ON THE AVERAGE DISTRIBUTION OF DIVISORS OF FRIABLE
NUMBERS

SARY DRAPPEAU

ABSTRACT. A number is said to be y-friable if it has no prime factor greater than y. In
this paper, we prove a central limit theorem on average for the distribution of divisors

of y-friable numbers less than z, for all (z,y) satisfying 2 < y < o(logz)/(loglog )"

(loglog m)5/3+5

This was previously known under the additional constraint y > e , by work

of Basquin. Our argument relies on the two-variable saddle-point method.

1. INTRODUCTION

An integer n > 1 is said to be y-friable, or y-smooth, if its greatest prime factor P(n)
is less than or equal to y, with the convention P(1) = 1. We denote

S(z,y) == {n <z: Pn)< y},

U(z,y) := card S(z,y).

Friable integers are a recurrent object in analytic number theory: we refer the reader
to the surveys [HT93| [Gra08, Mor12] for an overview of recent results and applications.
An important aspect of results about friable numbers is their uniformity with respect
to y. The difficulty in this context is the fact that y-friable numbers tend to rarefy very
rapidly — much more so than what would be expected from sieve heuristics, for instance.
In this respect, analytic methods have proven to be very effective. The object of this
paper is to study, using these analytic methods, the distribution of divisors of friable
numbers on average.

For any n > 1, define D,, to be the random variable taking the value logd where d
is chosen among the 7(n) divisors of n with uniform probability. It was shown by
Tenenbaum [Ten80] that D,,/logn does not converge in law on any sequence of integers n
of positive upper density in N. However it can be expected that the discrepancies
arising from the erratic behaviour of the multiplicative structure are smoothed out upon

averaging over n. When one averages over all the integers, this question was settled by
Deshouillers, Dress and Tenenbaum [DDT79] who established

1 2
(1.1) — Y Prob(D,, <tlogn) == arcsin v/t + O(

™

! te|0,1
The error term here is optimal if one seeks full uniformity with respect to . See
also [BMQOT7] for a generalization (where one changes the probability measure one puts
on the divisors).

Expectedly, the analog problem for friable numbers has a different structure. Choosing

n<zx

a divisor of n at random is equivalent to choosing an integer k € {0,..., v} uniformly at
random for every factor p”||n appearing in the decomposition of n. We may thus write
p’ln
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where the variables D, on the right-hand side are independent. As is known from work
of Alladi [AII87] and Hildebrand [Hil87], the number w(n) of prime factors of n € S(z,y)
typically tends to grow with n, in such a way that we may expect the sum to satisfy
the central limit theorem. We are therefore led to the prediction that

® 02" /2d
» V2T
for all fixed v € R and almost all integers n € S(x,y), where g, denotes the standard
deviation of D,,, given by

(1.3) Prob(Dn > Llogn + vgn> ~ O(v) =

(14) o= 3 " o2

p¥|In

La Breteche and Tenenbaum [dIBT02, Corollaire 2.2] consider the case of the primorial
number Ni(y) := [I,<, p (which is the largest square-free y-friable number). They obtain

1+t
(1.5) PI‘OWb(l)N1 > % log N1 + UQNl(y)) = (I)(U){l + O(y/ 10gy>}
for 0 < v < (y/logy)'/*. Note that %, ~ (ylogy)/4. We emphasize that there is
no average over the integers under study. Another related example considered recently
by Tenenbaum [Tenl4, Corollaire 1.4], is the case of No(y) := 1<, p'1°8¥)// 18P There,
Tenenbaum obtains an analogous result to (|1.5]).

Such a law obviously does not hold for all y-friable numbers, as illustrated by the
example of N3(y) = 219/1°82 (which is roughly of the same size as N, and N, but for
which Dy, converges to the uniform law). It is therefore natural to ask what the output
is, if we on average over friable numbers. One option would be to study the average

1
Prob(D,, > Llogn +vo,).
Ve, 22, :

However, a more interesting variant is deduced from observing that an additive function
of n naturally appears in the formula . A fundamental result in probabilistic number
theory, the Turan-Kubilius inequality, developped in the context of friable numbers
by La Breteche and Tenenbaum [dIBT05a], ensures the existence of a quantity o(z,y)
independent of n such that

(1.6) on ~ o(z,y)

for a relative proportion 1+0(1) of integers n € S(z,y), when y — oo and y = x°. The
exact definition of o(x,y) involves the saddle-point a(x,y), defined as the only positive
solution to the equation

Z log p = log x.

péypa_l

Then the approximation (|1.6)) holds with

1 ‘- % 2 12
9=@$w:=( kgp) ,
We will prove below that
1 1
o(z,y)* ~ (logx)(logy)(z - (Zigg;f) (y — oo, y = 2°W).
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In view of the above, we consider for v € R the quantity

1
1.7 D () = Prob(D,, > 11
07 Dl = g T Prob(D 2 Jhosn s o)
- oy Loy 2<y<z veER)
(r,y) nes(z,y) 7(n) dn U
d2n1/2evg

The asymptotic behaviour of D(x,y;v) was studied previously by Basquin [Bas14l[| for
relatively large values of y. There, Basquin quantifies the shift from the arcsine law (1.1])
to a contracted normal law similar to (L.5)): we refer the reader to [Basl4, Théoreme 1.1]
for more details about this transition. We shall focus on the gaussian behaviour for small
values of y: let
u:= (logz)/logy, u := min{u, 7(y)},

where 7(y) denotes the counting function of primes. Then Theorem 1.1 and Corollary 1.3
of [Bas14] (along with [HT86l equation (7.19)] to relate o with the quantity &’(u) involved
there) imply the following.

Theorem A. Then for all e > 0 and all x and y satisfying

(H:) exp{(loglogz)”**} <y <,
we have
1 1 log(u + 1)
18 D(x,y:v) = & OE( ) R).
(1.9 (@) = 00+ 0.(+ =+ H) weR)

The range of validity in  and y here is inherent to the method used, which is based
on the “indirect” saddle-point method (see also [Sai89]). The purpose of the present
work is to introduce a variant of the two-variable (direct) saddle-point method which
allows us to obtain a significant improvement of the range of validity and of the error
term in Theorem [Al

Theorem 1. Let € > 0. Whenever
(G€> T > 37 2 < y < e(logar:)/(loglog:zc)l"'g7
and 0 < v < ()4, we have

(1.9) D(x,y:v) :<I>(v){1—|—05<1—;v4>}.

The condition y < ellog)/(loglog AT purely technical. For z and y in the comple-
mentary range u < (loglogy)!™, the Gaussian approximation is less relevant and the
methods of [Basl4] are better suited.

The range v < (%)'/* is the natural range of validity of the Gaussian approximation.
As is typically the case in large deviation theory, one could expect an asymptotic formula
to hold in the range v < (2)Y/?~¢ by adding correction terms to the exponent 22/2 in
the definition of ®(v). We prove that such is indeed the case.

Theorem 2. Let (z,y) € (Ge). There exists a sequence of numbers (bj(x,y))j>o0 satis-
fying .
bo(x,y) = —1/2,  bi(z,y) <5 (@),

ITo be precise, in [Bas14], Basquin studies the slight variant where e¥? is replaced by nve/logr Thig
change does not affect the estimate of Theorem
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such that the following holds. Let k > 1 and
= (@)k/(2+2)

Uma:z

be given, and assume that 0 < v < V.. Letting

k1
(1.10) Ri(2) = Rylz,y;2) i= D by(w,y) 220 (z>0),
=0
we have
1+ 'U2 UQ(k—i—l) 2Umaz dz
1.11 D(zy:v)={1+0 ( § : )}/ﬂ Ru(:)_ 42
(1.11) (xyv) { + O, - + Ok i e o

Remark. Note that Ry(z) = —2z?/2 + O(z*/u), which explains the shape of the error
term in .

The coefficients b;(z,y) for 7 > 1 could be expressed, if one wished, as an explicit
but complicated expression involving sums over primes less than y and the saddle-
point «a(z,y) defined below. As u — oo, they can be approximated by elementary
expressions involving = and y, in the same shape as formula below. We refrain to
do so here.

1.1. The saddle-point method. We now recall the explanation for the limitation on y
in the estimate of Basquin [Basl4]. The range (H.)) is classical in the study of friable
numbers: it is typically linked to the approximation of W(z,y) by Dickman’s functionﬂ p:

(1.12) Wz, y) = ap(u){1 +@(W)} (#9) € ().

This estimate is a theorem of Hildebrand [Hil86], improving in particular De Bruijn’s
work [dB51]. The range (H.) is tighly linked to the best known error term in the prime
number theorem: it was shown by Hildebrand [Hil84] that if one could prove the weaker
estimate U (z,y) = zp(u) exp{O(y°)} for y > (logx)*™¢, for all fixed € > 0, then the
Riemann hypothesis would follow.

In many applications however, including that of interest here, one seeks a control on
the local variations of W(z,y) with respect to x, rather than a control of ¥ (z,y) itself.
By “local variations” we mean, for instance, quantities of the shape ¥ (z/d,y)/V(x,y)
for relatively small d > 1. The saddle-point approach to estimating V(z, y), developped
by Hildebrand and Tenenbaum [HTS86], is very suitable for such applications: it enabled
very substantial progress to be made in the last decades regarding the uniformity with
respect to y, for example in friable analogs of the Turan—-Kubilius inequality [dIBT05a]
or distribution of friable numbers in arithmetic progressions [Sou08].

