COMBINATORIAL IDENTITIES AND TITCHMARSH’S DIVISOR PROBLEM
FOR MULTIPLICATIVE FUNCTIONS

SARY DRAPPEAU AND BERKE TOPACOGULLARI

ABSTRACT. Given a multiplicative function f which is periodic over the primes, we obtain a full
asymptotic expansion for the shifted convolution sum Z|h\<n<x f(n)T(n — h), where T denotes the

divisor function and h € Z~\ {0}. We consider in particular the special cases where f is the generalized
divisor function 7, with z € C, and the characteristic function of sums of two squares (or more generally,
ideal norms of abelian extensions). As another application, we deduce a full asymptotic expansion in
the generalized Titchmarsh divisor problem Z\h|<n§z, w(n)=k 7(n—h), where w(n) counts the number
of distinct prime divisors of n, thus extending a result of Fouvry and Bombieri-Friedlander-Iwaniec.

We present two different proofs: The first relies on an effective combinatorial formula of Heath-
Brown’s type for the divisor function 7, with a € Q, and an interpolation argument in the z-variable
for weighted mean values of 7,. The second is based on an identity of Linnik type for 7, and the
well-factorability of friable numbers.

1. INTRODUCTION

Understanding correlations of arithmetic functions is a fundamental question in analytic number
theory. In an explicit form, the problem can be stated as determining the asymptotic behaviour of the
sum

(L.1) S fm)g(n—1),
1<n<lzx

where f,g : N — C are arithmetic functions of multiplicative nature. Many important problems in
number theory can be rephrased in terms of correlations of arithmetic functions, the twin prime con-
jecture or the Goldbach conjecture being two famous examples (see e.g. [Ell94, Chapter 1]). Sums of
the form also come up prominently in the study of growth properties of L-functions in the critical
strip. In this context, the problem is known as the shifted convolution problem and has a long and rich
history (see [Mic07] for an overview).

In general, determining the precise asymptotic behaviour of the unweighted correlation is a
difficult task and only very few unconditional results are known in this direction, all of them requiring
at least one of the involved functions to be very close — in the convolution sense — to the constant
function 1, the divisor function 7(n) or to Fourier coefficients of GLg-automorphic forms. Note that
when f and g are bounded, the logarithmically weighted correlation

n)gn—1
3 f(n)g( )

n
1<n<z

has been the object of a recent breakthrough of Tao [Taol6]. The case of higher-order correlations of
bounded functions with logarithmic weight was also recently settled in [T'T17].

In the present paper, we focus on the particularly important case g(n) = 7(n) of the unweighted
problem , which is at the edge of current techniques. If the average value of f is not too small, it
was already observed by Vinogradov [Vin65] (in the case of primes; see also [Rod65} [Hal67]) that simple
asymptotic equivalences for the sum

(1.2) > f)r(n—1)

1<n<zx
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can be obtained from analogues of the Bombieri-Vinogradov and Brun-Titchmarsh inequalities. We
refer to [Grel8), [GS18| [FR] for recent works on this topic. In particular, Corollary 1.3 in [FR] leads to
a partial asymptotic formula for (including all terms with non-negative exponent of logz) for a
large set of arithmetic functions f, including the generalized divisor function 7, which we discuss further
below.

It is a considerably more difficult problem to obtain full asymptotic expansions for , say, with
an error term of the form O(x(logz)~ ") where N > 0 is fixed but can be chosen arbitrarily large. The
gap in difficulty is related to the “z'/2”-barrier for primes in arithmetic progressions on average over
moduli. To our knowledge full asymptotic expansions are known for only very few specific examples of
functions f of arithmetic interest:

— the indicator function of primes [Fou&5, [BFIR6],
— the indicator function of integers without large prime factors [ET90l [Dral5],
— the k-fold divisor functions 7(n), k € N, k& > 2 [Mot80, [Top16) [Top18].

The methods from the last example can also be used to handle the case where f is given by Fourier
coefficients of GLy-automorphic forms, although this does not seem to be worked out explicitly in the
literature.

The purpose of the present paper is to introduce two new methods which lead to an asymptotic
expansion for for a wide class of multiplicative functions. Let A, D > 1 be fixed integers. Define
Fp(A) to be the set of all multiplicative functions f : N — C which are D-periodic over the primes in
the sense that

f(p1) = f(p2) for any primes p; and ps with p; = ps mod D,
and which satisfy the growth condition,

|f(n)| <7a(n) forallneN,

where 74(n) denotes the generalized divisor function. Our main result is the following preliminary
asymptotic formula for the sum (1.2)) for f € Fp(A).

Theorem 1.1. Let A,D,N > 1. For all f € fD(A) and all x > 2, we have

13 Y farh-n=2 Y Z DI (W)

1<n<z X primitive  g< q 2<n<z
cond(x)|D cond(X)\q (n,q)=1

where the implied constant depends only on A, D and N.

Remarks.

— The main term in (1.3) can be evaluated asymptotically by classical methods, for instance the
Selberg-Delange method [Tenld, Chapter II.5]. The ensuing expression will in general take the
form

N
Ii x
(1.4) ) (loga) ; lo g:v ((logz)N_max(Kf)H)’

KEK

for some finite set K; C C and some sequences (¢, ¢)_, of complex numbers. We spell this out in
detail in three particular cases below.
— If f satisfies a Siegel-Walfisz estimate in the sense that

S f(n)x(n) = Oa(a(logz)~4),

n<x

uniformly for all primitive characters of conductor 1 < ¢ < (logz)#, then only the trivial character
contributes to the main term in (|1.3)), and the formula simplifies to

> fe)rn-1)=2 Z 2. fo ((log“;)N>

1<n<z ¢><n<z
(n,q) 1
For the main term one then has an expansion as in with Ky = {k}, where ky is the average
value of f(p) over all primes p.
— We stress that the implied constant is uniform in all f € Fp(A), and depends only on A, D and N.
This feature can be useful in applications (see Section .
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— On the other hand, our result is badly behaved with respect to D, partly due to the use of the Siegel-
Walfisz theorem. The arguments presented here do not seem sufficient to obtain an improvement
in this aspect, although this does not affect our applications.

— The error term in corresponds to an application of the Siegel-Walfisz theorem. If the Riemann
hypothesis is true for all Dirichlet L-functions, then it can be improved to O(z'~%) for some absolute
constant 4 > 0.

Theorem may also be interpreted as a result of Bombieri-Vinogradov type “beyond +/z” for the
average of f € Fp(A) in the residue classes of a fixed integer and without absolute values. By a slight
modification of the method presented here, it is possible to show that for f € Fp(A),

(X f<”>*$ ) > fexm) = Oapw <(lg’;)N)

a3 LA s
We refer to [Grel8| [GS18] for recent works related to this point of view.

In many applications correlation sums with more general shifts appear and it is important to have
results which are uniform in large ranges of the involved parameters. Our methods are robust enough to
be applied to these cases as well, and Theorem is in fact the special case a = h = 1 of the following
more general result.

Theorem 1.2 (General shifts). Let A, D, N > 1. There exists an absolute constant 6 > 0, such that,
for all f € Fp(A), all z > 2 and all a,h € Z satisfying 1 < a, |h| < 2°, we have

Z f(n)T(an — h) = Ms(x;h,a) + O (7’(((17 h))x> ,

|h|/a<n<z (log z)
where My(x;a, h) is given by
()
My(wsah) =2 > > Y s ()
¢ ()

X primitive  ¢<./ax ¢?/a<n<z
cond(x)|D cond(x)| D) (an,q)=(h,q)

and where the implied constant depends only on A, D and N.

Unfortunately, the range of uniformity in h in Theorem is comparatively short. This is due to a
known uniformity issue of arguments based on exponential sums estimates underlying our bilinear sums
estimate (see [FI83, p. 200]). Out of the same reason, the methods used here are not able to address
the dual problem

N—1
> F)r(N —n)

(for which results are available for instance when f = 7 or f = 73, see [Mot94] [Top16]).

We mention that results are known for affine correlations whose linear parts are pairwise indepen-
dent [Mat12] [Mat16], or when there is an additional, long enough average over the shift [Mik92, MRT19al,
MRT19D]. See also [ABSR15, BSF17] for a function field analogue in the large ¢ limit.

Finally, we mention the work of Pitt [Pit13]. He considered an analogue of the Titchmarsh divisor
problem (see Section with the divisor function replaced by Fourier coefficients of holomorphic
cusp forms. In many situations, these Fourier coefficients and the divisor function exhibit a similar
behaviour, since the latter can also be viewed as the Fourier coefficients of an Eisenstein series (see
e.g. [Iwa02, Chapter 3.4]). Remarkably, Pitt obtained an estimate with a power saving in the error
term unconditionally, something which is not known for the original Titchmarsh divisor problem. It
seems possible that his ideas can be adapted to our setting, and that one might obtain an analogue of
Theorem with the divisor function replaced by Fourier coefficients of holomorphic cusp forms and
with a power saving in the error term. We do not pursue this here.

We apply Theorem [T.2] to three functions f of particular arithmetic interest:

(1) the generalized divisor functions 7,(n) with z € C,
(2) the indicator function of integers n which are norms of an integral ideal in an abelian extension,
(3) the indicator function of integers n with exactly k different prime factors.
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1.1. Correlations of divisor functions. Our first application is related to the generalized additive
divisor problem, which asks for an asymptotic evaluation of

Dy(a,h) == > 7(n)re(n+h)
|h|<n<z

for integers k,¢ > 2. This problem has received a lot of attention, partly motivated by its connection
to the 2k-th moment of the Riemann zeta function (see [Ivi91l, Chapter 4] or [CK16, INT19]).
It is conjectured that for some constant Cy ¢(h) > 0,

Dy e(x,h) ~ Ci ¢(h)z(log :E)]”E*Q,

and it is known [Hen12] that this is the correct order of magnitude. However, this has been proven only
for the cases where either k = 2 or £ = 2. In these cases, the best-known results in the literature are of
the form

Dy o(z, h) = 2Py p(logz) + O (xek“) for h<a™,

where Py 3, is a degree k polynomial depending on h, with

0 =2 and 7y = 2 [DI82al [Mot94],
05 =2 and 73 =2 [FI85] [Top16],
Or =max (1 — =5, 28) and m =15  (k>4fixed)  [Lin63, [FT8A, [Toply].

