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ABSTRACT

We prove a bound for quintilinear sums of Kloosterman sums, with congruence conditions
on the “smooth” summation variables. This generalizes classical work of Deshouillers and
Iwaniec, and is key to obtaining power-saving error terms in applications, notably the
dispersion method.

As a consequence, assuming the Riemann hypothesis for Dirichlet L-functions, we prove
power-saving error term in the Titchmarsh divisor problem of estimating Zp < T(p—1).
Unconditionally, we isolate the possible contribution of Siegel zeroes, showing it is always
negative. Extending work of Fouvry and Tenenbaum, we obtain power-saving in the
asymptotic formula for )" _ 7x(n)7(n + 1), reproving a result announced by Bykovskif
and Vinogradov by a different method. The gain in the exponent is shown to be independent
of k if a generalized Lindel6f hypothesis is assumed.
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1. Introduction

Understanding the joint multiplicative structure of pairs of neighboring integers such
as (n,n + 1) is an outstanding problem in multiplicative number theory. A quantitative
way to look at this question is to try to estimate sums of the type

S Fn)g(n+1) (L1)

n<z

when f,g: N — C are two functions that are of multiplicative nature — multiplicative
functions for instance, or the characteristic function of primes. In this paper we are
motivated by two instances of the question (L.1)): the Titchmarsh divisor problem, and
correlation of divisor functions.

In what follows, 7(n) denotes the number of divisors of the integer n, and more
generally, 7 (n) denotes the number of ways one can write n as a product of k positive
integers. Studying the function 7 gives some insight into the factorisation of numbersﬂ
which is deeper but more difficult to obtain as k grows.

1.1. The Titchmarsh divisor problem

One would like to be able to evaluate, for k > 2, the sum
> ol —1) (1.2)
p<z

where p denotes primes. A priori, this would require understanding primes up to z in
arithmetic progressions of moduli up to z1=1/% The case k > 3 seems far from reach of
current methods, so we consider k = 2.

2000 Mathematics Subject Classification 11L07 (primary), 11F30, 11N75, 11N13.

TThere are a number of formulas relating the characteristic function of primes to linear combination of
divisor-like functions, for instance Heath-Brown’s identity |HB82|.
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In place of , one may consider
T(z):= Y  Aln)r(n—1)

1<n<z

where A is the von Mangoldt function [IK04, formula (1.39)]. In 1930, Titchmarsh |[Tit30)
first considered the problem, and proved T'(x) ~ Cyz log z for some constant C; > 1 under
the assumption that the Riemann hypothesis holds for all Dirichlet L-functions. This
asymptotic was proved unconditionally by Linnik [Lin63| using his so-called dispersion
method. Simpler proofs were later given by Rodriquez |Rod65| and Halberstam [Hal67|
using the theorems of Bombieri-Vinogradov and Brun-Titchmarsh. Finally the most pre-
cise known estimate was proved independently by Bombieri-Friedlander—Iwaniec [BFI86)
and Fouvry [Fou85|. To state their result, let us denote

o 1 o logp
Cl'_lg(ler(p—l))’ 02'_Zl+p(p—1)'

p

THEOREM A Fouvry |[Fou85|, Bombieri-Friedlander—Iwaniec |[BFI86|. For all A >0
and all x > 3,

T(z) = Ciz{logz + 2y — 1 —2C5} + O4(z/(logz)?).

In this statement, 7 denotes Euler’s contant. See also |[Fell2, Fiol2a] for gen-
eralizations in arithmetic progressions; and |[ABSR15| for an analogue in function
fields.

The error term in Theorem [A] is due to an application of the Siegel-Walfisz theo-
rem [IK04, Corollary 5.29]. One could wonder whether assuming the Riemann Hypothesis
generalized to Dirichlet L-functions (GRH) allows for power-saving error term to be
obtained (as is the case for the prime number theorem in arithmetic progressions MV 07,
Corollary 13.8]). The purpose of this paper is to prove that such is indeed the case.

THEOREM 1.1. Assume GRH. Then for some 6 > 0 and all x > 2,

T(z) = Crz{logz + 2y —1-2Co} + O(z'79).

Unconditionally, we quantify the influence of hypothetical Siegel zeroes. Define, for ¢ >

L,
1 H 1 Z lo

©(q) e p(p — o

where ¢ is Euler’s totient function. Note that C, = C1(1) and Cy = Cy(1).