We now recall Hildebrand and Tenenbaum’s result. When 2 < y < x, the saddle-
point a(z,y) is defined as the positive real number satisfying

1
(1.13) - L E

péypa_l

It is therefore the positive number optimizing Rankin’s simple but remarkably efficient
upper bound

(1.14) U(z,y) < I;lgglg(a, y)x?,

Dickman’s function p is the unique continuous function on R which is differentiable on (1,00),
satisfies p(u) = 1 for u € [0, 1], and up’(u) +p(u—1) = 0 for u > 1. We have p(u) = u=**+°") as u — oco.
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where

C(sy) =TIA=p) = 3 n7 (FRe(s) > 0).

p<y P(n)<y

Here and in what follows, the letter p always denotes a prime number. As was pointed
out in [HT86], the point s = a(z,y) is a saddle point for the Mellin transform z*((s,y)
relevant to W(zx,y):

o+i00
U(z,y) = 1/ xSC(s,y)dS (x € N,0 > 0).

270 J oo s
Letting

nlo) = 3 CEE (ote(s) > 0)

they obtain for 2 < y < z the following estimate [HT86, Theorem 1] :

(1.15) wm,m—W{Ho(%)}.

B an/2m oo (a, y) u

The denominator ay/2m¢s (v, y) in (1.15)) may be estimated using [HT86, Theorem 2.(ii)].
We have

(1.16) a(z,y) = log(1 —:Og;/;logx)){l N O(log l(ifélij y)>}
(1.17) Oz, y) = (1 + loix)(logx) logy{l + O<log(u1+ 1 + 10;;3/)}'

However, the question of approximating ((a, y)x® up to an factor (1+o(1)) by a smooth
and explicit function of x and y — for instance, in terms of the Dickman function p, is
tightly related to the error term in the prime number theorem. In a way, a encodes
the irregularities in the distribution of prime numbers that prevent us from having a
smooth, explicit estimate for ¥(z,y) when (z,y) &€ (H.) for all € > 0.

On the other hand, the local variations of a(z,y) with respect to x are relatively well
controlled : such local estimates were obtained by La Breteche-Tenenbaum [dIBT0O5D].
We note however that at the current state of knowledge, when (x,y) ¢ (H.), we are not

able to deduce from them an equivalent e.g. of the quantity /¥ (z2,y)/¥(z,y), or the
quantity

(1.18)

This is hinted, for instance, by the fact that the error terms of [dIBT05b, Théoréeme 2.4],
which result from the estimation of ¥(z/d,y)/V(z,y), are of the same size as the main
term if d = \/zr. Note that if y > (logx)3, say, the saddle-point relevant to the sum
in is roughly of the same size as a(z?,y) (because 1/7(p) = 1/2 for prime p). The
issue at hand when studying D(x,y;~) is precisely the estimation of such sums as the
one in ; in our case however, as will be apparent, the upper bound on n will be
roughly of size 2/2*°(1) "and the relevant saddle-point will indeed be well-approximated,
to some extent, by a/(x'+°M) ).
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1.2. A truncated convolution and the two-variable saddle-point method. We
now sketch our proof of Theorem [T} Inverting summations yields

D(x,y;7) = TR

where

= 22 7

P(nd)<y
nd<ac
d1/2 an/Qe'y

\_/

The obvious approach here consists in first approximating the sum over n by a “nice”
function of d, and then estimating the remaining sum over d. This is the method
followed e.g. in [Bas14]. There, one relies on estimates for friable sums of multiplicative
functions from [Smi93], which are a generalization of . These however are still
subject to the limitation (z,y) € (H.).

One could presumably follow the same strategy by using the estimate (|1.15]) along with
local estimates for the saddle-point. The need for uniformity in d for the estimation of
the inner sum, however, is likely to produce significant technical complications due to
the dependence of the summand on the multiplicative structure of d. Here instead we
study the double sum as a whole by applying the Perron formula twice, which yields

o+1i00 K+100 d d
(1.19) S 27m /g N /K e "F, (s+w/2,s — w/Q)%?S, (20 > k> 0),
provided ¢ N and e ¢ Q. Here F,(s,w) is the Dirichlet series relevant to our

problem
1
F,(s,w) = _ Re(s), Re(w) > 0),
ow)i= 3 o O e(w) > 0)

and 7 = vp. One wishes to apply the saddle-point method for the double-integral
in (1.19). A linear change of variables yields

o+1i00 Kk+0o-+ic0
/ / s+w /2 (wfs)F (S U)) dwds )
271—1 o—ioco +o—ic0 e (8 - U})(S + U))

The effect of the factor 1/(s — w) cannot be fully neglected; although a direct analysis
would likely be possible (as in [dIBT02, Corollary 2.2]), we circumvent this issue by
truncating off values of s and w with large imaginary parts, and differentiating with
respect to v. Therefore, for some T° > 0 of a suitable size and for some optimal choice
of (0, k) (depending on x, y and ), one wishes to estimate

o+1iT k+o+iT
/ / s+w /287(741 S)F (8 w) dwds )
27m oiT v

+o—iT s+w

The integrals there can be analyzed by the saddle-point method, which eventually yields
the expected approximation V(z, y)e_“2/2/\/ﬂ.

Finally, we note that very recently Robert and Tenenbaum [RT13] used a variant of
the two-variable saddle-point method to study the distribution of integers with small
square-free kernel. Compared with theirs, our setting is simplified by the fact that the
series F,(s,w) is symmetric and to some extent comparable to ((s,y)"2¢(w,y)'/? (for
the study of which we can use the work of Hildebrand and Tenenbaum [HTS6]).
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2. PRELIMINARY REMARKS AND NOTATIONS
We will keep throughout the notation
s=o+ir, w=~k+it, ((o,7,kt)€R?).

We write A < B or A = O(B) whenever A and B are expressions where B assumes non-
negative values, and there exists a positive constant C' such that |A| < C'B uniformly.
The constant C' may depend on various parameters, which are then displayed in subscript
(e.g. A <. B if the constant depends on €). Moreover, the letters ¢y, ca, ... designate
positive constants, which are tacitly assumed to be absolute, unless otherwise specified.

At various places in our arguments, functions such as z — 1/(logz) — 1/(z — 1) are
involved, which are regular at some particular point of their domain of definition, where
the explicit expression diverges (here z = 1). It will be implicit that one should consider
the holomorphic extension at said point.

Finally, every instance of the complex logarithm function we consider is, unless oth-
erwise specified, the principal determination defined on C~ R_. For all » > 0 and
any function f defined on C \ R_, we denote f(—r + 0i) := lim._,o4 f(—7 + ic) and
similarly f(—r — 0i) := lim._o4 f(—7r — i), whenever those limits exist.

3. SADDLE-POINT ESTIMATES FOR (($,¥)
For all k € N, s € C with Re(s) > 0 and y > 2, we define
—s ak¢ 7 1ng F
¢0(87 y) = IOgC(S, y) - - Z log(l_p )7 ¢k(87 y) = asko (87 y>7 ¢k(87 y) = Z ((ps_l))ka

p<y p<y

O = ¢k(a7y)7 O) = ng(aa y)
Bear in mind that o, and o depend on x and y, the values of which will be clear from
the context. In particular, by the definition of «,
(logp)*p™ (log p)*
(3.1) o1 = —logx, oy = - 0y = —_—
2 - 1p 2 (- 17

We quote the following useful estimates on a(z,y) and ¢x(c,y) from Theorem 2 and
Lemmas 2, 3 and 4 of [HT86]. They will be implicitly used thoughout our argument.
Uniformly for 2 <y < z, we have

u

o =< (ulogy)*(@)' =", ax= (y <logz),  a> (y > logz),

" ulogy

(1—a)logy < logu, Vi < an/o; < min{Valogy, \/y/logy}.
We will also require the following two bounds, which are corollaries of the calculations
of [HT86L page 281]. We have

/OO <1 20y \ —cv/(log y)d 1
LTy 1
(@)?2/3/(log z) y/(logy) NG

/OO (1 t209 —cy/(log y)dt 1
p <L
0 y/(logy) NG

logy

(3.2)
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Regarding ¢y (x,y), using prime number sums in the same way as [HT86, Lemma 4
and 13|, we deduce that

sz(0_7 y) <k |¢k(0_7 y)| (k > 2? o> 07 Y > 2)

Note that we trivially have oo < 0. The next lemma relates more precisely the two
quantities.

Lemma 1. As y,u — oo,
09 1

3.3 — = ——F—— +0(1).
(33) oy 1+ (y/logx) o(1)
Proof. When o > 0.6, we certainly have y/(logx) — oo as well as 55 = O(1) and o9 —
00, so that the desired estimate holds. We may thus assume that a < 0.6.

Let ¢ € (0,1/10]. By [HT86, Lemma 3], we have ¢o(a,y) =< y' “logy when-
ever 1/(logy) < a < 0.6. The same conditions are satisfied when one replaces y by y'/%;
we deduce

(3.4) o, y'?) =y~ 0s(ay) <y Ps(asy).
Suppose first that y > (1/¢) logz. Then log(1/¢)/logy < a < 0.6, and we have

~ 2 2

for some absolute constant ¢ > 0, because of our assumption on «.

Assume next that y < elogz. Then a < ¢/logy and p® = 1 + O(e) uniformly

for p <y, so that
¢2(a,y) = {1+ 0(e)} 2, y).