In the case ¥ = ¢ = 2, a similar asymptotic formula holds in a much larger range of uniformity
for h, although with a weaker error term (see [MeuO1] for the currently best results in this direction).
For k,¢ > 3 the problem remains completely open.

The functions 74 are special cases of coefficients of the Dirichlet series

Z (1) =((s)* for z€C and Re(s)> 1.

nS

n=1

On prime powers, they are given explicitly by

(15) = (1,71

The functions 7, for z ¢ N have a more complicated behaviour than those for z € N. When z = —1 for
instance, we recover the Mobius function 7_1(n) = u(n).

Theorem leads to an asymptotic expansion of D, o(x, h) for arbitrary z € C, uniformly in any
fixed disk |z] < 1.

Theorem 1.3. Let A,N > 1 and ¢ > 0. There exist a constant § > 0 and holomorphic functions Ap_ ¢ :
C — C, such that, for |z| < A, 2 >2 and 1 < |h| < 29,

N z z(log z)7¢(2)
(1.6) Z T:(n)7(n + h) = z(logx)* Z An,e(2) +0 <(18;i)13/+1_5> )

4
|h|<n<z £=0 (IOg x)

where the implicit constant only depends on A, N and ¢.

The coefficients Aj ¢(2) can be computed explicitly; see infra for an expression of the leading
coefficient. If z is a non-positive integer, all the coefficients Ap, ¢(z) vanish and effectively becomes
an upper bound.

Our method leads to a power saving error term in Theorem when z = k € N. This is solely
due to the fact that in these cases the k-th power of Dirichlet L-functions L(s,x)* can be continued
analytically to a strip Re(s) > 1 — ¢ for some § > 0 (excluding the possible pole at s = 1). We do
not focus of the case z € N here, since the works mentioned above then give quantitatively stronger
estimates.

1.2. Norms of integral ideals. Let K/Q be a Galois extension with discriminant Ag. We define
Nk = {N(a) : a ideal of Ok, a # 0}.

This set has a rich multiplicative structure, described by the Artin reciprocity law. When the extension

is abelian, the Dedekind function (x(s) factorizes into Dirichlet L-functions mod Ag, so that the

integers in Nk can be detected by looking at the congruence classes of their prime factors mod Ag.
Theorem [I.2] eventually applies and leads to the following result.
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Theorem 1.4. Let K/Q be an abelian field extension. Let N > 1 and e > 0. There exist a constantd > 0
and real numbers ky o(K), such that, for x > 2 and 1 < |h| < 29,

N
oy 110§ Faue(K) e
(1.7) |h§<wT(n h) = z(log x) ; (log 2)° +0 (log z) N+1/K Q=< )2
nEN;

where the implicit constant depends only on K, N and €.

An interesting special case is given by the extension Q(i)/Q. In this case, Ny is simply the set of
integers which can be written as a sum of two squares, and Theorem [1.4] takes the following form.

Corollary 1.5. Let B be the set of all integers which can be written as a sum of two squares. Let N > 1
and & > 0. There exist a constant § > 0 and real numbers By ¢, such that, for x > 2 and 1 < |h| < 2°,

. 1 al Bh,e €z
19 3 rtn) = atoga)t 32t 4 (i )

|h|<n<z =0
neB

where the implicit constant depends only on N and €.

The first term in the asymptotic formula for the left-hand side of can also be obtained using a
recent extension of the Bombieri-Vinogradov theorem due to Granville and Shao [GS18], along with the
Brun-Titchmarsh inequality. The coefficients xy, ¢(K) and B, ¢ can be computed explicitly; see infra
for an evaluation of the leading coefficient 34,0 in (L.8)). Note that, since the indicator function b(n) of the
set B correlates with both the principal and the non-principal character mod 4, there are two genuine
contributions on the right-hand side in when f(n) = b(n). This also explains the discrepancy
between the conjectures made in [Iwa76] and [FKRI17] on autocorrelations of b(n).

We stress that the multiplicity of representations as ideal norms in Theorem [I.5] is not taken into
account. Thus the estimate is more difficult to obtain than an estimate for the correlation sum

Z ro(n)T(n—h) with ra(n) :=|{(r,s) € Z* :1* + s* = n}

|h|<n<z

)

for which classical methods suffice.

1.3. Integers with k prime divisors. The Titchmarsh divisor problem, posed in 1930 [Tit30], asks
for an asymptotic evaluation of the sum

(1.9) > -,
|h|<p<z

where p runs over all primes up to z. Following the initial works by Titchmarsh [Tit30] and Lin-
nik [Lin63], the best known result was obtained independently by Fouvry [Fou85] and Bombieri, Fried-
lander and Iwaniec [BFIS6]: For any fixed N > 0, we have, for 1 < |h| < (logz)",

(1.10) S Tlp—h) = Chr + Cpli(z) + O (””)

|hj<p<a (log z)"
where
~¢(2)¢(3) < p ) , ( log p p*logp )
C, = ASA - £ !l = — —_ Ch.
"7 (6) g e ) 9= zp:pQ—erlJr%(p—l)(p?—erl) "

An interesting generalization of this problem concerns the sum

(1.11) > r(n-h),

|h|<n<z

w(n)=k
where w(n) denotes the number of distinct prime divisors of an integer n. An asymptotic equivalence
for this sum was proven by Khripunova [Khr98, Theorem 3], uniformly for k& < loglogx and h < .

Our methods allow to obtain a full asymptotic expansion for , at least for small shifts h. In order

to circumvent the obstacle that the indicator function for integers n with w(n) = k is not multiplicative,
we use a classical method due to Selberg [Sel54], which allows us to reduce the evaluation of to
the evaluation of the correlation sum of the divisor function with the multiplicative function n — z*(,
This eventually leads to the following result.
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Theorem 1.6. Let N > 1 and € > 0. There exist a constant 6 > 0 and polynomials Pf;AX) of
degree k — 1 such that, for 1 <k < loglogz and |h| < x°,

Py (loglog z) ( z(loglog x)* >
1.12 Tn—h)==x e 2 o [ Floglos )" ’
o |h|§<x ( ! O<§€;N (log z)* k!(log x)N+1=e
w(n):_k -

where the implicit constants depend only on N and €.

The case k = 1 recovers the best-known asymptotic formula for the Titchmarsh divisor prob-
lem. As before, the polynomials P}’fye can be computed explicitly; in particular, the leading coefficient
in the asymptotic expansion is given by Cp,/(k — 1)!.

This result is non-trivial throughout the range k¥ <« loglogz. The case k/loglogaz — +oo is an
interesting question which would require different tools, due to the sparsity of the set of integers under
consideration (not unlike the situation for friable integers [Har12]). We do not address this here.

1.4. Overview of the proof of Theorem For the sake of clear exposition, we will focus here on
the case D = 1, as our arguments extend without much difficulty to the case of general moduli and the
arising complications are mainly of technical nature. Note that any f € Fi(A) can be approximated
(in the convolution sense) by a suitable generalized divisor function, so that it suffices to consider the
case f =71, with z € C.

We will give two distinct proofs of Theorem[I.2] They are based on two different kinds of combinatorial
identities for the generalized divisor function 7., both of which we believe are of independent interest.
Our first approach relies on an effective combinatorial formula of Heath-Brown’s type for the divisor
function 7, with a € Q, and an interpolation argument in the z-variable for weighted mean values
of 7,. Our second apprach, which is more direct and avoids the interpolation step, is instead based on
an identity of Linnik type for 7, and the well-factorability of friable number:ﬂ

1.4.1. Proof by Heath-Brown’s identity and interpolation. Our first proof of Theorem [I.2] divides into
two parts: We first prove the theorem for rational z, and then extend this result to all z € C.

For z € Q, the general structure of the proof of Theorem [L.2] follows the setup of [Fou85|, BFI80] (see
also [Fou84]). The strategy naturally splits into two steps:

(1) We decompose the function f into convolutions with either large smooth components (type I)
or suitably localized components (type II).
(2) We solve the question for both types of sums.

The bulk of the present work concerns the first step. Combinatorial decompositions for prime num-
bers have a long history since the works of Vinogradov [Vin37] (we refer to the survey |[Raml3] for
an account and further references). Yet, it was not until recently that analogous identities emerged for
generalized divisor functions. Montgomery and Vaughan (private communication) have recently devel-
oped a combinatorial identity of Vaughan’s type [Vau75] for 7,5, which initially motivated largely the
present work. Unfortunately, as for primes, the bilinear sums coming from a raw application of this
identity are not quite localized enough to be effective for Titchmarsh’s problem, and even though this
can sometimes be fixed by iterating the formula [Fou81], our early attempts were unsuccessful. Instead
we follow the more flexible approach of Heath-Brown [HB82] (which is related to [Gal68]).

Our first result (Theorem below) is a uniform combinatorial formula of Heath-Brown’s type for
the divisor function 72 with u/v € Q. In the simplest case 0 < u < v, it reads

K

(1.13) Tu(n) = ZC&KU/v ZZ Tf%(nl)uwp%(nh_u) for n<uz,
(=1 My T Ny -y =N
nl,...,nm,ugml/K

where K € Nyq is arbitrary and where ¢y g/, € Q. A more general formula holds for any rational
number u/v (see Theorem . A crucial property of this formula is that it is sensitive almost only to
the archimedean size of u/v. Indeed, for |u/v| < A, the coeflicients ¢ k /., the length of the /-sum and
the value at primes n = p of each /-summand on the right-hand side are bounded in terms of A and K
only (but not of v). Thus, the only loss due to the size of v comes from the number O(v) of terms in
the convolution, which has essentially no effect on what follows.

IThe second proof was found only after a preliminary version of the present manuscript was uploaded online.
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In the same way, we can express any rational convolution power %%/¥ f of a multiplicative function in
terms of higher convolutions ** f with 1 < k < K and a bilinear term with one component supported
on the interval [z¢, /K ]. However, to our knowledge asymptotic formulae for the correlation sums

(1.14) S )T+ 1),

n<z

for k > 2 are currently known for only very few functions f (essentially constant functions and Dirichlet
characters). This is the main obstacle towards using decompositions of this form to prove Theorem
for complex-fold convolutions of multiplicative functions.

Regarding the second step, we are mostly able to use the harmonic analysis arguments underly-
ing [Fou85l BFI8E]. They are based on bounds on Kloosterman sums on average [DI82b], along with
Voronoi summation (for type I) and Linnik’s dispersion method (for type IT). We will follow the treat-
ment made in [Dral7l [Topl8], although some work is needed in order to cast the main terms from these
works in a form suitable for us.

