note that r(1/z) = −r(z) and s(1/z) = −s(z). We can write S = S1 + S2, where

S1 = Im
{−µ1τa

1− a

}(
− 1/2 + r(z)

)
+ Im

{−µ2tb

1− b

}(
− 1/2− r(z)

)
,
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S2 = s(z)Re
{−µ1τa

1− a + µ2tb

1− b

}
.

Given the hypotheses (A.2), we remark that we have

(A.5) z =
{

1 +O(η)}1 + iτ

1 + it
,

(A.6) Im
{
µ1τa

1− a

}
= −µ1τeµ1 sin(µ1τ)
|eµ1(1+iτ) − 1|2 = −

{
1 +O(η)

} τ 2

1 + τ 2 ,

(A.7) Re
{
µ1τa

1− a

}
=
µ1τ

(
eµ1 cos(µ1τ)− 1

)
|eµ1(1+iτ) − 1|2 =

{
1 +O(η(1 + |τ |))

} τ

1 + τ 2 .

By symmetry we have the analog estimates for µ2tb/(1− b). We shall use the following
inequalities concerning the functions r and s.

Lemma 8. When z ∈ C r R−, the following bounds hold.
(a) |r(z)| ≤ 1/2,
(b) r(z) ≤ 0 for |z| ≥ 1,
(c) |r(z)| ≤ 1/10 for 1/2 ≤ |z| ≤ 2,
(d) |s(z)| ≤ 1/π,
(e) |s(z)| ≤ 0.15× | arg z|.

Let us first deduce from these the desired inequality (A.3). Assume first that one
of |τ | or |t| is greater than 3/2. By symmetry we suppose that |t| ≤ |τ | and |τ | ≥ 3/2.
Then (A.5) implies that |z| ≥ 1 + O(η), and since the derivative r′(z) is uniformly
bounded if |z| ≥ 1/2, Lemma 8.(b) yields r(z) ≤ O(η) assuming η is small enough.
Using (A.6) and Lemma 8.(a), it follows that

S1 =
{

1+O(η)
} τ 2

1 + τ 2

(
−1

2+r(z)
)
+
{

1+O(η)
} t2

1 + t2

(
−1

2−r(z)
)
≤ −

{1
2+O(η)

} τ 2

1 + τ 2 .

On the other hand, using (A.7), Lemma 8.(d) and |τ | ≥ 3/2, we have

S2 ≤
1
π

{ |τ |
1 + τ 2 + |t|

1 + t2
(1 +O(η)) +O

(
η
{

τ 2

1 + τ 2 + t2

1 + t2

})}
≤ 1 +O(η)

π

{ |τ |
1 + τ 2 + 1

2

}
+O

(
η

τ 2

1 + τ 2

)
≤
{

0.45 +O(η)
} τ 2

1 + τ 2 .

Adding the bounds for S1 and S2, we obtain

S ≤ {−0.05 +O(η)} τ 2

1 + τ 2 ≤ {−0.025 +O(η)}
(

τ 2

1 + τ 2 + t2

1 + t2

)
which is acceptable granted that η is sufficiently small. Assume now |τ |, |t| ≤ 3/2.
Then |z| ≤ {1 + O(η)}

√
1 + (3/2)2 ≤ 2 if η is small enough; similarly |z| ≥ 1/2. Then

proceeding as before, but this time using Lemma 8.(c), we obtain

S1 ≤
{
− 0.4 +O(η)

}( τ 2

1 + τ 2 + t2

1 + t2

)
.
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On the other hand, we have

| arg(z)| =
∣∣∣∣ arg

(1− a
1− b

)∣∣∣∣ =
∣∣∣∣ arctan

( sin(µ1τ)
eµ1 − cos(µ1τ)

)
− arctan

( sin(µ2t)
eµ2 − cos(µ2t)

)∣∣∣∣
≤ arctan(|τ |) + arctan(|t|).

Using (A.7) and Lemma 8.(e), we have

S2 ≤
{

0.15 +O(η)
}(

arctan(|τ |) + arctan(|t|)
)( |τ |

1 + τ 2 + |t|
1 + t2

)
≤
{

0.3 +O(η)
}( τ 2

1 + τ 2 + t2

1 + t2

)
.