Finally assume that y = tlogx where ¢ varies inside (g,1/¢) and let © — oo. Then
we have o ~ log(1l + t)/logy, so that y* ~. (1 +t) (the decay of the implied o(1)
there may depend on ¢). Evaluating the sum over primes defining ¢ (a, y) using [HT86,
Lemma 13], we have

_ 14+o0(1) [Y(logz)dz y'~*logy
¢2(a7y) - (1 _ y,a)Q /2 So + 0(1) ~e Q_TQ)Q

The same set of calculations show that, on the other hand,

1+ o0(1) /y (log z)dz y' 2 logy L
+0(1) ~ve —5 ~t “ylogy.
i—ver ), W Ty et wlosy

We deduce ¢s(a, y) ~z (1+1)" da(a, y).

Grouping our estimates, we have in any case

~ (t_1 + t_Q)ylog Y.

ng(oéay) =

22(1

I (52 ! ) <&

imsup( — — ———F—+—— €

i \oy T+ (y/logx)

for some absolute ¢ > 0 and all € > 0, and we conclude by letting ¢ — 0. U

Having the above facts at hand, we let ¢ = g(x,y) be defined for 2 <y < x by
(3.5) 0:= (02— 59/3)"? < (log ) /Vu.

As u — oo, we therefore have

1  logx
2~ (1 | - .
¢~ g oy (1 + 57)
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4. LEMMAS

The following lemma is a truncated Perron formula suited for sparse sequences, cf. [Ten07,

Exercices 11.2.2 and 11.2.3]. Let
K(7) :== max{0,1 — |7|} (r€R).

Lemma 2. Let (a,) be any sequence of complex numbers, and assume that the series
a

F(s):= Z —z

n>1 1

is absolutely convergent on the half-plane Re(s) > oy for some oo > 0. For all such s,
let Fo(s) :=>,51|an|n™°. Then for allz > 2, 0 > 09 and T' > 2, we have

S [ r0 oGl [ i to i)

Remark. The integral is the error term is a non-negative real number, as is apparent
from the proof.

n<x

Proof. The estimate follows classically from the formula, valid for all z > 0,

1 o+iT sd
(4.1) - =@

2mi o—iT

=11+ O(z" min{1, (7| log z|)_1}> < 2.

Indeed the error term is O(ZU{T_l/Q + 1|10gZ‘ST_1/2}), and we have

sin(v/T (log 2) /2)\ 2 r
VT (logz)/2 -1
We then specialize at z = x/n and sum over n against the coefficients a,. U

4.1. Basic properties of F(s,w). Let
H:={se C: Re(s) > 0}, U:={z€C:|z| <1}

For all (s,w) € H?, we write

1
F,(s,w) := _.
Y P(%):gy T(nd)nsdv
Note that we have the Euler product expansion
—ks—Llw -3 —w
p log(1 —p™) —log(1 —p™)
R =T ( X ) = IO o ps )
p<y k>0 T+ p<y p p

In what follows, the letters a, b and 2 shall denote complex numbers.
Whenever z € C \ R_, taking principal determinations of the logarithms, we have

1/2 _ —1/2
me (2 L
log 2z

where the fraction is analytically extended with value 1 at z = 1. It follows that the
function

(4.3) g(z) :=log (21/2_21/2>

log z
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is a well-defined analytic function of z € C \. R_. Since we have (1—a)/(1-b) € C N~ R_
for all (a,b) € U?, it follows that the function

(4.4) =(a,b) = —;log(l ) — ;log(l ) — gG - Z)

is an analytic function of (a,b) € Y% When a,b € (—1,1), we have

exp{Z(a.b)} log(1 —a) — log(1 — b).

b—a
This identity therefore holds on ¢4? by analytic continuation. Putting
(4.5) fy(s,w) =Y E(p~"p™"),

p<y

we obtain that f,(s,w) is an analytic function of (s, w) € H?, and

Fy(57 w) = exp{fy(s, w)}

For any (k, /) € N? and function f(a,b) of class C¥*¢, we shall use the notation

The hessian will play an important role: for a class C? function f of two variables, we
denote

Hess[f] := (020f)(0o2f) — (811f)2-

In the rest of the paper, Z(a,b) will always denote the function defined by equa-
tions (4.4) and (4.3)) in the proof of the previous lemma. The next lemma regroups some
useful facts concerning the power series expansion of =(a, b).

Lemma 3. (i) For some sequence of positive coefficients (dj ¢)k+e>1 with di o = do1 =
1/2, the power series expansion of Z(a,b) at (0,0) is

(4.6) E(a,b) = > dgea®t  ((a,b) €U?).
k+0>1

(ii) For some analytic function &(a,b) of (a,b) € U*, we may write

1—

(1.7) o(1=5) = (a=bPeab)  ((@b) e,

(iii) For some sequences (dy, ¢)re=0 and (dy, )re=o of positive numbers with dg o = dy o =
1/24, we have

(4.8) £(a,b) = > dy ,a"b* ((a,b) € U?),
k>0

(4.9) O (a,a) = % (a €U).

(iv) For all (a,b) € (0,1), we have
(410) [(8205)(8025) — (8115)2](&, b) > 0.

The useful feature in points (i) and (iii) is the positivity of the coefficients, which will
provide a neat way to establish bounds on F(s,w).
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Proof. Recall that the function g is defined by (4.3)). Note that g(z) = O(log(|z|+|z|™1))
uniformly for z € C N R_, and ¢g(1) = 0. Thus, whenever z ¢ R_ and I' is an oriented
circle inside C \ R_ circling around z counter-clockwise, the Cauchy formula yields

_z—1 glwdw  _z—1 [* g(w+0i) — g(w — 0) w
9(z) = omi jé(w—z)(w—l)— 2mi /_oo (w—2)(w—1) s

where the last equality follows from modifying the contour of integration into a Hankel
contour, first from —oo to 0 with argument 7, then from 0 to —oco with argument —m.
Setting t = 1/(1 — w), we obtain

g(z) = (1—2) /01 %, where K(t) = iarctan <71T10g <1Z€_t>> (t€(0,1))

which we extend by continuity at t = 0 and 1. Letting z = (1 — a)/(1 — b), we deduce
that

l—a ! K(t)dt
(4.11) 9<1_b>:(a_b)/o 1— (ta+ (1—t)b)’

Note that the function K is differentiable in (0,1) and

1
K'(t) = > 0
t(1 = t){x + log(t/(1 - 1))}
Expanding the rational fraction in the RHS of - as a power series, and taking into

account the factor (b — a), we obtain for some coefficients (d;);>o the expression
(4.12)

o(7=3)

(0<t<1).

= ;)d {aj—l—b]}—F/ ()kglakM(g—;;k)kig{ktk_l(l ) ftk( )Z 1}dt
~ j . & k?—l—g 1 1 ) N
= jzz(:)dj{a +b]}—k%1a bﬁ( L >/€+€/o K'(H)tF(1 — t)ldt

by an integration by parts. The point here is that the coefficients of terms a*b* with
positive exponents are negative. We return now to =(a,b). Setting b = 0, we have

=(a,0) = log ( — log(l—a)) (ael).

a
By considering the derivative of this expression, it is easily obtained that the coeffi-
cients (djp);>1 in the expansion Z(a,0) = 35, djoa’ are positive, and dy o = 1/2. Using
this expansion, the expression - ) for ¢ and equation (4.4) (as well as the symmetry
between a and b), we finally get

E(a,b) =Y djo(a? + V) + Y kb‘<k+€>k+£//c O (1 —t)'dt = > diead

>1 ke>1 k+e>1

say, where the coefficients (d.¢)r+e>1 are positive and dy g = dp; = 1/2. This yields (4.6]).
We continue with the expression (4.11)). Since IC(1 —t) = —K(t), we deduce

l—a\ ! (t —1/2)K(t)dt
9(1_1))_(@ ) /0 (1= (th+ (1—t)a))(1 — (ta + (1 — 1))
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from which we deduce the existence of the function {(a,b) satisfying (4.7)) and its ana-
lyticity. Note that (¢t — 1/2)IC(t) > 0 for ¢ € [0,1]. For all ¢ € [0, 1], we let
1

- (bt (1—t)a)(1— (tat+ (1—0)b) k%() e (t)a’t,

Ri(a,b) :=

for some numbers 7 4(t), by expanding the rational fraction as a power series in ta +
(1 —t)b and tb+ (1 — t)a, which in turn is a power series in a and b whose coefficients
are polynomial combinations of ¢ and 1 — ¢ with positive coefficients. Therefore, for
all k,¢ >0, rj4(t) is a non-zero polynomial in ¢ with r;,(t) >0 (¢ € [0, 1]). Setting

el = /1(t — 1/2)K(t)rg.(t)dt,

the expansion (4.8]), along with the positivity of the coefficients, follows at once. Fur-
thermore, it is easily seen by induction that for all k,¢ > 0,

P (1)
OpeRe(a,b) = 1<j<§k:+m (1—(tb+ (1 —t)a))i(1 . (ta + (1 — 1)b))e+E2—i

for some non-zero polynomials P,EE) (t) > 0 (t € [0,1]). This yields the equation (4.9).
The fact that d, = 1/24 is a simple calculation; it implies that dj, = 1/24 by special-
ization at a = 0.

The inequality (4.10) is proved by a direct computation. Let z := (1 —a)/(1—b) > 0.

Then
14z

, 2 logz —2
[(@202)(Bo2h) = @uh)N@:0) = 57 30g 22

which is extended by continuity as 1/(6(1 —a)*) when a = b. When z # 1, the positivity
of the numerator is easy to establish.

O

We introduce for § > 0 the subset

1 1-27°
150 < o <144 and |o—k|logy < 6}.

The first condition simply means that « is between is ¢ and x. The other guaran-
tee that o and k are adequately close to each other. Note that Dg(c;y) C Ds(a;y)
whenever ¢’ < ¢, and that if (o, k) € Ds(c; y), then uniformly for p <y, we have

(4.13)

1=p7=(1-p ) {1+00)}, o=a{l+00+ogy)™)},  p”=p"{1+0(5)},
and similarly for &.