Eventually, the arguments described above yield a proof of Theorem for f = 7x uniformly in the
range v < (logz)™V. As it turns out, this is already sufficient information to be able to conclude.

To see why, we return to the correlation sum

D(z) := Z T.(n)7(an — h)

|h|/a<n<e

with z € C, |z| <« 1. The main observation is that this expression is a polynomial in z, and that we
know how to evaluate it on rational numbers with small denominators. Even though D(z) initially has
degree of the order of log x, we can use large deviation bounds on the function w(n) (and a convolution
argument) to approximate it, up to an admissible error, by the polynomial

D(z) = Z 21 (an — h),
|hl/a<n<z
w(n)<Kloglog x
which has degree at most O(loglogx). This enables us to use Lagrange interpolation on a suitably
chosen set of rational sample points to transfer our estimates for z € Q to estimates of the same quality
for z € C. Indeed, this process introduces an error which grows exponentially in the degree of the
polynomial. As our estimates for D(z) for z € Q save an arbitrarily large power of logxz, we are still
able to obtain an asymptotic formula at the end.

Note that for the above arguments to work it is crucial that estimates with a saving of a large
power of logz for D(z) for z € Q are available, which we can fortunately obtain here from the Siegel-
Walfisz bound (an unfortunate consequence of the last fact, however, is that most of our results are not
effective).

We mention that, as in Heath-Brown’s work [HB82], the arguments sketched above can be used to
obtain asymptotic formulae for short sums

> J)

rz<n<z+y

for y > 27/12t¢ and f € Fp(A), as well as theorems of Bombieri-Vinogradov type. However, unlike
Titchmarsh’s divisor problem, such results could in principle also be obtained by zero-density estimates
for Dirichlet L-functions (see [IK04, Chapter 10.5], [Bom65]).

1.4.2. Proof by Linnik’s identity. Our second proof uses a different decomposition for 7,, which has
the major advantage that it holds uniformly for all z in a fixed bounded subset of C. This avoids the
interpolation step necessairy in the first proof, although the resulting combinatorial identity is not as
elegant as the identity of Heath-Brown’s type described above.

A naive attempt to find a combinatorial formula for 7, which is uniform in z might start with Linnik’s
formula [IK04}, §13.3], which relies on the Taylor series expansion

z .
o) = (14 (et = )7 = 3 (2 o) 17
>0
The main technical difficulty at this point is to truncate the sum over j. In the context of Linnik’s

formula, this truncation is performed by restricting to almost-primes from the outset (or inserting a
sieve weight), see [Lin63, p.21], but unfortunately this approach is not available in our situation.
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Instead we write ((s) = (,(s)M,(s), where

Gis)=1] (1 — pls) - and M, (s) = ¢(s)

p<y

with y = 2% for some K € N, and then apply the Taylor series expansion only on the second
factor My(s), so that

A .
o =6 X (3) o) -1
izo
This expression has the advantage that the j-th summand has no coefficient for n < ¢/ in its Dirichlet
series expansion. After expanding and comparing the Dirichlet coefficients on both sides, we are therefore

led to the following “raw” combinatorial decomposition (see Theorem [3.3)),

T.(n) = Z e Z To—e(n1)me(n2) for n <u,
O<E<K n=ninsg
- ni is y-friable
where the ¢, are some complex numbers which depend on z, but which can be bound uniformly for z < 1
(we recall that an integer is said to be y-friable if all of its prime factors are bounded by y).

In order to apply this formula, it is of course necessairy to be able to control the factors 7,_s(nq).
However, the characteristic function of y-friable numbers has good factorability properties (see [Vau89,
p.66] or [FT96, Lemme 3.1]): we can essentially replace them in the formula above by convolutions of
sequences supported on [1,y] (see Lemma. This in turn enables us to apply estimates of type I and
type II, leading eventually to the desired asymptotic formula.

Plan. In Section [2] we introduce our main notations and the subsets of functions of Fp(A) we will
mainly work with. In Section [3] we present the combinatorial decompositions for 7., on which our proofs
are based. In Section 4] we state some auxiliary computations in order to use the results of [Topl8|
Dral7]. In Sections [5| and @ we proof Theorem using the combinatorial identity of Heath-Brown’s
type, first by treating the case of rational parameters, and then by interpolating the obtained results to
all functions in Fp(A). In Section |7} we sketch an alternative proof using the combinatorial identity of
Linnik’s type. Finally, in Section [§] we estimate the main terms and prove Theorems and

2. FIRST REDUCTIONS
2.1. Statement of the main proposition. For n,h € Z withn > 1 and n—h > 1, let

(2.1) Th(n; R) =2 Z S — Z X((h]?q))X((h?q))

@((hq ))
q<v/n—h 47 x (mod g/(h,q))
(n,9)=(h,q) cond(x)<R

Note that 7, (n; R) = 7(n — h) if R > v/n —h and n — h is not a perfect square. We will eventually
choose R of size (logn)®™M). We have a trivial bound

(2.2) Tu(n; R) <. n°RYe.

The function 75, (n; R) should be thought of as an approximation to 7(n — h) on average. The main
work in proving Theorem consists in showing that, for any f € Fp(A), we have

(2.3) Z f(n)r(an —h) ~ Z f(n)Th(an; R;) for a — oo,

n<lx n<lx

where R, is some slowly growing function in = (some appropriate power of logx). Once this is estab-
lished, we can evaluate the sum on the right by standard methods. In view of this, it is convenient to
define
Ap(n;R):=7(n—h) = 7u(n; R) and  Sg(l;a,h; R) =Y f(n)Ay(an; R),
nel

for any interval I C RT. The main part of this article is concerned with proving the following propo-
sition, which puts the statement ([2.3)) into precise terms, and from which the results described in the
introduction can be deduced easily (see Section .
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Proposition 2.1. Let A,D > 1 be fized. Then we have, for x > 3, I C [z/2,2] an interval and

f € Fp(A), the following estimate,

z(logz)?
R1/3

where § > 0 is some absolute constant and where B, C > 0 are constants which depend only on A and D.

(2.4) |Xs(I;a,h; R)| < C7((a, h)) for 1<a,|h],R< z°,

2.2. Restricting the set of functions. It is known in multiplicative number theory that, to a certain
degree of precision, the magnitude of the mean value of a multiplicative function f depends mostly on
the values f(p), p prime. The following lemma quantifies the analogous phenomenon in our case.

Lemma 2.2. Let f,g: N — C be multiplicative functions, which satisfy the following conditions,
(i) lgn)| < 1ar(n)  for some M > 1 and all n € N,

* g~ (n
(i) H := Z (fgio)()‘ < 400 for some o < 1, where g=' denotes the Dirichlet convolution
n
n>1
inverse of g.
Furthermore, assume there are constants 9,0 € (0,1] and B,C > 1 such that, for all x > 1 and all
intervals I C [x/2, z],

z(logz)B

(2.5) B30, hs R)| < C((a, b)) =,

for 1<a,lh|,R<z°.

Then there exists C',6' > 0 depending only on o, §, o and M, such that, for all x > 1 and all
intervals I C [x/2,x],

x(logx)B

(2.6) |¥¢(I;a,h; R)] < HCC'7((a, h)) e

for 1<a,|h|,R< 2.
Proof. Let h := f * g—'. We have

Sr(I;a,h;R) = Y g(ni)h(n2)An(aning; R)

ning €Il
= Z h(n2)Ey(I/n2;ang, h; R) + Z h(n2)X,(1/na; anz, b; R),
na<T na>T

for some parameter 7' > 1. For the sum on the left we use the assumption ([2.5)), so that

x(log x)B

> h(n2)Se(I/ng;ang, h; R) <, CHr((a,h)) T

no<T
provided that the parameters a, h and R satisfy
5 5
x T

For the sum on the right we use the trivial bound X,(I/na; ans, hy R) << v Rx'T¢ /ny, and get

1<a<

Z h(ﬂz)zg (I/TLQ; ansg, h; R) LM PR 1o g

no>T

The lemma follows on setting 7' = 2/3 and ¢’ = min($, o(1=0)y O

In view of this, in order to prove Proposition we will restrict to the following two subsets of Fp(A).
The first subset, denoted by F7,(A), consists of functions f : N — C, which are the coefficents of Dirichlet
series of the form

o f(n)
(2.7) Z ns

n=1
where the parameters b, are complex numbers such that |b,| < A. Note that 7, € F[,(A) for |z| < A. A

particularly important role will be played by the subset F(A) C FF(A) formed by functions of this
form where all the parameters b, are rational.

= I L™,

x mod D
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The second subset F%(A) is defined to be the set of functions f : N — C, which are the coefficients

of Dirichlet series of the form
— f(n) Zr
2. =
( 8) Z H H 1+ ps—1 ’
n=1 r€(Z/DZ)* p=r mod D

where the coefficients z,. are complex numbers such that |z,.| < A. This includes the functions n 2w (n)
for all |z] < A.

Lemma 2.3. For any f € Fp(A), there exz'st g1 € FL(A) and g2 € FE(A) which satisfy the condi-
tions stated in Lemma for o= , and M, H bounded only in terms of A and D.

Proof. We first prove the lemma with respect to the set F,(A). Let f € Fp(A) be fixed, and let vy :
Z — C be the D-periodic function defined by

(2.9) vp(r) = {

We then set

f(p) if there exists a prime p such that (p, D) =1 and p = r mod D,
0 if (r, D) > 1.

1
by == —— Z vg(r)x(r) for any character xy mod D,
r (mod D)
and define g; as the coefficients of the following Dirichlet series,
(2.10) g _ I L™

nS
n=1 x (mod D)

We have (f*g; ") (p) = 0if pt D. Moreover, since |b, | < A, we get |g1(n)| < 7ap(n) for all n. Therefore,

Z’ *521/3 (n)] H(1+OAD(p21/3>)H(l—‘roA’D(#)):OA7D(1).
D ‘D

p| P

This proves the first part of the lemma.
For the second part, we define go by its Dirichlet series

D N G (R

re(Z/DZ)* p prime
p=r mod D

The fact that go satisfies the required conditions can be shown using similar computations as above. [

Let us at this point also note the following result, which is an easy consequence of the proofs of
Lemmas and and which will become useful later on.