We finally obtain in this case

S ≤
{
− 0.1 +O(η)

}( τ 2

1 + τ 2 + t2

1 + t2

)
which is once again acceptable.

To conclude the proof of part (i) of Lemma 5, it remains to justify Lemma 8.

Proof of Lemma 8. Since r(1/z) = −r(z) and r(z̄) = r(z), and similarly for s(z), it
suffices to consider the case when |z| ≥ 1 and arg(z) ≥ 0. For all ω ∈ C, | Imω| ≤ π/2,
let

(A.8) L(ω) := 1
(sinhω)2 −

1
ω2 =

∑
k∈Zr{0}

1
(ω + ikπ)2 .

We shall prove that

(A.9)
{−0.6 ≤ReL(ω) ≤ 0,

ImL(ω) ≥ 0, (0 ≤ Reω, 0 ≤ Imω ≤ π/2.)

Let us first prove that (A.9) implies Lemma 8. Let z1, z2 ∈ C r R−. We have

r(z2)− r(z1) = 1
2 Re

{ˆ (log z2)/2

(log z1)/2
L(ω)dω

}

= 1
2

ˆ (log |z2|)/2

(log |z1|)/2
ReL(t+ i arg(z1)/2)dt− 1

2

ˆ (arg z2)/2

(arg z1)/2
ImL

(
(log |z2|)/2 + it

)
dt.

Assuming 1 ≤ |z1| ≤ |z2| and 0 ≤ arg z1 ≤ arg z2, the integrals are respectively non-
positive and non-negative in view of (A.9), and we get in this case r(z1) ≥ r(z2). By
setting z1 = 1 and z2 = z, it follows that r(z) ≤ 0. By setting z1 = z and z2 = −X + i0
and letting X →∞, it follows that r(z) ≥ lim supX→∞ r(−X + i0) = −1/2. Finally, in
the case where |z| ≤ 2, setting z1 = z and z2 = −2 + i0, we obtain r(z) ≥ r(−2 + i0),
which evaluates numerically to −0.0997± 10−5 ≥ −1/10. This proves parts (a), (b) and
(c) of the lemma. On the other hand, noting that L(ω) ∈ R when ω ∈ R, we obtain

s(z) = 1
2

ˆ (arg z)/2

0
ReL

(
(log |z|)/2 + it

)
dt.

The integrand being non-positive, we obtain 0 ≥ s(z) ≥ s(−|z| + i0) = − π
(log |z|)2+π2 ≥

−1/π and this proves part (d) of the lemma. Moreover, by the triangle inequality, we
obtain

|s(z)| ≤ (arg z)
4 sup

Reω≥0
0≤Imω≤π/2

|ReL(ω)| ≤ 0.15× (arg z)
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and this proves part (e).
It remains to prove (A.9). We recall that L was defined in (A.8). Let ω = a+ ib ∈ C

be fixed with a ≥ 0 and 0 ≤ b ≤ π/2. We have∣∣∣ReL(ω)
∣∣∣ ≤ ∣∣∣L(ω)

∣∣∣ ≤ ∑
k∈Zr{0}

1
|ω + ikπ|2

≤
∑

k∈Zr{0}

1
(b+ kπ)2 = 1

(sin b)2 −
1
b2 .

The last expression is easily seen to be maximal when b = π/2; its value at this point
is 1− 4/π2 ≤ 0.6.

Next, suppose a ≤ π/2. Then using the series representation (A.8), we have

ReL(ω) =
∑

k∈Zr{0}

a2 − (b+ kπ)2

(a2 + (b+ kπ)2)2 ≤ 0.

If on the contrary a > π/2, then we have

ReL(ω) = Re
{ 1

(sinhω)2 −
1
ω2

}
= sinh2 a cos(2b)− sin2 b

(sinh2 a+ sin2 b)2 − a2 − b2

(a2 + b2)2 .