In the next lemma, we deduce from the properties of the series =(a, b) some information
about the function f,(s, w) defined in (4.5)). Recall that o9 and &2 were defined by (3.1)).

Ds(a;y) := {(0‘, k) € (0,1)%: (6—a)(a—~r) > 0,

Lemma 4. For some absolute constant 69 > 0 and all 2 < y < x, the following
assertions hold.
(i) For all (s,w) € H* and k,¢ > 0, we have Re {8kgfy(5,w)} < Opefylo, k).
(ii) For all o,k > 0, we have
(020 fy + O fyl(0,6) >0 and Hess[f,](co,k) > 0.

(1ii) For all non negative integers k,{ with (k,¢) # (0,0), we have
Oefy(0, k) i |rre(esy)| (0, k) € Dy, (a;y)).
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(iv) Whenever 0 < 6 < §y and (o, k) € Ds(a;y), we have
)
aQOfy(o-v "{) + a11fy(0-7 KJ) - ? + 0(60-2)7

Hess|f, (0, ) = %{ag - %} +0(502).

Proof. Part (i) follows immediately from part (i) of Lemma Bl Indeed, for all fixed
indices k,¢ > 0, we can write 9pZ(a,b) = >, j,50d),.5,0” 0" for some non-negative
coefficients d;, ;, depending on k and ¢. Then

Re {6Mfy(s,w) Opefy(o, K } 3 d;, J, Z — cos((j17 + jat) logp) <0

10+j2kK
J1,J2>0 p<y P

by positivity. Regarding part (ii), the inequality [0 f, + 011fy](0, k) > 0 also follows
immediately by linearity from the equality

(00, + 011£,)(0, 5) = Y (log p)?|adioE(a, b) + a*Dx=(a, b) + abdnZ(a, b)| o
Py :p*“

and the positivity of the coefficients in the expansion . Concerning the hessian, we
apply the Cauchy-Schwarz inequality, getting

(0, o)) > o) [(adr0=(a:) + o2Om=(a )0 (0. 8) + 0=l )]y )

P<y b:p

z(Z

p<y

2
<1ogp>2¢ (02202020, )00=(0,8)] ey )
b=p—*

By (4.10)), the last sum over p is strictly greater than
> (logp)*p " "OnE(p~7,p~") = dufy(o, k)
p<y

as required.
We now turn to estimating the derivatives of f,. Assume that (o0,x) € Ds(a;y) for
some small . Recall that

=(a,b) = —; log(l —a) — ;log(l —b) — (a —b)*¢(a,b).

Let k,¢ > 0 be fixed with k + ¢ > 1. Then the derivative 0ys=(a, b) can be written as
a linear combination with bounded coefficients of terms assuming one of the following
four shapes:

(1—a)™ ifl=0, or (1-b7" ifk=0,

(@ — b)*Okeé (a,b),

(a—1)0;,;,¢(a,b)  with j; + jo =k +£—1and j; >0,
Ojjp&la,b)  with jy + jo = k+ ¢ — 2 and j; > 0.

(4.14)

Suppose for simplification that a < b. Then for any j;, jo > 0, we have
(4.15) 0518 (a,a) < 05,5,8(a,0) < 05,5,€(b,b) <yjp (1= )77

by virtue of (4.8) and (4.9)). Noting that |a —b| < 1 — a, It follows that each of the four
expressions given in (4.14)) is bounded by Oy ¢((1 — a)?(1 — b)*7%72), so that

On=(a,0) <pe (1—a)’ (1= (k+02>1, a<h).
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By symmetry, when b < a the same estimate holds if we swap a and b in the right-hand
side. Next, we specialize a = p~?, b = p~"*. By the property (4.13), if § is small enough,
we have for all k,¢ > 0 with k +¢ > 1

(4.16) Ou=(p™7, p ") Kpe (1—p~)7F

Differentiating the function (o, k) — Z(p~7,p~"), k times with respect to o and ¢ times
with respect to k yields a linear combination of terms of the shape

(log p) *p 77250, ,Z(p™",p™") (1< jit+s2 <h+10)
each of which is bounded by O((log p)***(p* —1)791732) (here we used (4.13)) and (4.16))).
Summing over p < y, we obtain
1 1

(po — 1)+t T o — 1} < Grpe(a, y) + u(logy)**.

Opefy(0, k) g Z (log p)k#{

p<y

Each of the last two terms is bounded from above by O(|¢re(a, y)|) = O((ulogy) ¢ (w)t=+-¢)
and this proves part (iii).
We now estimate the hessian. A direct calculation reveals that

Os0 fy(0, k) = ;QSQ(U, y)—Z(log p)? {Za(a—b)§+a(a—b)2810§+2a2§+4a2(a—b)@lo{f—i-az(a—b)2820§] a=p—°>

p<y b=p~ "

O fy(o k) = =3 (logp)?|ab{ — 26 + 2(a — b)(910€ — 00né) + (@ — b)*In&}|amy--

Py b=p™"
Where we abbreviated for simplicity Ok = Ore€(a,b). Using (4.13) and the proper-

ties and -, we obtain

O fy(o, k) = *¢2 a,y) —2> (logp)’p**¢(p~7,p™") + O(6a(a, y)),

p<y

O fy(o,k) =2 (logp)’p**¢(p™7,p ") + O(5¢a(av, y)).

Py
Using once more the properties ‘) and (4.9)), along with the value dg , = 1/24, we get

agofy<0, /i) % - E + O((SO_Q) 011fy(0, /f) = % + 0(502)

Using the symmetry of f, with respect to o <+ x, we finally obtain

02 02 02

Hess[f,] (0, k) — ( - )2 - ()2 + 0(602) = ”2{0 214 0(s03)
e 2 12 12 SO GO 2
which gives part (iv) of the lemma. O

4.2. Decay estimates along vertical lines. For the saddle-point method to succeed,
it is required that the tails of the integrals in contribute a negligible quantity.
The following lemma, which provides sufficient information for this purpose, states that
the decay of Fj(s,w) away from the to-be saddle-points is reasonnably good compared
with what a Taylor formula at order 2 would predict, even in a range where the Taylor
formula turns out not to be relevant. It is an analog of [HT86, Lemma 8. We recall our
notation that ¢y, co, ... denote constants, which are absolute unless otherwise specified.
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Lemma 5. (i) Whenever
lo — k| < cyo, max{o+ |7|,k+ [t|} < c1/(logy),

2 t 2
Y {log (1+ (T> ) + log <1+ () )}
logy o K
(ii) When o < ¢1/logy and |7| < e18V**™ ye have

m%@@m—@wmﬁsﬂﬁjﬁqu(“f%ﬁ+mn}

(iii) For all € > 0, there exists co(e) > 0 depending only on € such that whenever

we have

Re {f,(s.0) — fy(oR)} < —ar

min{o,k} > ¢/logy, max{o,k} <0.6, max{|T],|t|} < ca(e)/logy,

we have
e {,(s.1) — f,(0:1)} < —ea(e){70a(or) + Pn(.9) |

Although it is elementary, the proof of this lemma is somewhat lengthy and otherwise
unrelated to the rest of the argument: it is postponed to the appendix. We deduce the
following estimate for F),(s,w).

Corollary 1. Let |7],[t| < exp{(logy)*?}. For some absolute constants §,cz > 0,
whenever (o, k) € Ds(a;y), the following holds.
(i) For max{|7|,|t|} > 1/logy, we have
Fy<8’w)‘<<exp{—03ﬂ( i + £ )}
F,(o,k) (1—a)2+72 (1—a«a)?+t?

(7i) For max{|7|, |t|} < c3/logy, we have

3/2—¢

(4.17)

(4.18)

(iii) For a < cs/logy and |7| < e18¥)”"™° e have
F,(s,w)
F,(o, k)

with c4(e) > 0 depending only on € > 0.

(Tlogx)? )fc4(e>y/ log y

< 0/ logy) (1 +

Proof. First suppose a > 0.55. Then if § is sufficiently small, we have o,x > 0.54. On
the other hand, from (4.7]) we see that Z(p~°,p~%) = —% log(1—p~*) — % log(1—p™™) +
O(p~% + p~2), from which it follows that F,(s,w) = ((s,y)"2¢(w,y)? exp{O(1)}. In
this case, Corollary |1|is a direct consequence of Lemma 8 of [HTS86].

Next let ¢; be the constant in Lemma [l (ii), and suppose that |7, [¢{| < ¢1/(2logy)
and a < ¢;/(4logy). If § is sufficiently small, this implies o,k < ¢;/(2logy). If more-
over 4 is sufficiently small in terms of ¢y, then the conditions of Lemma [5] (i) are fulfilled
and for some constant ¢ > 0, we have

o =Bt ety (s (2)) e+ ()}

Since under our hypotheses 02 < o? < y/(¢2(a, y)logy), and similarly for x, we have
the required estimate
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Assume next that n/(4logy) < a < 0.55, and |7|, [t| < ¢1/(2logy). In this case,
assuming 0 is small enough, we deduce ¢;/(5logy) < o < 0.6 and similarly for &, so that
the conditions of Lemma [f] (iii) (with ¢ < ¢;/5 being absolute) are satisfied: for some
absolute constant ¢ > 0, we have

|F, (s, w)| < F, (0, ) exp { - C(Tz@(a, y) + 26a(k, y)> }

Note that ¢o(0,y) =< ¢o(,y) and similarly for k. Furthermore, we have under the
current hypotheses 73¢9 (c, y) logy/y < u(logy)/y < 1. Therefore

Y T2¢2 (047 y)
log y y/(logy)
and similarly for ¢. This yields the required estimate

Suppose next that a < 0.55, |t| < |7| and || > 1/logy (as we may without loss of
generality). Then from part (i) of Lemma [3| we deduce

log <1 + > = 72¢y(a, y)

%e {f,(s,0)f(00)} = = Y duY 1- COS(E)/{;';—H&) logp) _ 5

k+0>1 p<y p<y

1 — cos(7log p)
2p°

dropping all but one term by positivity. Note that p? < p®. It follows from Lemma 8 of
[HT86] that for some ¢ > 0, we have

2

1 — cos(T 1o cuT
Y )
p<y p (I-a)f+7

(Note that the condition |7| > 1/(logy) in the statement of [HT86] may be relaxed
to |7| > 1/logy without changing the proof). Since the fraction in the right-hand side
is an increasing function of |7| and |7| > |¢|, we obtain the required result.