Lemma 2.4. Let f € Fp(A) and let ¢» mod q be a Dirichlet character. Then the Dirichlet series
associated to ¥ f is given by

S U ) T L™ for ) > 1

x mod D

where Hy(s) is some holomorphic function defined in Re(s) > 3 and where

1 _
by = 2D > op(r)x(r),

r mod D

with vy(n) as defined in ([2.9). Moreover, for any fized o9 > %, we have Hy(s) < 1 uniformly in Re(s) >
00, with the implicit constant depending at most on og, A and D.

From Lemmas 2.2 and 2.3} we deduce the following statement.

Lemma 2.5. To prove Proposition[2.1] in full generality, it suffices to prove it under either one of the
additional hypotheses f € FL(A) or f € F5(A).

3. COMBINATORIAL IDENTITES FOR T, (n)

In this section we describe the two combinatorial identites for the generalized divisor function 7, on
which the proofs of Theorem [T.2] are based.
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3.1. A generalization of Heath-Brown’s identity. We first derive a combinatorial decomposition
analogous to [HB82] for the function n — 7,(n) in the case a« € Q. Our argument is based on the
following polynomial identity.

Lemma 3.1. Let u and v be integers such that v > u > 0. Let K > 1 and N > 0. Then there exist
rational coefficients a,, and by such that there holds

(3.1) > A (X =)™ =1+ XV 3" pxto
K<m<(K+N)v—u 1<I<K
The coefficients (bg) are unique and given explicitly by

—-1)¢ . U

i
Proof. An identity of the form (3.1)) exists if and only if we can find by, ..., bxk such that the first K —1

derivatives of the polynomial on the right hand side of (3.1)) vanish at X = 1. This is equivalent to
saying that the by, ..., bk solve the equation

1 1 b1 -1
v+ Nv—u Kv+ Nv—u bo 0

(3.3) : . , =
(v+ Nv—u)k-1 ... (Kv+ Nv—u)k-? bx 0

Let C be the matrix on the left, and B, the same matrix but with the upper row and the ¢-th column
removed. Note that C' is a Vandermonde matrix, and By is a product of a Vandermond matrix with a
diagonal matrix. Hence, we deduce

detC= [ Gv—iv)=2130- (K-l 7,
1<i<j<K
det By = H (jv —iv) H (juv+ Nv — ).
1<i<G<K 1<G<K
i,J7#L J#L
Since det C # 0, we obtain by Cramer’s rule that there is a unique solution (b;), given by
det Bg
3.4 be = (—1)"
(3.4 =),
which yields (3.2). O

Theorem 3.2. Let v > 0 and r be integers such thatv >u >0 andr > 0. Let K > 1 and x > 1. Then
for any n < x, we have

K

(3.5) TT+%(n):ZcZ ZZ T_1(m) o1 (e—u),

=1 My MpprMN1Npy —u="N

1/K
N1y gy —y <z’

and, forr >1,

K
(3.6) morps ()= e PIEDP () T (e -tye-a);
=1 My Me—1M1 "Nyt (r—1)v—u="n

N1y Mgt (10— <
where the cZ and ¢, are certain rational numbers, which can be bounded by
cj,c; <1 for 1</<K,
the implicit constant depending only on K and r.

Proof. Let

0 otherwise.

> T_1/4(n)g(n ) if n<gl/K,
G(s) ::ZM with g(n) := {1 t ns
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We first look at (3.5)). Here we use Lemma with N = 0 and X = ¢(s)vG(s), and then multiply both
sides by ((s)"*+, which leads to the identity

3 an(C(s)PGs) — )MC(s)E =) TE S beC(s) TG ()
K<m<Kv—u 1<U<K

Then follows by comparing the Dirichlet coefficients on both sides and noting that, by construction,
the left-hand side has no Dirichlet coefficient for n < x.

In order to show , we use Lemma with the same X as before and with V =1r — 1, and then
multiply both sides by ((s)~"*%. This gives

Z Ay (C(S)%G(S) — 1>m<(s)7r+% — <(5)7T+% + Z béc(s)éflG(s)Zer(r—l)vfu,

K<m<(K+r—1)v—u 1<¢<K
and (3.6 follows again by comparing the Dirichlet coefficients on both sides. O

Remark. With r = v = 1 and v = 0, the identity (3.6) leads to the decomposition of p(n) described
in [IK04} (13.38)].

3.2. A combinatorial identity of Linnik’s type. Here we derive a combinatorial decomposition
for 7, using an approach analogous to [LinG3].

We denote by PT(n) the largest, and by P~ (n) the smallest prime factor of an integer n > 1, with
the convention that P*(1) = 1 and P~ (1) = oo. Given an arbitrary multiplicative function f and a
complex number z € C, we define the z-fold convolution of f as the multiplicative function given by

1= 3 (3) X s ez,
1<r<v

The notation is motivated by the fact that if F(s) := >_ 5, f(n)n™ is the Dirichlet series associ-
ated to f, then for Re(s) large enough the function log F'(s) is well defined and we have F(s)* =
3, f&?)(n)n=°. Indeed, by expressing F(s) as an Euler product, we see immediately that

-T2 57) --SO(E5)) -T2 5)

v>1 r>1 v>1

Note that f***)(p) = zf(p), and that for £ € N the ¢-fold convolution as defined here coincides with
the ¢-fold convolution defined in the traditional sense. We will be eventually interested in the case
when f = x is a Dirichlet character, in which case we have f(**) = 7X,

Theorem 3.3. Let K € Ny and A,x > 1. Then for all z € C there exist complex numbers (c¢)o<e<k,
such that for all x > 1 and all multiplicative functions f, we have the following identity for n < x,

(3.7) 5 (n Z ce Z FEED (ng) f# (ny),

0<<K n=ning
Pt (ny)<a'/K

where the coefficients ¢, can be bound by cg = Ok a(1) uniformly for |z| < A.

Proof. Let y := z'/%. As before we set F(s) :== > -, f(n)n™*. We may certainly assume that f(p*)
vanishes if p > z. Let a

=IH(Z D). =TI ).

p<y k>0 P>y k>0
For Re(s) > 0, the decomposition F(s) = F(s,y)G(s,y) yields
F(s)? = F(s,y)*(1+ (G(s,
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with

. z
R = P Y () (G0 - 1)
E>K
Note that the series converge absolutely if fRe(s) is large enough in terms of f. By expanding, we get

F(s)* = F(s,y)* Z ceG(s,y)" + R(s),
0<(<K

w00 Y o (5)(5)

I<k<K

with

We read the coefficients of n=%, for n < x, on each side. Note that for & > K, the series (G(s,y) — 1)*
has no corresponding Dirichlet coefficients, so there there is no contribution from R(s). The claimed

equality follows on writing G(s, z'/K) = F(s)F(s,z'/%)~1. O
Remarks.
— Compared with (3.5)—(3.6]), this identity has the significant advantage that it is uniform for z < 1
complex.

— The case K = 2 only involves the exponents ¢ € {0,1}. It follows, for instance, that if f (*2) gatisfies
a Siegel-Walfisz estimate (in the sense of [GS18| eq. (1.2)]), and if f satisfies a Bombieri-Vinogradov
theorem, then f(*#) satisfies a Bombieri-Vinogradov theorem as well.

— The case K =2, f =1 leads to Eratosthenes’ sieve identity: for all n € (y/z, x], we have

1n prime — Z /J(d)
d|n
pld=p<Vz
For any n € (0,1/2), either we have d < z" (which corresponds to type I sums), or d > 2", in
which case we can localize a factor of d in the interval [z7, 2'/2+"] (and this corresponds to type II
sums).

The main property which allows Theorem [3:3] to be used in our arguments is the following factoriza-
tion lemma, in the spirit of Lemma 3.1 of [Vau89l p.29]; see [Hmy64] for an early use of this property,
and [ET96] for an application in a context similar to ours.

Lemma 3.4. For any multiplicative function f : N — R, any compactly supported function g : N — C,
and all y,w > 2, we have

(3.8) Z f(n)g(n) = L + X1+ O (Zmn),
Pt (n)<y
where

Si= Y. fn)g(n), Striv=»_,  fln)gn),

n<w n>w
PT(n)<y P*(n)<y
Ip”[In,p” >y

Y = (logy) sup ‘ Z Z mBng(mn)

a,f

9

w<m<yw n

the supremum in Xy being taken over all sequences (a,), (Brn) of complex numbers satisfying

| < [f(m)], [Bal < (If] * [f])(n).

Proof. If an integer n with P™(n) < y is not counted in the first two sums on the right-hand-side,
then n > w and all prime powers p”|n satisfy p¥ < y. By incorporating these prime powers as p
increases, we may factor n = nins uniquely in such a way that

P+(n1) <P (ng), w<mng< wQ+(n1),

where Q% (n;) is the prime power corresponding to the largest prime of ny: Q1 (n1) = P*(n1)”||n1. Note
that this implies (n1,n2) = 1. Our statement follows after separating variables [[K04, Lemma 13.11] in
the condition P (n1) < P~ (na). O
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4. AUXILIARY ESTIMATES
In this section we collect some estimates on Ay (n, R), which will be needed in the following sections.

4.1. The second moment of Aj,(n;R). On several occasions, we will require the following rough
upper-bound for the “main terms”.
Lemma 4.1. For x >3, R > 1 and (a,h) € Z? such that 1 < a, |h|, R < 24, the following estimate
holds,
Z |Ap(an; R)|* < 7((a, h))*z(log z)*.
$<n<z
Proof. We have
S AR < Y rlan—h)*+ > [Falan; R)|* =: G1 + Ga,
F<n<z F<n<lz F<nlz
and we now proceed to estimate the two sums G and G9 separately.
We first look at G;. For notational convenience, let
li a li h’
=— h=— d t:=(a,h).
N B
We start by splitting the sum according to the size of t* = (an — h,t*°) as follows,

G| = Z Z T(an — h)2 + Z Z T(an — h)2 =: G, + Gip.

£ [t°° z<n<a £ [t°° z<n<a
(t*,a")=1 a'n[Eh' mod t* (t*,a")=1 a'n[zh' mod t*
t*<zl/? (enEh =1 t>al/? (S =1

In order to estimate G1, we choose b,y € Z such that a’b = 1 + yt* and write

G1a = Z T(t*t)? Z T(yh' +n'a’)?

A z—2bh’ /o~ xz—bh’
| 2200 2

* 1N
(:*’<a )1721 (yh'+n'a’ t)=1
ST
< E T(t*t)? E 7(m)?.
5[0 I o—on! lo—h!
(s LT << et
)= m=yh’ mod a’
t*<gl/?