THEOREM 1.2. There exist b > 0 and 6 > 0 such that
T(z) = Ciz{logz + 2y — 1 — 2Cs}
1’5 x 1 -
— (@) 5 {log (5) +27 = 5 —2C2(q)} + O(ee 5V/log ),

The second term is only to be taken into account if there is a primitive character x (mod q)
with ¢ < eV1°82 whose Dirichlet L-function has a real zero 3 with 3 > 1 — b/+/log .
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By partial summation, one deduces

COROLLARY 1.3. In the same notation as Theorem [I.2

28
Y o rlp—1) = Ci{w +2li(x)(y - Ca)} — Cl(Q){F +21i(a”) (v — log g — Ca(q))} + O(ze~VI8™),

p<z

The method readily allows for more general shifts 7(p — a), 0 < |a| < 2° (cf. [Fiol2b|
Corollary 3.4] for results on the uniformity in a). The contribution of the exceptional
character in Corollary would then have a twist by x(a). Since Yy, if it exists, is a real
character, then x(a) = 1 whenever a is a perfect square (for instance a = 1), in which case
we have an unconditional inequality.

COROLLARY 1.4. With an effective implicit constant, we have

S 7(p—1) < C{w + 21i()(y — Ca)} + OfweVIET),

p<z

We conclude our discussion of the Titchmarsh divisor problem by mentioning the
important work of Pitt [Pit13|, who proves > _ a(p—1) < 2179 for the sequence (a(n))
of Fourier coefficients of an integral weight holomorphic cusp form (which is a special case
of when the (a(n)) are Hecke eigenvalues). It is a striking feature that power-saving
can be proved unconditionally in this situation.

1.2. Correlation of divisor functions

Another instance of the problem (1.1} is the estimation, for integers k,¢ > 2, of the
quantity

Tieo(x) := Z Te(n)me(n + 1).

n<z
The conjectured estimate is of the shape

Tioo() ~ Ci g (log )2

for some constants Cj ¢ > 0. The case k = ¢ is of particular interest when one looks at
the 2k-th moment of the Riemann ¢ function |Tit86, §7.21] (see also [CGO1]): in that
context, the size of the error term is a non-trivial issue, as well as the uniformity with which
one can replace n + 1 above by n 4 a, a # 0. Current methods are ineffective when k, ¢ > 3,
so we focus on the case £ = 2. Let us denote

Te(z) =Y 7(n)r(n+1).

n<x

There has been several works on the estimation of 7g(x). There are nice expositions
of the history of the problem in the papers of Heath-Brown |[HB86| and Fouvry-
Tenenbaum [FT85]. The latest published results may be summarized as follows.
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THEOREM B. There holds:

Ta(z) = xPa(logz) + O (a/319), ([D182a)),
T3(x) = xPs(log z) + O(x'79%), (/Des82], |Topl5|),
Ti(z) = 2P (log z) + O (ze~°VI8®)  for fixed k > 4, (JFT85]). (1.3)

Here € > 0 is arbitrary, § > 0 is some constant depending on k, and P}, is an explicit
degree k polynomial.

The error term of (1.3) resembles that in the distribution of primes in arithmetic
progressions, where it is linked to the outstanding problem of zero-free regions of L-
functions. However there is no such process at work in , leaving one to wonder if
power-saving can be achieved. In [BV87], Bykovskii and Vinogradov announce results
implying

Ti(x) = zPp(logz) + Op(x* %) (k> 4,2>2) (1.4)

for some absolute 6 > 0, and sketch ideas of a proof. The proposed argument, in a
way, is dual to the method adopted in |FT85]E| (which is related to earlier work of
Motohashi [Mot76]). Here we take up the method of [FT85] and prove an error term of
the same shape.

THEOREM 1.5. For some absolute § > 0, the estimate (|1.4)) holds.

In view of [BV87], Theorem is not new. However the method is somewhat different.
In the course of our arguments, the analytic obstacle to obtaining an error term O (z'~?)
(6 independent of k) in the estimate will appear clearly: it lies in the estimation of
sums of the shape ) _ 7i(n)x(n) for Dirichlet characters x of small conductors. This
issue is know to be closely related to the growth of Dirichlet L-functions inside the critical
strip [F105].

THEOREM 1.6. Assume that Dirichlet L-functions satisfy the Lindeléf hypothe-
sis, meaning L(3 +it,x) < (q(|t| +1))° for t € R and x (mod q). Then for some
absolute 6 > 0,

Ti(z) = 2Py (log z) + O (z*7) (k>4, x>2) (1.5)

The standard conjecture for the error term in the previous formula is Ok,s(xl/ 2+e). We
have not sought optimal values for ¢ in Theorems and In the case of , the
method of [BV 87| seems to yield much better numerical results.