Finally, if a < ¢3/logy and |7] < ollogy)*/2¢ exponentiating the upper bound of
Lemma [f] (iii) immediately yields the desired result. U

We shall use the first estimate of the previous corollary in the form of the following
bounds.

Corollary 2. Suppose (0,k) € Ds(a;y) for some sufficiently small § > 0. Then the
following assertions hold.

(i) For all 1 < X < exp{(logy)*?} and \ € R,

X
/X |Fy(o + AT,k +iT)|dT < Fy(o, H){l + Xe—csﬁ}.

(By symmetry the same bound holds for the analogous integral over t).
(i) For all 0 < § <1, (py, p2) € (0,22, (A1, X2) € R? and 5 < X < exp{(logy)*/3},
we have

dr dt
F,(o+i(T+ Xot), k +2(7 + M\t
J Jrtosite et n it e St

<5 Fy(o, ) log(X/ (i1 p12))* H (@)~ (log ) ",

(4.20)

max{|7], [t} < X,
max{|T + Ait], |7+ Xot|} > 0/logy [~

where the integration domain is (x) = {(7’, t):
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Proof. The proof is very similar to the calculations of [HT86l pages 277 and 279]. We
only sketch the details.

Part (i) follows in a straightforward way from bounding trivially by O(F, (o, x)) the
contribution to the integral of |7| < 1, and bounding by O(Xe “"F, (0, k)), for some ¢ >
0, the contribution of |7| > 1 using Corollary [1] (i).

Regarding part (ii), first note that logx = H(u)°!) as 4 — 0o as soon as the two
conditions y > (loglog z)!™ and u < (loglogy)'™¢. The second was assumed from the
outset of our argument. Let us first assume that y > (loglog x)?. Then Corollary .(ii)
yields

dr dt
pa || e+ [t

//() Fy(0+i(r + M), 5 + (7 + 2at))|

2
X 2
T dr
< Fy(o, k)| su expy — cu :
! )<ve5/a 3 (1—a)2+72}mm{uhuz}+IT—’/|)

/logy
for some ¢ > 0. Since for any |7| > §/logy, we have
T2 - 52 S 52
(I—a)2+72 = 2+ ((1—a)logy)2 ~ (

we obtain the bound

logu)?’

< Fy(o,k)H (@) log(X/ (s 112))?

for some ¢ > 0. Since (logz) <. H (@)% /2, the above is an acceptable error term.
If on the contrary y < (loglogz)?, then by Corollary .(iii), we have

d dt
// IF, (0 + (T + Mt), & + (7 + Aot))|——
(%)

pa =+ |7l g + (2]

2
X 2
Tlog x)* \ —ey/lo dr
< CW/BN (g 1) sup/ (1 + (1g2)2> y/logy . .
vER J§/logy ( +7 )y mln{/“?/l@} + ’T V‘

for some ¢ > 0. We certainly have, for 7 > 6/ logy,

(1 log )?
o s

so that for some ¢ > 0, we have a bound
<5 Fy(o, k)(log )"/ 1V Jog (X /(111 12))*.
This is clearly acceptable since y < (loglog x)2. O

) > 6% log(u/y) < 6% log z,

4.3. The saddle-points. Let 2 <y < z, and v = vp with v € R, |[v| < (logx)/o. We
are interested in the properties of the pair of positive abscissae satisfying

(B1, B2) = argmin (27920, (5 k).
(om)E (R )2

This pair will be more easily dealt with if defined by extrapolation from the case v = 0.
We let
B (—vo,v0) = R

be the maximal solutions (here vy € R’ U {o0}) to the differential equation

vy Ooafy A+ O fyl(B(v), B(—v))
(4.21) P = O s 7150, B (—v))
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satisfying the initial condition

p(0) = afz,y).
Lemma 6. For all |v| < vy, the couple (5(v), B(—v)) satisfies the saddle-point equation
1
Aol (B(v). B=v)) + = — w0 =0,
(4.22) ez
do1fy(B(v), B(—v)) + 5 TVe= 0.

Moreover, the function [ is defined in the interval
(423) V= V(x7y) = [_66\/57 C6\/a]7

and for v > 0,v € V, we have
v

(Bv).B(-v) € Dufoip),  0<Bv)=B(-v) = —=

where 6y > 0 is an absolute constant such that Lemma |4 (iii)-(iv) hold.

Proof. That (f(v), 5(—v)) satisfies the saddle-point equation can be seen by differenti-
ating the system (4.22)) with respect to v, granted that it is satisfied at v = 0. To check
this last fact, we remark that from the definitions ([.5), and Lemma [3] (ii) (more
specifically, using the fact that g((1 — a)/(1 — b)) vanishes at order 2 when a = b), we
have

a10fy(0-7 U) = aOlfy(o'7 U) = ;le(a, y) (U > O)

Then, when v = 0, both equations in (4.22)) reduce to the definition of a(x,y).
From Lemma [4(ii), we have that 5'(v) > 0 for |v| < vy. Let §5 > 0 be, as in the
statement, an absolute constant such that Lemma [4] (iii)-(iv) hold, and let

o _ qu 278 _g-hW)
(4.24) vy, = inf {v € (0,00) : B(v) — B(—v) = wlogy & T 1-2 80

where ¢; > 0 is absolute and such that 0 < ¢; < §y and o > 2¢7u/(ulogy). Since u < u,
we have

:(50}>O

(6(0)76(_1})) € D(So(a;y)’ (0 <v< Um)'

In particular, £y, 32 and their derivatives have a limit at v = v,, and the theorem of
Cauchy-Lipschitz yields v,, < vg. Lemma .(iV) ensures that for 0 < v < v,, we
have §'(v) < (logx)/(po2) < 1//02. Tt follows that

v
4.25 Bw) —B(—v) x — (0<v <wvy).
(4.25) (v) = B(—v) NG ( )
We claim that v,, > /4. Indeed, assume first that the limiting condition in (4.24)
is B(V)—B(—vm) = c7ii/(ulogy). Then from (4.25)) it follows that v,, /v/@ > 1. If on the
contrary the limiting condition in ([#.24]) is (277(=vm) —278(m)) /(1 —27B(=vm)) = §; then
we write this condition as f(v,,) = 0, where f(v) := dy + 27 — (1 + )27 (0 <
v < v,,). We have

f0)=6(1-2"")>a,  flv)<|F )| <1/Vor (0<v<wy,)
from which we deduce that v, > a,/03 > V. This proves the lemma. O

The next lemma describes more precisely the variations of § and of the quanti-
ties x(102)/2e0(%=BUF, (B, B5) and Hess[f,](61, B2) (where (81, 52) = (B(v), B(—v)))

with respect to v.
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Lemma 7. Define for all2 <y <z andv eV
(4.26)

E(v) = B(v;z,y) = log(«! M2 0 F (81, 85)) (B, B2) = (B(v), B(—v)).

Then for some sequence of functions (b;(x,y));>0 satisfying

bg(ﬂ?,y) - _1/27 bj(.iE,y) < (a)—j’
and for each fixed k > 1, we have the Taylor expansion

(4.27) E(v) = E(0) +§bj(m,y)02j+2 + 0(1’;@;) (vev).
Moreover, we have ]

(4.28) Hess[f,)(81(v), Ba(v)) = Hess[f,(c. a>{1 + o(f) }
(4.29) B:(v) :a—;’+o<ulfgy).

Proof. First we note that

E(v) = f,(B(v), B(—v)) +
By the saddle-point property , we have
E'(v) = —o(B(v) = B(-v))  (veEV).

We wish to differentiate this expression further. In order to simplify the presentation,
we introduce the following temporary notation. For m > 2, let D,,, be the set of linear
combinations with coefficients independent of x and y of functions of the shape v +—
Ope fy(P1(v), B2(v)) defined for v € V, where k + ¢ = m. We also denote by D,,, - - - Dy,
the set of products fi - - fx where for each j, f; € Dy, ; and we write D}, = Dy, --- Dy,
(r times). Using the shorthand

9 : v s Hoss[,)(B), B(—v), % € D3

B(U)‘;ﬁ(—v) logz — U(ﬁ(v) — ﬁ(—v))g.

we have from (4.21))

(4.30) B e (g) . Do.
(which reads “the function v — ($(v)/0)f'(v) is in Dy”, etc.) It follows that
2
B € (%) .D».