The sum over m can now be estimated via [Shi80, Theorem 2] or [BV69, Theorem 1], which leads to

t*t)?
(4.1) Gia < zlog®z Z T(t* ) < 7((a, b))%z log* x.
|t
t*glxl/z

In Gy, we bound all the summands trivially and get

1
G, < Z Z 7(t(a'n — W))* < 1 te Z — < x%+5,

t*
|t z <n<a 5|t
(t*,a’)=1a’n=h' mod t* zV/2<t*<2a'x
g1/

so that together with (4.1) we deduce
G1 < 1((a, h))*zlog* z.
Next we look at Ga. Here we first rewrite 7, (an; R) as
~ 1 —
Tn(an; R) := 2 Z Z Z 2@ Z X(%)X(J)a

al(a,h) §|(L,n) o fan—h x (mod q)
(6,2)=1 =743 cond(x)<R

so that after expanding the square we are led to

Gt Y Y Y S(et).

¢(q1)p(g2)

av,azf(ah) - as—n X1 (mod q1)
S|, 8| TS Tane X2 (mod g2)
! 2 Vaz—h cond(x1),cond(x2)<R

2S5
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with

S(x,y) := max
( ) 4 <yo<y

> x)|.

Yyo<n<y

If x1 and x2 are induced by the same primitive character, we use the trivial bound S (X1x2,y) <
y. Otherwise, the Pélya-Vinogradov bound applies and S (X1x2,¥) < 7(q192)Rlog R. Inserting these
bounds, we eventually obtain

Gy < 7((a,h))2xlog z 4+ 2°R® < 7((a, b))%z log* =
by our assumption R < 27, This concludes the proof. O

4.2. Comparison of main terms. We begin by two technical lemmas related to the main terms that
will appear later. Let X > 1, and let f and v be two smooth functions which are both compactly
supported inside R . We assume that supp f C [C1 X, C2X] and suppv C [Cy, C2], where C; and C
are some positive constants, and that for some Q € (0, 1], we have

(42) [0l <51 Il < @) [ 17940 < (@)

for all j > 0. Furthermore, we define

(4.3) My (b, h; M) bzcd /1 (€ — ) + 2y — 2logd) f(£)v (b;) de,
d|b

where

cah):= > e(wh/d)= Y ou(d/s)
v (mod* d) 8| (h,d)
denotes the Ramanujan sum.

Lemma 4.2. For (b,h) € Z*, b, M > 1, and R > 1, we have

Zf (bm)v ( )Th(bm R) = Mfav(b7h§M)+O<X5R3/2 §xL/2+e (hbb)>7

where the implied constant depends on ¢, Cy,Cy and on the implied constants in (4.2)).

Proof. By partial summation and the Pélya-Vinogradov inequality, given a character x (mod ¢/(g, h))
of conductor 1 < r < R, we have

Zf(bm)v(ﬂ)x((f:;)) = X<(b’bq)) / F(t)v (t2) Z x(m) dt,dty < RY2¢.

h+<1
mz o
tl —+ t2
M gy )

By definition (2.1)), we deduce

Zf br)o (57 ) (b R) —2Zfbm w(s) X (1q +OLXCRY),

q<+/bm—h (a,h)
(bm,q)=(h.q)

The condition (bm, q) = (h,q) in the sum on the right-hand side is equivalent to
(h,q) m(b,q) g
b.a)lh, m, : -
ol g (o Ga)

Using Mébius inversion and our hypotheses on f and v, we can replace the m-sum by the corresponding
integral and obtain

Zf (bm)v ( )Th (bm; R) /f Z (b, q>d§+(’)(XER3/2)
q<\/? 4

(b,9)|h

The main term on the right-hand side may be rewritten as

%ZCd((ih)/f(g)v(%)H<\/§_h)d£+O(XER3/2>
dlb

d

where H(x) =Y, ., 1/q =logz +~+ O(z~"). This gives the claimed estimate. O
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Next, we define

(4.4) (b, h; M) Z x(a)My,, v, (6D, h — ab; M/ D)
am ):1

where fuy(€) = f(€ + ab) and ve/n(€) = v(€ +a/M).
Lemma 4.3. If b= b°b* with b°|D>® and (b*, D) = 1, then

(45) MY, (b,h; M) = bDX((h},lb))X((hljb)) % Cd((ih) / (108 ((éb_oz;)z) - 2’7)f(f)v(%)d€.

Moreover, if x mod D is primitive, we have
m ~
D fmyo (5 ) x(m)7 (om: B

X (log X)? 4+ XEDY2R3/2 4 x1/2+e (h, " ))

= M, (b1 M) + O (1o rl(b. ) = e

where 1psg =1 if D > R and 0 otherwise.

Proof. We rewrite

MY M) =55 3 @)Y Cd(h%;ab) /(log(f )+ 27— 2logd) f()u( o7 ) de.

a (mod D) d|bD
(a,D)=1

Using Gauf} sums,

a (mod D) v (mod* d)

This last expression vanishes unless D(b, D*°)|d. Denoting b° = (b, D*°) and b* = b/b°, we obtain
for d|b*

S X(@eppealh - ab) = GOOX(-D /A)GR) Y ox(h/8)u(td/s)x(bdfs)

a (mod D) §|(b°d,h)

(a,D)=1
= b°D1ye i, X(0")x(h/b%)ca(h)
o h \_s b
=b"Dx ((h b)>X<(h b)) a(h)-
This yields our first claim.

For the second, the computations are similar to the previous Lemma. If D > R, we get
(4.6) ; f(bm)v(%)x(m)?h(bm; R) < X°D'2R3/?,
while on the other hand MX L(b,h; M) < (b,h)(bD)~ X (log X)? by a simple computation from

If D < R, the bound apphes to all the characters involved in the definition of 73 (bm; R), except
all those which are mduced by x. We obtain

T 3 f(bm)v(%) + O(XEDV2R3/?).
) ma=(ha)
¢*><bm—h

Similarly as above, the main term in the right—hand side can be rewritten

2 (¢,b) e
b ((hb hb /f 2 g de+ o)
q<+\/§—h
(bl DI i
(D, (6,1 (b)) =1
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The y-factors impose the conditions b°|h and (D, h/ b") = 1. We rewrite the ¢-sum as

(b, q) 1 c VE—h
2 g D 2 ) Z « ( Dbed )
a<\/E=h q<\/€—h/(Db°)

(baQ)“h D|(h7qq) (b*,q)|h
(D,(b,h)/(b,q))=1

whence the claimed expression. O

4.3. Type 7, estimates. The following estimate is relevant for convolutions with one smooth compo-
nent of size > 2'/3+¢. It can be viewed as a generalization of a result of Selberg [Sel91] p.235] on the
equidistribution of 75 in arithmetic progressions.

Lemma 4.4. Let ¢ > 0, let Co > C; > 0, let v : (0,00) — R be a smooth and compactly supported
function, and let x mod D be a Dirichlet character of modulus D > 1. Then we have, for any X, M > 1
and R> D, any 1 < bD, |h| < X*~¢, and any interval I C [C1 X, CoX],

(4.7) S x(m) (%) Ap(bm; R) < X¢ (DX% + (b, hD®)M X% + D%R%) .
m: bmel
The implied constants depend only on the function v and the constants €, Cy; and Cs.
Proof. Note that we can always assume bM = X, since otherwise the sums in consideration are empty.

Let f : (0,00) — [0,00) be a smooth weight function, which is compactly supported in supp f C
[C1X/2,2C5X], which has value f(£) =1 for all £ € I, and whose derivatives satisfy

1
@) > @) . >
) < Xy for v>0 and /’f (5)‘ dé < Qx)T for v>1,
for some constant € < 1. We can then encode the condition bm € I by using the function f(&) via
(4.8) Z x(m)v ( )Ah (bm; R) = Zf (bm)v ( )X(m)Ah(bm;R) +0 (X,
m: bmel

so that it suffices to consider the smoothed sum on the right hand side.
Assume first that x is the trivial character. In [Top18| Section 3] it is shown that

(4.9) Zf (bm)o ( )(bm h) = Mf,v(b,h;MHo(XEb%Q*%),

where the main term M, (b, h; M) is given by (4.3). By Lemma we obtain
(4.10) Zf (bm)v ( )Th(bm R) = My, (b, h; M) + O (XER% + (b, h)b*X%“).

The estimate (4.7)), in the case D =1 and x = 1, now follows from (4.8]) with the choice Q = bX -3,
Now assume that y is a primitive character modulo D, where D < R and bD < X'7¢. We write

Zf(bm)v (%) x(m)T(bm — h) = Z (Z f(bm)v < ) (bm — h))

a (mod D)
(a,D)=1

with

b:=Db, M:=M/D, h:=h—ab, J():=f(€+ab) and T(€):=v (g + %) :

so that we can use our former result (4.9) to get
S fbmw (%) X(m)7(bm — h) = M, (b, b M) + O(X€ $ph Q*E) :
where M}fv(b, h; M) is defined in (4.4). By Lemma we obtain

Zf(bm)v(%) x(m)7(bm — h) Zf (bm)v ( ) X(m)7(bm; R)

+ O, (X6D3/2b1/29 1/2 L xepl/2R3/2 4 x1/2+e (hbf ))

We choose © = bDX 3, and hence get (&.7) also in this case.
The case when y is not necessarily primitive follows at once using Moébius inversion. O
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4.4. Type 15 estimates. The following estimate is a uniform version of the 7, — 75 shifted convolution
problem obtained recently by the second author.

Lemma 4.5. Let € > 0, let Cy > C1 > 0, let v1,v9 : (0,00) = R be smooth and compactly supported
weight functions, and let x1 and x2 be Dirichlet characters mod D. Then for any X,b > 1 and R > D,
any M1 > My > 1 with X3 < MiMs, any h € Z with 1 < |h|,D < X4 and any interval I C
[C1X/2,CyX], we have

a1y Y m(ml)w (A”Z) X1 (ma)xa () g (b ms; R)

mi,ma: Ml
bmimo€l
|h| M7 My

1/4
<D > >+X1/2+€R3/2b°(h,b)M1M§.

< b° D2 (X M,y My)/3+¢ (1 + (

The implied constant depends only on the constants €, C1 and Cy, and the functions vi and vs.