This is obviously non-positive if π/4 ≤ b ≤ π/2. If b < π/4, then the above is

≤ 1
sinh2 a

− 1
a2φ(b/a),

where φ(t) := (1 − t2)/(1 + t2)2. It is easily verified that φ(t) ≥ 0.48 ≥ (a/ sinh a)2

for |t| ≤ 1/2 and a > π/2. Since indeed 0 ≤ b/a ≤ 1/2, it follows that ReL(ω) ≤ 0 as
required.

We turn now to ImL(ω). Consider first the case a ≤ 4.9. Using the series represen-
tation (A.8) and grouping indices with same absolute values, we obtain

(A.10) ImL(ω) = −4ab
∑
k≥1

a4 + (b2 − (kπ)2)(2a2 + b2 + 3(kπ)2)
(a2 + (b+ kπ)2)2(a2 + (b− kπ)2)2 .

Given that b ≤ π/2, the numerator is less than a4 + (b2 − π2)(2a2 + b2 + 3π2); this last
expression is maximal when b = π/2. At this point, it equals a4 − 3π2/2a2 − 39π4/16
which is negative by our assumption that 0 ≤ a ≤ 4.9; in view of (A.10), we have thus
obtained ImL(ω) ≥ 0 when a ≤ 4.9. Suppose now on the contrary that a > 4.9. Then

ImL(ω) = −2 sinh a cosh a sin b cos b
(sinh2 a+ sin2 b)2 + 2ab

(a2 + b2)2 = −2ψ
( sin b

sinh a
)cosh a cos b

sinh2 a
+ 2
a2ψ(b/a)

where ψ(t) := t/(1 + t2)2. It is easily established that ψ(t)/t ≥ 0.81 for 0 ≤ t ≤ 1/3,
and ψ(t) ≤ t for t > 0. Since b/a ≤ 1/3, we obtain

ImL(ω) ≥ −2sin b cos b cosh a
sinh3 a

+ 1.62× b
a3 .

Using a > 4.9, we have a3(cosh a)/ sinh3 a ≤ 0.03. Consequently,

ImL(ω) ≥ b

a3

{
1.62− 0.06

}
≥ 0.

This concludes the proof of (A.9), hence of part (i) of Lemma 5.
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Proof of part (ii) of Lemma 5. We quote from [dlBT15, equation (5.2)] the bound
ζ(s, y)
ζ(σ, y) �

(
1 + τ

σ log y

)−cεπ(y)
(|τ | ≤ e(log y)3/2−ε

, 0 < σ � 1/ log y).

From the definition (4.4), we deduce that it will suffice to prove
(A.11) Re(g(z)) ≥ O(1) (z ∈ C r R−).
Because g(z̄) = g(z) and g(1/z) = g(z), we may assume |z| ≥ 1 and arg z ≥ 0. In terms
of w = 2 log z, this means Rew ≥ 0, Imw ∈ [0, π/2) and we have

g̃(w) := g(e2w) = log
(sinhw

w

)
.

Notice that, with the definition (A.8),
g̃′′(w) = −L(w).

From (A.9), we deduce

Re g̃′(w) = −
ˆ Rew

0
ReL(t)dt+

ˆ Imw

0
ImL(Rew + it)dt ≥ 0,

Im g̃′(w) = −
ˆ Imw

0
ReL(Rew + it)dt ≤ 0.6π/2 ≤ 1,

so that

Re g(z) = Re g̃(w) =
ˆ Rew

0
Re g̃′(t)dt−

ˆ Imw

0
Im g̃′(Rew + it)dt ≥ −π/2.

Therefore, (A.11) holds and so does part (ii) of Lemma 5.
Proof of part (iii) of Lemma 5. First we note that since σ ≤ 0.6, by the previously done
calculation (3.4), we have φ2(σ, y1/2) � y−0.2φ2(σ, y) and similarly for κ. For large
enough y, it will therefore be sufficient to show that under the stated conditions, there
exists c(ε) > 0 such that

Re
{

Ξ(p−s, p−w)− Ξ(p−σ, p−κ)
}
≤ −c(ε)

{
pσ(τ log p)2

(pσ − 1)2 + pκ(t log p)2

(pκ − 1)2

}
for y1/2 ≤ p ≤ y (so that log p � log y). We shall once again depart slightly from the
notation used up to now. Relabelling

a← p−s, b = p−w and τ ← arg a, t← arg b,
we wish to show that for all ε > 0, there exists c = c(ε) > 0 such that for all (a, b) ∈ U2

satisfying
(A.12) max{|a|, |b|} ≤ 1− ε, max{τ, t} ≤ c,

we have
Re

{
Ξ(a, b)− Ξ(|a|, |b|)

}
≤ −c

{ |a|τ 2

(1− |a|)2 + |b|t2

(1− |b|)2

}
.