By differentiating further with respect to v, we obtain

3 4
" Y 3 (4) 0 6 512
E" € (ﬁz,)) - (DiDs),  EWe <~65> - (DD, + D3D3).
More generally, an induction over j readily yields
( ) Q] . Tm N
e () (X IIpw) Gz
> omrm=Tj-12 M
> rm=3j-5
where the summation is over sequences of non-negative integers (7,,)m>2 satisfying

> omr, =75 — 12, > rm=3j—5.

m>2 m>2




20 SARY DRAPPEAU

Recall that o, := |¢m(a, y)|. The definition of ¢ and Lemma 4] imply that for v € V,
o<y, Hv) =03,
1 flloe < lowm| <im (ulogy)™ (@)™ (m =2, f€Dpy).
It follows that for all j > 2,
E'(J)( ) <5 06 7j/2 Z ngm < (@ )= —3/2

Z mrpy,=75—12 ™

> rm=3j-5

Since the function F is even, the estimate (4.27) and the bound b;(x,y) < (u)™7 are a
consequence of the Taylor formula, and there remains to compute by(z, y). Lemma[4 (iv)
applied with the parameters (o, k) = (a, a) € Dy(a;y) yields
40°

E"(0) = —200'(0) = ————F = —

by definition of g. This proves that by(x,y) = —1/2.
Estimate (4.28)) follows on the same lines. Indeed, since $ € D3, we have

2 " 4 5 412
§ € (55) (D3Ds),  9"€ (ﬁg) - (D3D, + D3D3).
We deduce [|9]|e < 04 + 0205 < H(0)/u. Since § is even, $'(0) = 0 and the
estimate (4.28]) follows from a Taylor formula at order 2.

Finally, from (4.30)) we obtain
02
(4.31) 8" e < 53) - (D3D3)
so that a Taylor formula at order 2 yields

Bv) =a+— +O( 203>:a+v+0( v )

Y 02

as claimed. 0

5. PROOF OoF THEOREM [1I

Let 2 <y < x be large numbers, v > 0 such that v € V (which we recall was defined
in (4.23)), and
v :=wvo € [—(logz)/2, (logz)/2]
if the constant cg in the definition of V was chosen small enough. Recall that 8 = S(v)
is defined by (4.21). By the definition (1.7]), swapping the sums over n and d, we recall

that )
S(x,y;y
D(z,y;7) = W,
where
S(z,y;7) ZZ
P(nd)<y
ne27<d<x/n
Let

R(v) = R(x,y;v) = E(v) = E(0),  (veV),
where E(v) is the quantity defined in (4.26]).
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Proposition 1. Let v, € V, v,, > 1 be fizred. Assume 2 < y < x and 0 < v < vy,.
Then we have

S(x,y;7) /”’”{ (1 122 )} o dz oRm)  GR()
5.1 — s = 1+0 () 9% 0< )
( ) \Ij(xuy) v + U © \/27'(' + U, + m

Proof that Proposition [T implies Theorems[1 and[d Let v,, = vmax < (10)*/(2*+2) be given.
Recall that R (v) is defined by (1.10). By Lemma [7} we have

R(z) = Ra(2) + o(if;f) (0< 2 < vp).

The error term is absolutely bounded. Let

I(v) = o Ri(z) dz <ou<
(v) := e ors (0 <v < upy).
Then it is easily verified that for 0 < v < v,,,
1 4+ p2k+2
RO = (140 I(v),  I(vn) < —2 " 1(w),

(u)*
/m CR@dy « (1+09)I(w) (L€ {2,2k+2}).
We deduce that
vm 1422 dz 1402 p2kt2
o5 o
/U {+O( F )}e VoI S G e S O

eR(vm) 1+ p2k+2

I(v).
Vo (Q_L)k (U)
This implies Theorem [2 Theorem [I] follows by specialization at k = 1. 0

We define
T := min{H (u), exp((log y)**)}.
Note that ay/ds < T°W as i — oo.

Small values of v. Let
1

(log z)uc, /o5
and consider first the case when 0 < v < v;. Note that log(1/v1) < loglogz. The
right-hand side of (5.1]) varies by an amount at most O(¥(z,y)/u). The left-hand side

of varies by at most
Z D -

nd <y )
nd<x

1<d<x2“1
<LRS

where we used the rough bound ¢ < (logz)?. By Rankin’s trick and ([#.2)) for z = d/n

at the height T = (tiay/03)? < exp((logy)??) (for y large enough), the quantity above
is bounded by

V1 =

T\ 1 d\ it/ (v1log )
< <> / () K(r)dr
%ﬁ nd) nd 1 \n (7)

xa U092

UO{\ / 02 Y /02

IN

|Fy(o +it, a0 — i7)|dT.
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By (1.15)), Corollary [2| (i) and the fact that F,(c, a) = ((cv, y), this is

V(r, y)

+eTl « —2 -

< W(w, y)ar/as{

1
UL /O
Therefore, the estimate (5.1)) for 0 < v < vy is implied by the trivial case v = 0, and we

can suppose from now on that v > v;.

1/24-

Applying the Perron formula. For all n € S(x 7 y), we apply Lemma [2 at the

abscissa

o = 3(B(v) + B(-v))
and height T, with the choices

]-P(n) <y and ne2v<d

T+ x/n, ag ) 7
which yields
Z 1 _ i o+iT xiss % O(l Z lﬂ)
Py T0d) 2 Jo i plgr, T(nd)(nd)* s VT pige, T(nd)(nd)”

ne?Y<d<z/n ne?7<d ne?7<d

)K(T/ﬁ)dT).

x(r—&-iT

+0( ¢‘/ﬁ o, T nd)

ne?Y <d

Let k := fB(v) — f(—v) > 0. We sum the previous estimate over all y-friable d > 1. By
using Rankin’s trick 1,.2y<q < e™%(d/n)*/? on the error terms, we obtain

1 o+iT s ds LU(’BlJFBQ)/ze’Y(ﬂli/Bl)Fy(ﬁla 52)
S(@,y:7) = 5— 2 2 TWZ)WSJFO( VT )

2T JoiT play<y neS(de21.y)
x(61+52)/2 \/>

VT )yt

where, here and in what follows, we abbreviate

(61, B2) = (B(v), B(=v)).

Next we express the inner sum over n in the main term using again Lemma [2| at the
abscissa /2 and the height T//2. By similar calculations and using

[ G =G
oir \nd/) s nd/) "’

as well as the triangle inequality, we obtain

+ O< F, (b1 +it, B+ iT)K(T/ﬁ)dT)

(5.2) Sy =M + O(Ry + Ry + Ry),



ON THE AVERAGE DISTRIBUTION OF DIVISORS OF FRIABLE NUMBERS 23

where
o+iT wk+1T d d
(5.3) M = 2ri)? / / zie T F, (s + w/2, s—w/2)—w—s,
)2 ), e w s
(B1+B2)/2 7(52 B [
Ry = L © Nex Ey(1, Bs) < pB1+B2)/27(B2=51) (51,&2) —co
I(/B1+52)/2e7(52_ﬁ1) \/T . .
Ry = \/T /ﬁ’Fy(ﬁl—FZT,ﬁQ-FZT)ldT,
I(/B1+f82)/2e7(52_ﬁ1) \/T . .
Ry = o /ﬁmmrmm@+wm@

First truncation. By Corollary (i), we have
Ri4+Ro+R3 < x(ﬁlJrﬁQ)/Qe’Y(ﬁz*ﬁl)Fy(ﬂl, 62){ 1/2+e Clou} < x(51+ﬂ2)/2e’7 (B2—p1) p (ﬁl, 52)7" ci

By (4.27)), we obtain
R(v)
(5.4) Ri+ Ry + Ry < 2o, )T < W(a,y)"—

Second truncation. We now consider M, defined at ([5.3)). Let c3 be the absolute constant
given by Corollary 1, and put 77 := c3/(2logy). We write the integration domain in the
double integral ([5.3)) as the disjoint union

[T, T)> = Dy U D,
where
Dy :={(r,t): |t —t/2| <T) and |7+ t/2| < T1},
Dy = {(1,t) : max{|7|, |t|} < T, and |7 —t/2| > T} or |7 +t/2| > T1)}.
Accordingly, we call I; the contribution of (7,¢) € D; to (5.3)), and I5 the contribution

of Dy, so that M = I, + I5. The hypotheses of Corollary [2| are satisfied for I, with the
parameters

(X,0, M1, Mgy i, o) = (T, e3/2,—1/2,1/2, By + B2, B1 — Ba).
We deduce
I < aPHRIEO R0, (8, 85)(log(T (log x) /(*vy))* (log ) ™ H () 12
<. 2 (B1+82)/2 v (B2~ 'Bl)Fy(ﬁhﬁz) —c13

since 1 — B2 > v1vu/ logx and log(1/v,) < loglog z. As for (5.4)), we conclude that
eR@)

(5.5) I, < U(z,y)"

Bounds for large v. By the change of variables (s, w) < (s +w/2,s —w/2), we write
2 Br+iTy pBa+iTy dwd
I (v) == .2/ / g2 (5 p) wes .
27” B1—iTy  J Ba—iTy (5 - U))(S + w)

We first give a rough bound for I(v,,). Consider first, then, that v = v,,. By the triangle
inequality,

I (vy) < 2 (B1+62)/2 (B2~ ﬂl)/ / (B 4T, By 4 it) | drdt (v ="vp).
T (Br = Ba)a




24 SARY DRAPPEAU

From Corollary I 1] and , we have

/ / ’F 51 + 4T, Bg + Zt)‘ (ﬁldjdﬂi)& < Fyiil;f2) (U _ Um)-

Since we have k < v,,/\/02, we conclude that

(L’aC(Oé, y)eR(vm) eR(vm)
= U(z,y) )
Um0ty /02 Um

Differentiation, third truncation. Now we let v vary inside [v, v,,]. For all such v, the
quantity [, is differentiable at v and

C1+iT  pB2+iT dwd
]/( / s+w)/2 ~y(w— )Fy(87 w) wds .
27m B1—iT J po—iT s+w

(5.6) Ii(vg) <

Let Tp := (2)?/3/(ulog y). We split the previous integrals as
L{(v) = Jo(v) + Jo(v),

where .Jy is the integral over the box Dy := {(7,t) : |7|, |t| < Ty}, and Jy is the comple-
mentary contribution.