Proof. Note that we can make the assumption b < ﬁ, as otherwise the sum in consideration is

empty. Also, as in Lemma [£.4] we can exchange the original sum by its smoothed version,

5 stomumayor () on (52 xatmnatons) s ),

™mi,ma

with an error of the size of O (QX*T<p~1).
Let xo := X1x2- The results of [Topl8] cannot be quoted as a black box, however, the computations
of [Top17] on which they are based may be adapted with little change. We write

S fmman () vz (52 ) wamatma)romime 1) = 3 (D)
mi,mz2 a (mod D)
where D(a) is the defined as
D(a) = Zwl <r1n+fl) Wo <7”271+f2) T(Tln + fl) Z XO(nQ)hM2M1 (nlﬂ n2)7

1 L2 ni,n2
nins=ron+ fa

n

with
ry:=bD, r9:=D, fi:=ab—h, fo:=a, x1:=X, x9:=

)

X
b

and
(€)= VITRET R, un(€) = VITXE.  hara(mona) = (15 ) or ()

The sum D(a) is now of the same shape as the sum Dyp(x1,22) defined in [Topl7, p. 157], with the
function f(a,b) there replaced by xo(a)f(a,b). The computations of Section 3 of [Topl7] can then be
adapted with the following changes. In Section 3.1 of [Top17], the expressions %9 5 and Ei p have an
additional factor xo(aus/u3) in the summands. In the sums in the definition of R, p.159 ibid, the

summand has to be multiplied by an additionnal factor xo(c), and the altered relation

+
o= Y () Y @
d

ul|ug 2

ry|ra (d,r] s2us)=1

holds. Consequently, the relationship between Ri 5(N;x) and KfB(N ; X) becomes

RE,(Nix) = > 7()S(xn) K35 00x0im).
N<n<2N

The rest of the argument of [Topl7] is adapted with the only change that the Kuznetsov formula is
applied with nebentypus xxg instead of x. This has no effect on the error terms, since the bounds in
Theorem 2.6 and Lemmas 2.7, 2.8 and 2.9 of [Top17] are uniform with respect to the nebentypus.
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By the bound (3.4) of [Topl7], with b° = (b, D*°), ro <~ Db° and h < hD, we obtain

Xo(mz)vs (%)

B cd (abmgmg—h)/
D(a) = ; D dlb%; y (log(€ — h) + 2y — 2log d)
(ma2,D)=1 "2

1 ) 0 (i (B (S o ().

where 75 denotes any integer such that s - ms = 1 mod D. We sum over a (mod D), exchange the a-
and my-sums, and change variables a < amy. We obtain

Z x1(a)D(a) = Zv (Té) X2(m2) M5, (mab, h; M)

a (mod D) ma
+ 0 <b°D5/2X§+E <Qlé 4 <(bbhb)2X)9{1 N <£)1/4}>) |

with M, (mab, b Mll) defined azs in (4.4), for which we can use Lemma The bound (4.11]) follows
after choosing Q) = X3 (M;M5)"5. O

4.5. Type II estimates. The following estimate, the first version of which was obtained in [Fou85],
concerns convolutions with one component supported inside [z€, zt/ 3=¢].

Lemma 4.6. For all n, A > 0, there exist 0, B > 0 such that the following holds. Whenever X, R > 1,
(a,h) € Z2, an interval I C [X/2,X], and two sequences (3,), (Yn) are given, under the conditions 1 <
R,|a|,|h| < X?, and

|Bn| STA(’”)7 |'Yn‘ STA(TL), Y #0 = ne [Xn’Xé—n]’
we have
(12 > (B9 (m)An(an; R) <y m((a,h))R™/2X (log X)®.
nel

Proof. Recall that Ap(an; R) < RX*®. In the left-hand side of (4.12)), the contribution of those n such
that (n, (ah)>) > X?° is therefore at most

RX® ) 1< RX'TE

n<X
(n.(ah)>)>X°

Next, we have

Yo Y BrNmAan;R) = Y > BumMenBa(adidamn; R),

d|(ah)> nel A1, A2](ah)™ mnG(Alkz)’lI
d<Xx?® dd\T;L B AMAe<X®  (mn,ah)=1
(n/d.ah)=1 il

Finally, we note that there are at most O(X/2%¢) tuples (A1, Ao, m,n) with \; Agmn € I for which the
expression ai; Aamn — h is a perfect square, and

. _ 2: 2: MAs h.
Ah(a/\l/\Q'rnnv R) =2 uR(mna )33 2 e Q) + O(la)\lz\gmn—h is a square)y
Az|(h,al1A2) g<vari amn—h/ A3
(g,aX1 A2k /A2)=1

where the notation ug(n;q) is defined in formula (5.1) of [Dral7]. Now, for each (A1, A2, A3), the sum

S()\l, )\27 A3) = Z Z uR(mna)\)\13)\2 ,\£37 q)

g<vaXiAomn—h/\3 mnE()xl)\g)’lI
(g,aX1A2h/A2)=1  (mn,ah)=1
(m,A2)=1

is of the same shape as in formula (5.6) of [Dral7|, with three differences:
(1) the quantity 74(A1)74(A2) has to be factored out for the condition (5.4) of [Dral7] to hold,
(2) the sums over m and n must be restricted to dyadic intervals, which is done at the cost of an

additionnal factor (logx)?,
(3) the sums over m, n and ¢ are not separated.
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The last point can be implemented by a standard argument (see e.g. page 720 of [Dral7]), cutting
the (m,n) sums into intervals of type [M, (1 4 €)M] x [N, (1 + £)N] with ¢ < R~/2. Assuming ¢ is
small enough in terms of 7, we obtain

S(A1, Aoy Az) <€ 7a(A)TA(A2) (A X2) 1 X (log X)B (6 +671R7Y)
< 7a(M)TaA(M2) (M A2) TR 2 X (log X)B
We sum this over (A1, A2, A3) satisfying
MAo|(@h)®, Mg <2°,  As|(h,adi\g).
Since 37y (an) 2a(NT(AN)A™! <4 (loglog 2)94() | we obtain

> (B*7)(n)An(an; R) < 7((a,h)){RX'™%2 + R7/?X (log X )P},
nel

which yields our claim by reinterpreting § and B. O

5. THE CASE OF RATIONAL PARAMETERS

Let x1,...,xr be distinct Dirichlet characters mod D, and the function f € F/}(A) be defined by

H SX] 7,

(5.1)

with by, ...,br € Q, which we write in the form

W

bj =r;+ L with r; €Z and wj,v; €N suchthat 0<wy; <wj.

Uj

For notational convenience we also define
Il =" Il folli= ) vy
1<j<T 1<j<T

Our goal is to prove estimate (2.4]) for the function f defined in (5.1)). In fact, we will prove a result

which is slightly more precise in term of uniformity in D and 7.

Proposition 5.1. Let A,D,T > 1 be fized. Then we have, for x >3, I C [z/2,z] and f € F}(A) as
described above, the following estimate,

1 B+w(D)
(5.2) 2(Tia,tis ) < Crl(a mDEIED ol for 1< alil R <
2

where § > 0 is some absolute constant, and where B, C' > 0 are constants which depend only on A and T'.

The rest of this section is now concerned with proving Proposition [5.1]

5.1. Application of the combinatorial identity. Denote 7X(n) := 7,(n)x(n), so that
(5.3) f (n) =Tl kex Tl

The expression on the left hand side of now reads

(5.4) Y¢(I;a,h; R) = Z Tt (ma) - Tt () Ap(amy - - -mr; R).

mq---mp€l

By Theorem [3.2| with K = 4 we can write Tgi_j (m;) as

4
(5.5) ng_j (mj) = Z e j Z Z Xj(my)--- Xj(mke,j)Ti(J; (n1) -+ Tfl (nk,g’j),
=1 My Mgy 71 nk; =My " "
nl,...,nk/ <m1/4
€,5

where (k¢ ;)7_, and (ky, j)?zl are two sequences of integers satisfying

0<ke; <I|rjl+4, 1<kp; <(rl+4)vy,
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and where (C&j)i}:l is a set of complex numbers whose moduli are bounded in terms of A. We replace
each factor Té‘j (mj) in (5.4) by its decomposition, and after expanding the resulting expression, we end
up with a linear combination (whose coefficients are bounded by O4(1)) of O (1) sums of the form

(5.6) E:= > o1(ma) - or(mr)er(n) - ow (nwr ) Alamy - -myny - s R),

mymgnyng €1

nl,...,nk/§11/4

where each function o; is some Dirichlet character mod D, where each function p; is equal to 7%, for

—1/v;
some 7, and where k and &’ are integers bounded by

We consider each sum = separately.
Out of technical reasons, it will be necessary to use a smooth dyadic decomposition for the vari-
ables my, ..., myg. Let u: (0,00) — R be a smooth and compactly supported function, which satisfies

suppu C [1/4,2] and Zu (;) =1 forall £e(0,00),
LET

and define

where we have set
Mg = l’%JrnQZ,
with 0 <n < i an arbitrary, but fixed constant. For a k-tuple £ = (£1,..., /) € N¥, we then define

B = > g, (ma)or(ma) - - - ug, (my)og (my) o1 (n1) - - o (na ) A(ama - - -mgny - - - ng; R),

my-meny-n €1

nl,.‘.;nk/gwl/‘L

so that the sum = can be split as

[1]
(1]

0

LeNk

Note that this last sum is in fact finite, since =y becomes empty if the coordinates of ¢ are large enough,
namely if /1,..., 0, > log x. We will now estimate the sums =, in different ways, depending on the sizes
of the supports of the variables m;.