We consider ε as being fixed, and let implicit constants depend of ε throughout the rest
of the proof. Replacing τ by λτ and t by λt and differentiating with respect to λ as
before, we see that it will be sufficient to show under the same assumptions (A.12), we
have

Im
{
τa∂10Ξ(a, b) + tb∂01Ξ(a, b)

}
≤ −c

{ |a|τ 2

(1− |a|)2 + |b|t2

(1− |b|)2

}
.
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Suppose, then that the conditions (A.12) hold for some c > 0. In the same way as
before, we write the left-hand side as S1 + S2, where

S1 := Im
{ −τa

1− a

}(
− 1

2 + r(z)
)

+ Im
{ −tb

1− b

}(
− 1

2 − r(z)
)
,

S2 := s(z)Re
{ −τa

1− a + tb

1− b

}
,

and z = (1 − a)/(1 − b). Here the function r(z) and s(z) are again defined by (A.4).
Now we note that

Im
{ −τa

1− a

}
= − |a|τ sin τ

(1− |a|)2 = −{1 +O(c)} |a|τ 2

(1− |a|)2 ,

Re
{

τa

1− a

}
= |a|τ(cos τ − |a|)

(1− |a|)2 = {1 +O(c)} |a|τ1− |a|
granted that c is small enough in terms of ε (note that |1 − a| = (1 + O(c))(1 − |a|)).
Moreover, we have

arg(1− a) = arctan
( |a| sin τ

1− |a| cos(τ)

)
= {1 +O(c)} |a|τ1− |a| = O(|a|τ).

By symmetry the same estimates hold for the analogous quantities for b. Note that by
our hypotheses we have |z| = O(1), which implies

r(z) = r(|z|) +O(c), s(z) = (arg z)
{[

∂ s(z′)
∂(arg z′)

]
z′=|z|

+O(c)
}
.

Let

ψ1(ρ) := r(ρ) = −1
2 + 1

log ρ −
1

ρ− 1 , ψ2(ρ) :=
[
∂s(z′)
∂(arg z′)

]
z′=ρ

= ρ

(ρ− 1)2 −
1

(log ρ)2 .

We regroup the estimates above to obtain

S1 = |a|τ 2

(1− |a|)2

(
− 1

2 + ψ1(|z|)
)

+ |b|t2

(1− |b|)2

(
− 1

2 − ψ1(|z|)
)

+O
(
c(|a|τ 2 + |b|t2)

)
,

S2 = −ψ2(|z|)
( −|a|τ

1− |a| + |b|t
1− |b|

)2
+O(c(|a|τ + |b|t)2).

Here we used the fact that the quantities r(|z|) and s(z) are uniformly bounded. Note
that ψ2(|z|) < 0. By the upper bound (λ− µ)2 ≤ 2(λ2 + µ2) (λ, µ ∈ R), we get

S ≤ − |a|τ 2

(1− |a|)2

(1
2−ψ1(|z|)+2|a|ψ2(|z|)

)
− |b|t2

(1− |b|)2

(1
2+ψ1(|z|)+2|b|ψ2(|z|)

)
+O(c(|a|τ 2+|b|t2)).

It is easily seen that 1/2 − |ψ1(ρ)| + 2ψ2(ρ) > 0 for ρ > 0. Since |z| is bounded in
terms of ε, it follows that both parentheses in the above expression are greater than
some c′ = c′(ε) > 0, so that

S ≤ −
(
c′ +O(c)

){ |a|τ 2

(1− |a|)2 + |b|t2

(1− |b|)2

}
.

Then, choosing c sufficiently small relative to c′, we have

S ≤ −c
{ |a|τ 2

(1− |a|)2 + |b|t2

(1− |b|)2

}
as required. �
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