Taylor range. When (7,t) € Dy, we Taylor expand the integrand : the calculations are
very much similar to [HT86, page 280]. Letting

,7_2 t2
Q(7,1) = Eﬁzofy(ﬁlaﬁﬁ + 7t0n [y (1, B2) + 5502fy(517ﬂ2)7
we have by a Taylor expansion at order 4, using Lemma [4] (i) and (iv),

3
fo(s,w) = fy(Br, B2)+im010 fy (Br, B2)+itdor fy (B2, B2)—Q(T, 1)+ A t* 7 +O((|7|+]t]) ou)

i=0
for some coefficients \; < 3. Since Tyoy and Tios are O(1), we have
3 3
exp { ST LO((r ) o, t))} — 143 AT (7 ) o3+ (7 el o).
i=0 =0

Moreover,

1 1 Ct+T T+ |t]\2
_ (1-i vo((TEy)
s+w P+ P B+ Ba o
Since we have o301 < 04, we obtain for some numbers ji1, 1o independent of 7 and ¢,

(5.7)
x(s+w)/2e'y(w—s)Fy(s7w) B 1 B1+B2)/2e7(B2—51) | (51 52)

00143 it

S+ w a b1+ Ba =0
YT + gt + o(<|Ty 502 + (7] + [£) ou + (7] + [£])%a 2)}

Note that we have the formulee (see also [RT13], formula (11.13)]):

(r)eR? VHess[f,](B1,8,) o2

1
k 14 7Q(T7t) -
(5.8) //(Tt)ER2 |7]"|t|"e drdt < (o3 D72 (k,¢ € N).
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We integrate the quantity (5.7)) over the square Dy. By the symmetry of Dy, the con-
tribution of terms involving A; and 1, vanishes. Therefore, using (5.8]), we have

1 1 (B1+82)/2e7(B2—P1) | 51 ﬁ2
Jy = —2 {1+0()} // QU drdt.
0 ¢ U (2m)%(B1 + 52 (T,t) eDo

On the other hand, following again [RT13], section 11.3], we have

// e 9 drde
max{|t],|T]|}>To

Hess[f,] / 72 t2
< exp { — ( + ) }det
/Znax{t|7T|}>To 4 802.}Cy 820fy

where the partial derivatives of f, are evaluated at (1, 52). By Lemma , we have
that Hess[f,](B1,82) =< o3 and 0a0(51, 2) < 02 (similarly for dpaf,). Therefore, for
some ¢ > 0, the right-hand side of (5.9) is

7ca T +t2 700’2T2
() rdt < g
max{|t|,|T|}>To T00'2

the above is certainly O((o9u)™1). We conclude that

1 (P1+B2)/267(B2—P1) B F, (81, B2)
Jo=— @]
2@{1 + < >}27T (B1 + B) \/Hess (B, B2)

Now by equations (4.28) and (4.29)), we have

(5.9)

Since Toy =< w3,

Hess|f,](B1, B2) = Hess|f,](a, {1+O( >}

)

and by definition of ¢ we have Hess[f,](a, a) = 0*¢2(a, y). We obtain

1 (B1+B2)/27(B2—P1) [
Jo— — {1+O< +v)}x e y(B1, B2)
27\ /oo

- wnfiro )5

by (4.27) and (1.15). This is our expected main term. We note that
(5.11) Jo = U(z, y)e™W).

514—52—204-1-0(0

(5.10) N

Bounds away from the Taylor range. It remains to estimate Jo, which is the contribution
to I](v) of those (7, t) which satisfy max{|7]|, |¢|} > T,. By Corollary[l] (ii) and symmetry,
we have

- (B1+82)/2g7(B2—PB1) | v T 2 2 —cy/logy
Jo < /_02x e (B, B2) / / {(1—1— T 02 )(H— (op) )} dtdr.
0 JTo

a y/logy y/logy
By (3.2), we have

~ (B1+B2)/2e7(B2—P1) [ R(v) J
(512) JO < L ef y(ﬁl,/BQ) — qf(l’,y)e _ — T0
Uy /o3 U U
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by (4.27) and (1.15)). Regrouping our estimates (5.12)) and ([5.10]), we conclude that

I} (v) eRv) 1+ 02
5.13 ! = — —i—O( — eR(”)> v < v <v,,).
G ey T v T (v )
Integration. Since I (v) = Iy (vy,) — [ I1(2)dz, estimates and (j5.6)) imply
I (v) vm sy dz eRWm) 1 [om
5.14 = R + O( + - 1+ 22 eR(z)dz>
(5.14) U(z,y) v V2T U Jy ( )

We regroup estimate ([5.14)) with - and ( . to obtain the required result

S dz eR(m)  gR() 1 rvm
T(ey) /U e o + o + - + ﬂ/u (1+2%)e z

APPENDIX A. PROOF OF LEMMA [{

Proof of part (i) of Lemma @ We shall actually prove that for all p <y,

e (=) =200} < g (14 (7)) s (14 () )}

from which the lemma follows by summing over p < y. For this proof, it will be more
convenient to depart slightly from the notation used in the rest of this paper. We put

iy < ologp, T+ 7/0,

o < Klogp, t < t/k.
Our objective is to prove that

(A.1) Re {E(e’“(l”ﬂ, e r2(1+it)y —E(e’“,e“"’)} < —130{ log <1+72> +log (1 +t2>}
under the hypotheses
(A.2) o — po| < mpa, max{p (14 7)), pa(1+[t)} < n.
We abbreviate further
a = e mUHT) o p— omr(H) (1 — ) /(1= D).
The equation is trivially satisfied at 7 = t = 0. Replacing 7 by At and ¢ by At

with A varying in [0, 1], and then differentiating with respect to A, we have that it will
be sufficient to establish that under the same hypotheses,

_ _ 1 7_2 t2
(AS) Jm {Mﬂ'af)w:(a, b) + ,U2tb801:‘(aa b)} < _50{ 14+ 72 + 1+¢2 }

The quantity on the LHS can be written as

- wta (1 z ) uﬂb( 1 1 )}
S = — _
Jm{ 1—a<10gz z—1 1—-0\z—1 logz

where the parentheses involving z are interpreted as —1/2 if z = 1. Let v(z),s(z2) € R
be defined for z € C~ R_ by
1 1

(A.4) t(z) +is(z) = —1/2+ P a—
Note that v(1/z) = —t(z) and s(1/2) = —s(z). We can write S = S1 + Sy, where
m{_l“_l;“}( ~1/24 () +’Jm{zﬂ_2tbb}( —1/2—(2).

S =

[S]
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_ th
S, = s(2) me{ e | 2 }

1—a 1-0b

Given the hypotheses (A.2)), we remark that we have

147
A5 =:1+0 —
(A5) 2= {1+0m}

N pTa  —pmrettsin(uT) T2
we)  w{fT - U —-{roml
ray (e costr) —1) .

(A.7) %{1—a} - |e(1+ir) — 12 - {1+O(77(1+’TD)}1+7_2'

By symmetry we have the analog estimates for pstb/(1 — b). We shall use the following
inequalities concerning the functions v and s.

Lemma 8. When z € C~\ R_, the following bounds hold.
(a) [x(2)] < 1/2,

(b) t(z) <0 for |z| > 1,

(c) |e(2)]| < 1/10  for1/2 <|z| < 2,

(d) |s(z)| <1/,
(e) |s(z)| <0.15 x |arg z|.

Let us first deduce from these the desired inequality . Assume first that one
of |7| or |t| is greater than 3/2. By symmetry we suppose that [t| < |7| and |7] > 3/2.
Then implies that |z| > 1+ O(n), and since the derivative t/(z) is uniformly
bounded if |z| > 1/2, Lemma [§(b) yields v(z) < O(n) assuming 7 is small enough.
Using and Lemma [§] (a), it follows that

7_2

1472

72 1 t2 1 1
S = {1400} — (=5 +@) +{1+0m 5 (-5 —v(2) < ~{5+0m)}
On the other hand, using (A.7), Lemma [8/(d) and |7| > 3/2, we have
1 ¢ 2 t?
5 < | A a+om)+o(n{—+1 5}

“all+72 142 1+72 142

1+ 0(n) | 7] 1 72
< Z
- 0 {1+r2+2}+0<n1+72)

7_2
< {045+ O(n)}m.

Adding the bounds for S; and S, we obtain

7_2

$ < {005+ 0()}

72

72 t?

which is acceptable granted that n is sufficiently small. Assume now |7|,|t| < 3/2.

Then |z] < {14 O(n)}/1+ (3/2)? < 2 if n is small enough; similarly |z| > 1/2. Then
proceeding as before, but this time using Lemma .(c), we obtain

,7_2 t2
g S{_()'4+O(77)}(1+T2 " 1+t2)'
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On the other hand, we have
Jang(2)] = anctan (V) et ()Y

l1—-a
e (1 — b)’ B et — cos(pyT eH2 — cos(pat)
< arctan(|7|) + arctan(|¢]).