5.2. Case I. First assume that ¢ has at least one coordinate, say ¢1, satisfying M,, > 2377, Let mo =
my - myny - - -y Denoting 01 = x; for some j, we can use Lemma [£4] with X = ax, b = amg
and M = M,, to get

1 1 M 1 2
Z ug, (my)o1(ma)Ap(amomy; R) e a4 x° <Da3x3 + (amy, hDOO)% + D2R3> .
mi: momy €l L2

This leads to
(5.7) Sy <. 2t (Da%xl—" + (a, hD®)(log z)* Pz % + x%—ﬁD%R%) :

where we have made use of the fact that

1 w(D) .14
S moap®)< Y D0 Y mem<en Y 1< 1B
14

mogﬁ D*|D* mogﬁ b D*|D*>
1 D*<z 1
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5.3. Case II. Next assume that ¢ has at least two non-zero coordinates, say 1 > f5 > 1. We can also
assume that #3471 < My, , M, < 23+ since the case of larger My, and My, is already treated above.
Let mg :=mg---mgny - np. We use Lemma 4.5 with X = ax and b = amg, which gives

Z ug, (mq)o1(mq)ug, (mq)oa(me) Ap(amomimse; R)
mi,ma:
momimo €l

M,

)

[N

e, a (amg, D>)a2® (Dg(agnglMgz)é + (h,amo)R%
a

so that altogether we are led to
5.8 Z¢ <o a (a,h)(a, D*®)(log z)“P)z® D3qigl=3m 4 a,h Rigz).
; g

5.4. Case III. Finally, we need to consider the case, where ¢ has at most one non-zero coordinate,
1
say {1, for which we have M,, < z3%". We split the sum Z; into two parts,

= _.=1) | =2
= =tEg 2

according to whether ny - --ng >z or ny -+ -ngr < x'.
We look first at Eél). We split this sum according to the value of
p=min{l <p <k': ng---ny >a"},

and write accordingly

k/
- =1
:él) =: Z:E )(u).
p=1
After defining

B = > g, (ma)or(ma) -« - uo(my)ow (M) 0p+1(Rpt1) -+ ok (i),
M1 MENp41 N =M

1/4
nu+1,...,nk/§x /

and

Yn ‘= Z Ql(nl)"'gu(nu>7

ni-n,=n

1/4
ny-nu—1<z", ny,..,nu <ot/

. =1
and renaming n < nq ---n, and m < my - - MENy41 - Ny, We can write :é )(u) as
=(1) _ )
== S BurnBa(amn;R).
m,n: mnel
z"<n§wl/4+"

Note that 7, = 0 if n > /47, Moreover, we can bound the quantities (,, and =y, by

1Bml| < 7—2||r|\1+8T(m)a I7n| < T\|r\|1+4T(n)~
Hence we can apply Lemma [4.6] with A < 2[|r||; + 87, and we see that
Eél)(,u) < 7((a,h))R™Y%z(logz)B for 1<a,|h|,R <z,
where 1, By > 0 are certain constants which depend solely on 1 and A. Summing over u, we deduce
(5.9) =20 <« 7((a,h))R™2x(logz) Bt ||v]|; for 1<a,|h|,R< 2%,
The other sum Ef) can be estimated similarly — the role of the variables nq,...,nx is now played
by the variables mao, ..., my. Eventually, we get

(5.10) Eéz) < 7((a, h)R™YV2z(logz)P2 for 1<a,|h|,R < 2%,
where d2, By > 0 are certain constants which again depend solely on 7 and A.

5.5. Conclusion. Grouping the different bounds (5.7)—(5.10)), setting B := max(Bi, Bs) and choos-
ing § > 0 small enough, we get

= < 7((a,h))D3 R Zx(logz) BT ||v||; for 1<a,l|h|,R <2’
with the implicit constant depending only on A and T This finally proves Proposition [5.1}
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6. INTERPOLATION TO COMPLEX PARAMETERS

Let r1,...,7,(p) be the residues mod D which are relatively prime to D. Any f € F5(A) is given by
o] f(n) (D) 2
6.1 = 1 :
( ) nz::l ns H H < + ps — 1> ’

j=1 p=r; mod D
for z = (z1,...,2,(p)) € CPP), with |2;] < A. After setting

(6.2) wr(n) := # {p prime : p|n, p=rmod D},
we can also write

»(D)
(CEID S P

Ny Ny (p)=n j=1
Our aim here is to show that the bound (2.4) holds for $¢(I;a, h; R), for all f € Fg(A). By Lemma 2.5
this will imply Proposition [2.1]
Let x1,...,Xe(p) be the Dirichlet characters mod D, let @ be the unitary matrix

x1(r1) x2(r1) o Xe)(r1)
0 1 x1(r2) xa(r2) Xe(D)(T2)
© Ve(D) : : : ’
X1(re))  X2(re)) -+ Xe(0)(To(D))

and let Mg : C¥(P) — C#(P) be the bijective linear map associated to Q.
Let K > 1. We define F%(A, K) to be the set of functions f € F¥(A) of the same form as in (6.1,
but with the additional property that the parameters z are given by

z = Mq(b)
for a tuple of rational numbers b = (b1, ...,by(p)) € Q#(P) satisfying
|bj|] <A and b; = % with uj,v; €Z and |v;| <K,
Uj

forallj =1,...,0(D). By Proposition Lemmaand Lemma we deduce that the bound (2.4))
holds for all f € F¥(A, K) in the following form.

Proposition 6.1. Let A, D > 1 be fized. For K > 1, 2 >3, I C [x/2,z] and f € F4(A, K), we have

1 B
(6.3) 1S4 (I;a,b; R)| < CKT((a,h))x(O% for 1<a,|h|,R<2,
2
where 6 > 0 is some absolute constant, and where B,C > 0 are constants which depend only on A
and D.

Our goal is to interpolate this result to all functions in F¥(A4). Let f € F¥(A) be fixed, with z as
in (6.1)). For L € [1,00], we define two polynomials in the variables Z = (Z1,..., Z,(p)) as follows,

(D)
PZ):= ) S Iz an@n R),  PL(Z) = PL(Mo(2)).
nel ni-Ne(p)y=n j=1

Wjwr; (M) <L
By definition, both these polynomials have degree at most L in each variable. Furthermore, let
-1
b:= Mg, (Z),
and note that ||b||os < D2 A. Using this notation, we can now write the sum Y¢(I; a, h; R) simply as

> f(n)An(an; R) = Ps(b).

nel

In order to have better control over the degree of JBOO(Z), we cut off all the terms of degree larger
than some fixed real number L > 1. For a tuple ¢ = (C1,- - .,(,(p)) satisfying |¢;] < AD? and any real
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number E > 1, this leads to an error term of the following form,

1P(¢) =PI < > 7p(n)(AD)*™ |A,(an; R)|
nel
w(n)>L

<E~ Z 7p(n)(ADE)*™ | A}, (an; R)|
n<x

ZTAD2E(TL)2 Z |Ah(¢m5R)|2

n<zx n<z

The different factors can be estimated via [Tenl5l Theorem I1.6.1], and Lemma and we get

1Pal€) - Pul0)] < B (a(log ) 42" 1) (s(loga)tr(a, m)?)’*

4
(6.4) < E~Lr((a, h))z(logz) “ 7 +2,

where the implicit constants depend at most on A, E and D.
Next, we set

[N
M

_ 2(0+1)|AD?]

bo=—"711
Obviously, all these numbers are bounded by |5,| < AD%, and are rational numbers with denominators
not larger than L + 1. Furthermore, we have the bound

—LAD%J for £=0,...,L.

ADz
|Be, — Bey| > 5T

For any tuple £ = ({1,...,L,p)) € {0,... ,L}*(P) denote Be = (By, , - . - s Bt ipy)- The value 1500(,3@) can
be interpreted as an instance of the sum E}(I; a, h; R) for an appropriate function fe FE(AD,L+1),

|€1—€2| for €1 #fg

Poo(Be) = SH{I5a,h; R).
Hence, by Proposition and the estimate in (6.4) we can deduce

(6.5) PL(Be) <a.p 7((a, h)a(log z) “5 5 <If + El) ,

uniformly for 1 < a, |h|, R < 2°.
By Lagrange interpolation, we bring Pr,(b) into the following shape,

_ (D)
O R
EG{O,...,L}w(D) j= 1o<;€<L ¢

which is allowed since the Vandermonde determinant associated to (54) does not vanish. We can now
estimate P (b) via the already known bound . ) for the expressions Py (8¢). Namely, we have

(D)

|PL(b)| < Z ’PL Be) ‘ H H |ﬂe _m

2€{0,...,L}#(D) j=1 0<i<L
’L?ééj

©(D)

<<T<<a7h>>x<1ogx>“”f“‘+3(;+ElL) LD SI | 4N ) e

¢€{0,...,L}#(D) j=1 0<z<L
z;éé

ot p (L 1 (SL)LW(D)
< 71((a,h))z(logz) 2 (Ré + EL> 7(L!)90(D) )

which after using Stirling’s approximation for the Gamma function simplifies to

Pulb)] < (. W)ollog) “3 42 (2o 2 ) deo,

with the implicit constant depending at most on A, E and D.




TITCHMARSH’S PROBLEM FOR MULTIPLICATIVE FUNCTIONS 25

After adding all the terms we had cut off earlier, we are finally led to

4 1 1
Sl b R) <ap.p r((a,h)e(logz) “F 2 (4 ) (4¢)2PP.
,D, R: | EEL
With the choices
log R

=—_— d E:=(4e)%”
12D log(4e) an (4e)™,

and after reinterpreting the constant B, we get

z(logz)?

. for 1<a,lh|,R<a°,
R3

Y¢(I;a,h; R) <a,p 7((a, h))

which is exactly the statement we wanted to prove.

7. PROOF OF THEOREM USING LINNIK’S IDENTITY

We now sketch how Theorem can alternatively be proven using Theorem The details of the
computations being very similar, we will restrict to discussing the main differences in the arguments.

As mentioned above, it is enough to consider the case f € F[(A), or in other words we can assume
that f = Tg<11 Kok rgf, where x1, ..., xr are distinct Dirichlet characters mod D, and where by, ..., br
are complex numbers whose moduli are bounded by A. The sum in consideration is then given by

Ef(I;a,h;R): Z Tbxll(ml)"'Tg(TT(mT)Ah(aml"'mT§R)'

my--mrp€el

Here we replace each T;;j (m;) by its decomposition as given in Theorem [3.3| with K = 4, and after
expanding the resulting expression, we end up with a linear combination of sums of the form

== Z o1(my) - op(mi)p1(ny) - - pr(nr)A(amy - - -mgny -+ - nr; R),
mi---mgni---npEel
Pt(ng-np)<z'/*

where each function o; is some Dirichlet character mod D, where each function p; is equal to T,ij_"_ g for
some j and /¢ € [0, 3], and where k < 3T. We consider each sum = separately.