Using (A.7) and Lemma [§](e), we have
Sy < {0.15 + O(n)}(arctan(|7’|) + arctan(|t|)>( | 7] i || >

1+72  141¢2
7_2 t2
= {0'3+O<n>}<1+72 * 1+t2>'

We finally obtain in this case

,7_2 t2
SS{_0'1+O(77)}<1+72+ 1+t2)

which is once again acceptable.
To conclude the proof of part (i) of Lemma [p] it remains to justify Lemma [§]

Proof of Lemma[8. Since t(1/2) = —t(z) and t(Z) = t(2), and similarly for s(z), it
suffices to consider the case when |z| > 1 and arg(z) > 0. For all w € C, | Imw| < 7/2,

let
1 1 1
A8 Lw)=————= —_—
(A8) () (sinhw)?  w? kezz\:{o} (w + tkm)?
We shall prove that
—0.6 <PRe L(w) <0,
Jm L(w) >0,

Let us first prove that (A.9) implies Lemma . Let z1,20 € C~ R_. We have
1 (log 23)/2
() = t() = 5 e { / L(w)dw}

(log z1)/2

(A.9) (0 <Rew, 0<Tmw < 7/2))

1 (log |22])/2 1 (arg z2)/2
_ / Re L(t +iarg(z)/2)dt — 2/ Jm L((log| ) /2 + it ) dt.
( (

2 J(og|z)) /2 arg 21)/2

Assuming 1 < |z1] < |29 and 0 < argz; < arg zo, the integrals are respectively non-
positive and non-negative in view of (A.9), and we get in this case v(z1) > t(z2). By
setting z; = 1 and 2, = z, it follows that t(z) < 0. By setting z; = z and zo = —X + 40
and letting X — oo, it follows that v(z) > limsupy_,. t(—X +i0) = —1/2. Finally, in
the case where |z| < 2, setting 2y = z and z3 = —2 4 40, we obtain t(z) > t(—2 + i0),
which evaluates numerically to —0.0997 +£107° > —1/10. This proves parts (a), (b) and
(c) of the lemma. On the other hand, noting that L(w) € R when w € R, we obtain

2

The integrand being non-positive, we obtain 0 > §(z) > s(—[z| +i0) = — gz 2
—1/7m and this proves part (d) of the lemma. Moreover, by the triangle inequality, we

obtain

(argz)/2
5(z) = / Re L((log|2])/2 + it ).
0

(182) b 9 L(w)| < 0.15 x (arg 2)
4 Re w>0
0<Imw<m/2

|s(2)] <
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and this proves part (e).
It remains to prove (A.9). We recall that L was defined in (A.8). Let w =a+ib e C
be fixed with a > 0 and 0 < b < 7/2. We have

1
[Rer(a)] < |i) < 3 PES =T 2 (b+km)?  (sinb)? 0

keZ~{0} keZ~{0}

1 1 1

The last expression is easily seen to be maximal when b = 7/2; its value at this point
is 1 —4/72 <0.6.
Next, suppose a < /2. Then using the series representation (A.8)), we have

a? — (b+ kr)?

Rellw)= > (a7 (b+ km)2)2 =

keZ~{0} (

If on the contrary a > 7/2, then we have

Re L(w) :9%{(

1 1 } sinh® a cos(2b) — sin?b ~ a® — b?
sinhw)?  w?

(sinh? @ + sin? b)? (a2 02)2
This is obviously non-positive if 7/4 < b < 7/2. If b < w/4, then the above is
1 1
— —=o(b
~ sinh’a a2 #(b/a),

where ¢(t) := (1 — t?)/(1 + t?)%. Tt is easily verified that ¢(t) > 0.48 > (a/sinha)?
for |t| < 1/2 and @ > 7/2. Since indeed 0 < b/a < 1/2, it follows that Re L(w) < 0 as
required.

We turn now to Jm L(w). Consider first the case a < 4.9. Using the series represen-
tation (A.8) and grouping indices with same absolute values, we obtain

a* + (1? — (km)?)(2a2 + b% + 3(k7)?)
+ (b4 km)?)%(a® + (b — km)?)?

(A.10) Jm L(w) = —4ab Z

k>1

Given that b < 7/2, the numerator is less than a* + (b* — 72)(2a® + b* + 37%); this last
expression is maximal when b = /2. At this point, it equals a* — 372/2a* — 397%/16
which is negative by our assumption that 0 < a < 4.9; in view of , we have thus
obtained Jm L(w) > 0 when a < 4.9. Suppose now on the contrary that a > 4.9. Then

- —2sinh a cosh asinbcosb 2ab sinb \ coshacosb 2
JmL(w) = + =— ( ) ——+—¥(b/a)
sinh” a a

(sinh? a 4 sin?b)? (a? + b2)? sinh a

where (t) := t/(1 + t*)%. Tt is easily established that 1 (¢)/t > 0.81 for 0 < t < 1/3,
and ¢ (t) <t for t > 0. Since b/a < 1/3, we obtain

sinbcosbcosha 1.62xb

sinh® a asd

Jm L(w) > —2
Using a > 4.9, we have a®(cosh a)/sinh® a < 0.03. Consequently,
N b
Jm L(w) > 5{1.62 ~0.06} > 0.

This concludes the proof of (A.9), hence of part (i) of Lemma [
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Proof of part (ii) of Lemma[5. We quote from [dIBT1H, equation (5.2)] the bound
C(s.9) (1 n

_Csw(y) —e
) (J7] < e159”*™ 0 < 5 < 1/ logy).

¢(o,y) ology
From the definition (4.4)), we deduce that it will suffice to prove
(A.11) Re(g(2)) >0(1) (€ C~R.).

Because ¢g(z) = g(z) and ¢g(1/z) = g(2), we may assume |z| > 1 and arg z > 0. In terms
of w = 2log z, this means Rew > 0, Imw € [0,7/2) and we have

) = g(e™) = log (1),

Notice that, with the definition (A.8§]),

9" (w) = —L(w).

From (A.9)), we deduce

Rew Jmw

Red'(w) = — Re L(t)dt +/ Jm L(Rew + it)dt > 0,
0 0
Jmw
Jmg'(w) =— MRe L(Rew + it)dt < 0.67/2 < 1,
0
so that
Rew Jmw
Reg(z) =Reg(w) = Re g’ (t)dt — / IJmg (Rew + it)dt > —7/2.
0 0

Therefore, (A.11]) holds and so does part (ii) of Lemma []

Proof of part (iii) of Lemma @ First we note that since o < 0.6, by the previously done
calculation (3.4), we have ¢o(0,y'/?) < y %2¢y(0,y) and similarly for x. For large
enough y, it will therefore be sufficient to show that under the stated conditions, there
exists ¢(g) > 0 such that

i)t} g e

for /2 < p < y (so that logp = logy). We shall once again depart slightly from the
notation used up to now. Relabelling

a+p° b=p ¥ and 7T < arga, t< argh,

we wish to show that for all € > 0, there exists ¢ = ¢(¢) > 0 such that for all (a,b) € U?
satisfying

(A.12) max{|al,|b|} <1—e, max{rt} <c,

we have

— - la|7? |b|t? }
= —= < — .
e {Z(a ) ~ al. 1)} < —e{ 7 o + o e
We consider ¢ as being fixed, and let implicit constants depend of £ throughout the rest
of the proof. Replacing 7 by A7 and ¢ by At and differentiating with respect to A as
before, we see that it will be sufficient to show under the same assumptions , we
have

la| 72 Ibt2 }

m {radua(o,) + (a0} < e{ 725 + o
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Suppose, then that the conditions (A.12) hold for some ¢ > 0. In the same way as
before, we write the left-hand side as S; + Sy, where

s =om{ ) (- dero) eam{ ) (L)

- th
S, = 5(z)me{m + }

l—a 1-0
and z = (1 —a)/(1 — b). Here the function t(z) and s(z) are again defined by ((A.4]).

Now we note that

~ [ —Ta\ _ lajtsinT . |la| T2

m{ et = o~ O+ OO S
Ta \ _ l|a|t(cosT —|a]) la|T

%{1—60}_ A—japz B HOET

granted that ¢ is small enough in terms of £ (note that |1 —a| = (14 O(c))(1 — |a|)).
Moreover, we have
lal

) = 1+ 0@ =

By symmetry the same estimates hold for the analogous quantities for b. Note that by
our hypotheses we have |z| = O(1), which implies

la|sin T

arg(l — a) = arctan ( O(la|T).

1 —|a| cos(T)

W) =2+ 0(),  s(2) = (arg ){ [aa(;(gzg,)LZ|z +0(0)}.
Let
o 1 1 1 [ 0s(2) P 1
B =) = o= i 0= ], = TR e

We regroup the estimates above to obtain
|la| 72 |b| 2

1 1 2 2
S= e (= g o)+ o (= 5~ vae) + O(elalr? + 114%).

—la|T b|t

Here we used the fact that the quantities t(]z|) and s§(z) are uniformly bounded. Note
that v (]z|) < 0. By the upper bound (A — u)? < 2(A\%2 + p?) (\,u € R), we get

)+ Olellalr +1010?).

jal <1 ) [bl¢? (1 ) 2, 112
S< -t == 2 —_ (= 2|b O blt?)).
< — gz (5D 2labvallz) ) — o2 s (5 (=D +20elva(l=D) + Olellalr™+ i)
It is easily seen that 1/2 — [1(p)| + 2¢2(p) > 0 for p > 0. Since |z| is bounded in
terms of ¢, it follows that both parentheses in the above expression are greater than
some ¢ = ¢(¢) > 0, so that

) |a|T? ]t
S < —(c —l—O(c)){(l ] + - |b|)2}

Then, choosing ¢ sufficiently small relative to ¢/, we have

jal bt }

as required. O
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