To each factor p; in the sum = we apply Lemmawith y = z'/* and w = 2" for some arbitrary, but
fixed n € (0,1/24). By compacity, it follows that for each j = 1,...,T there exist arithmetic functions ¢
and f3;, such that the sum = can be written as

Jj=1 Jj=1
with
== 3 (1 %+ % o) (M)pr (1) - - pr(nr) Aammy -+ ns R),

mny---npel
P+(n1~~nT)§x1/4
ni,...,nj—1<z"’, n]'>wl/"

Hpanj, pP>zt/4

E;Q) = E (o1 % -+ % ap)(m) ( H pk(nk)>aj(n;-)ﬁj(n;-’)A(amnl ~-nr; R),
1<E<T
k#j

! 1"
mny-ngnininpynr €1
o1 1/4
P+(n1--~nj1njnj njy1--nr)<c /

ni,...,nj_1<z", :c"]<n; <gl/4+n

26 .= Z (o1 %+ xop)(m)p1(ny) - - pr(nr)A(amny - - - np; R).

mny---np€el
ny,...,nr <z’
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)

The sums Ej can be bound trivially. Indeed, we note that if a prime power p* > y divides n, then

since P (n;) <y we must have k > 2. Hence

—(1
=V < > T(a+6)7(n)|Alan; R)|
nel
IpF|n: pP>zt/t k>2

<. <Z A(an;R)|2> ( > 1)
nel nel

Elpk|n: pk>11/47 k>2
LA, T 2177 ((a, b)),

which is an acceptable error term.

( ) , we can bound them following the arguments of Case III, Section since

Concerning the sums =
we have a variable locahzed in [27, x1/4"] and since 1/4 4+ n < 1/3. The remaining sum =), which is
analogous to 7 can be estimated for all sufficiently small > 0 by the arguments of Sections
and according to the size of the involved variables. As a result, we get for these sums the estimate

#(log 1)°1)
(0, ) 0BT

R3
Together with the bound for E;l), this eventually proves Theorem

8. ProoF oF THEOREMS [1.2] [I.3] [1.4] AND

In this section we want to deduce Theorem [I.2] from Proposition 2.1} and afterwards apply this result
to the problems mentioned in the introduction. Before doing so, we ﬁrst need to prove an auxiliary result,
which is concerned with bounds on average for functions in F, D(A) twisted by a Dirichlet character.

=7 E® <ar T

Lemma 8.1. Let f € Fp(A) and let B > 1. Then there exists a constant ¢ > 0, such that, for all
Dirichlet characters x mod q satisfying cond(x) 1 D and q < (logz)?, we have

(8.1) > x()f(n) < weVIos,

n<zx

Both the constant ¢ and the implicit constant depend at most on A, B and D.

Proof. Let F\(s) be the Dirichlet series associated to the function x(n)f(n). By Lemma we know
that F)(s) can be written as

Fy(s)=Hy(s) [ L(s,xw)’ for DRe(s) > 1
Y mod D

where H,(s) is a holomorphic function in Re(s) > 1 + ¢, bounded in terms of A, D only.

Due to the assumption cond(x) t+ D we know that none of the characters y is principal, which
means that none of the L-functions L(s, xt) has a pole at s = 1. It follows from Siegel’s theorem that
for any ¢ > 0 there exists a constant ¢(d) such that all L(s, xt¢) are zero-free in the region defined by
the condition PRe(s) > 1 — y(Im(s)), where

. c(9) c(9) }
8.2 t) := min , .
52 (0= min S B o
Using this zero-free region, the bound (8.1)) follows using a standard contour integration argument; see
e.g. IMVO7, Section 11.3]. O

We now proceed to prove Theorem We set R = (logz)* where L > 1 is some constant which
depends only on A, B and D, and which we will determine at the very end. Note that in any case we
can assume z to be large enough so that D < R is satisfied.

We start by splitting the sum Dy (x;a, k) into two parts as follows,

D¢(z;a,h) = Dy(v/z;a,h) + Z f(n)r(an — h).
Vz<n<z

While the first sum can be estimated by trivial means, we can use Proposition 2.1] to evaluate the
second (after first dividing the range of summation into dyadic intervals). This eventually shows that
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there exists an absolute constant § > 0, and a constant B depending only on A and D, such that, for
all 1 < a, || < 29,

—~ z(log x)B
Dy(x;a,h) = My(x;a,h) + O <T((a, h))%) ,
with .
My(xz;a,h) == Z f(n)Th(an; R).
|hl/a<n<a
It remains to evaluate this last sum.
After expanding 7, (an; R), it can be written as

Mf(x;a,h):gz(lq) > ox(dy) X () roEr).
(h.q)

q<vaz P x mod i~ %Sngr
cond x<R

(an,q)=(h,q)

We now split the remaining sum into two parts, denoted by M 7(01)(x; a, h) and M }2)(1:; a, h), depending
on whether cond(x) | D or not. A simple reordering of the sums shows that the first part is equal
to My (x;a,h) as given in Theorem [[.2} The second part can be written as

M(2 (z5a,h) =2 Z Z Z Z X(%) X (%) (Sf,x(m,u) = Sfx (tuzq2’u>> )

t|(a,h) u\h <\/a:c x mod g
— tu
=1 Cond x<R
(wa/t)= cond(x)1D

with Sy, (x,u) given by
St (x, ) Z flun)x

n<Z

—u

This last sum can be estimated via Lemma @, namely we have

Sty(x,u) = quu Z fln (%+E)
u <f (n,u):l
< ze~cVlos® Z Ta(uu’) 4 pite
uu*
u* <@
< TA(U)SC(lOg m)Ae—c«/logx7
u
for some constant ¢ > 0 depending on A, D and L. Hence
M}Q)(x; a,h) < 7((a, h))Rz(log x)A+26_CV logz 7((a, h))ze —3Vloga
Eventually, we get
10 xr B c
Dy¢(x;a,h) = Mg(x;a,h) + O <7’((a, h))x <(§1/3 +e 2V log‘r)> ,
and Theorem [I.2] follows with the choice L = 3N + 3B.
8.1. Proof of Theorems and The applications mentioned in the introduction are
essentially all immediate corollaries of Theorem except for the fact that it remains to evaluate the
main terms. This is a rather tedious task, but can be done using standard techniques from analytic
number theory, in particular the Selberg-Delange method, which is for example described in detail
in [Tenl5l Chapter I1.5]. In order to not further lengthen this article, we only want to indicate very

briefly the main steps of the procedure.
In the case of Theorem [1.3] u the main term takes the form

M. (z;1,h)=2 ) ( ] > ),
(h,9)

<vz ¥ *<n<az
(n,q)=(h,q)

which after a few simple transformations can be written as

D(x: - D 2 2.
(8.3) M, (z;1,h) = Z 7 (uw) Z (z; ug, uv) : )(u q°; ug, uv) Lo (I%+€) |
ulh, v|u™ a<VT/u Piq
vz (q,ﬂ):l

u
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where

D(y;r,t) == Z 7.(n).

n<¥
(n,r)=1

This sum has been studied in detail in [Tenl5, Chapter I1.5]. In particular, following the proof of [Ten15
Theorem II.5.2], we see that there exist complex numbers p}(r,t) such that

L
o s mi(nt) y(logy)® (logt)E*!  y(logy)®
Dlyir.t) = 2mi ; ['(z —¢) (logy)tt? +0 t (logy)Lt2=—=c )’

where

L) i AL (w:m (s - 1>zc<s>Z) with 03 =[] (1 ~ 1)2,

ts S ps
plr
and where the differential operator A’ is defined as

0,10
* T N 0st

s=1

By Leibniz’s rule and the Taylor expansion of (s — 1){(s) at 1, it remains to evaluate the sums

A(ug) ALYz (ug) ¢*(2log(ug))*
; ©(q) d q; olq)  (2log(ug))—t

— u

(a,22)=1 (qwh/u)=1

u

For the first sum this is a standard exercise in using counter integration, the result being

z z vh »
§ A g, <C§wws<u>pw(u>xc<w+1>>+0( 1 )
w=0 ’

©(q) Viw(h) wvw 3¢

q<LE
<
(a.58)=1

with

cco=T11(1 ,
o 1;[ ( T T -
and

Z(p) —1
Vo) = H (1 + pwljr(j)é_(zztﬂrl 3_ 1) and - py(n) = H (1 T et _Zw+1 T 1) :
pln pln
An asymptotic formula for the second sum now follows via partial summation. After putting the resulting
formulae back in and completing the sum over v, this eventually leads to the main term described
in Theorem [I.3] In particular, the first coefficient is given by

11—
Ano(z) = F(lz) 11 (1 ) P)p )

(p,h)=1

T () g ()5

Pk j=1

(8.4)

For Theorem we have from [Nar04, Proposition 8.4, Theorem 8.6] that the characteristic func-
tion n — br(n) of the set Nk is multiplicative with b(p) = 1 if and only if 2vex(x) X(p) >0,
where X (K) is a subgroup of the Dirichlet characters modulo the discriminant D = Disc(K) and p 1 D.
The subgroup of residue classes ¢ mod D such that Ex €X(K) x(a) > 0, corresponding to the subgroup H
in [Nar04, Theorem 8.2], has density 1/[K : Q] inside (Z/DZ)*. Thus we have a factorization

3 2 _ ety

where H is holomorphic and bounded in the strip Re(s) > 2. The rest of the argument the follows the
path described above. We leave the details to the reader.
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In the case K = Q(i), the first coefficient is given by 8,0 = BoB(h), where

(8.5) BO::% 11 <1—p12>é,

p=3 mod 4
and
xa(h”) 1 (-1)° 1
B(h)::<1+o> 11 (1— -, I (1+=),
4h pZHh p+1 p (p+1) p=3 mod 4 p
p=3 mod 4
with h° := (h,2%°), h* := h% and x4 the non-principal character mod 4.

Finally, the proof of Theorem rests upon the fact that

1o~ _ -
Z T(n—h) = ﬁ@:%h((}) with = n(2) == Z 227 (n — h).
|h|<n<z |h|<n<z
w(n)=k
Since the function n +— 2¢(") is an element of F; (A) for |z| < A, Theorem can again be applied in
this case. After evaluating the arising main term in the same manner as described above, we see that
there exist functions «yp ¢(z), which are holomorphic in a neighborhood of z, such that

L Re(z)
Yh,e(2) Lo (x(logac) ) .

Ez,n(2) = z(logx)* ; (log x)* (log z)L+1-e

At this point Theorem [I.6] essentially follows by taking derivatives with respect to z on both sides. The
procedure is however not completely straightforward, since we also need to have control over the error
term on the right hand side. In our case we can simply cite [Tenl5, Theorem II.6.3], where a result of
this type is proven in very large generality.
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