Our method readily allows to replace the shift n 4+ 1 in Theorem [1.5|by n 4+ a, 0 < |a| <
2% with § independent of k. We give some explanations in Section below regarding
this point.

Acknowledgements. This work was done while the author was a CRM-ISM Postdoc-
toral Fellow at Université de Montréal. The author is indebted to R. de la Breteche,
E. Fouvry, V. Blomer, D. Mili¢evi¢, S. Bettin, G. Tenenbaum, B. Topacogullari and A.

fIn [Mot 76l [FT85|, the authors study the distribution of 73 (n) in progressions of moduli up to z/2,

while in [BV87| the authors address the distribution of 7(n) in progressions of moduli up to z!=1/%,
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remarks and careful reading of the manuscript. The author is particularly grateful to V.
Blomer for making a preprint of [BM15a] available, and for making him aware of the
reference [BV87]; and finally to B. Topacogullari for correcting a significant oversight in
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2. Overview

The method at work in Theorems [I.1} [I.2] and [I.5]is the dispersion method, which was
pioneered by Linnik |Lin63] and studied intensively in groundbreaking work of Bombieri,
Fouvry, Friedlander and Iwaniec [Fou82| [FI83, BFI86| on primes in arithmetic progres-
sions. It has received a large publicity recently with the breakthrough of Zhang [Zhal4)
(see also [PCFT14]), giving the first proof of the existence of infinitely many bounded
gaps between primes (which was shown later by Maynard [May15] and Tao (unpublished)
not to require such strong results).

In our case, by writing 7(n) as a convolution of the constant function 1 with itself,
the problem is reduced to estimating the mean value of A(n) or 7x(n) when n <z
runs over arithmetic progressions (mod ¢), with an average over ¢. It is crucial that
the uniformity be good enough to average over ¢ < /z. In the case of A(n), that is
beyond what can currently be done for individual moduli ¢, even assuming the GRH.
The celebrated theorem of Bombieri-Vinogradov [IK 04} Theorem 17.1] allows to exploit
the averaging over g, but if one wants error terms at least as good as O(x/(logx)?) for
instance, it barely fails to be useful.

Linnik’s dispersion method |Lin63|, which corresponds at a technical level to an
acute use of the Cauchy—-Schwarz inequality, offers the possibility for such results, on
the condition that one has good bounds on some types of exponential sums related to
Kloosterman sums. One then appeals to Weil’s bound [Wei48]|, or to the more specific
but stronger bounds of Deshouillers-Iwaniec [DI82b| which originate from the theory of
modular forms through Kuznetsov’s formula.

The Deshouillers-Iwaniec bounds apply to exponential sums of the following kind:

Z bn,r,sg(C, d)e (n%)

c,d,n,r,s

(rd,sc)=1
where ¢, d,n,r, s are integers in specific intervals, (b, ) is a generic sequence, and g(c, d)
depends in a smooth way on ¢ and d. Here and in what follows, e(z) stand for ™,
and 7d denotes the multiplicative inverse of rd (mod sc) (since e(z) is of period 1,
the above is well-defined). It is crucial that the variables ¢ and d are attached to a
smooth weight ¢(c, d): for the variable d, in order to reduce to complete Kloosterman
sums (mod sc); and for the variable ¢, because the object that arises naturally in the
context of modular forms is the average of Kloosterman sums over moduli (with smooth
weight).

In the dispersion method, dealing with largest common divisors (appearing through the

Cauchy—Schwarz inequality) causes some issues. The most important of these is that the
phase function that arises in the course of the argument takes a form similar to

e(ng + qu) (2.1)

rather than the above. Here g can be considered small and fixed, but even then, the second
term oscillates chaotically.
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Previous works avoided the issue altogether by using a sieve beforehand in order to
reduce to the favourable case ¢ = 1 (see Lemma 4 and Section 3 of [Fou85|, and Lemma
4 and Theorem 5* of [BFI86|). Two error terms are then produced, which take the form

efé(logz)/ log z + 271

where z < x is a parameter. Roughly speaking, the first term corresponds to sieving
out prime factors smaller than z, with the consequence that the “bad” variable ¢ above
is either 1 or larger than z. The second term corresponds to a trivial bound on the
contribution of ¢ > z. The best error term one can achieve in this way is ef‘s\/@, whence
the estimate (|1.3)).

By contrast, in the present paper, we transpose the work of Deshouillers-Iwaniec
in a slightly more general context, which allows to encode phases of the kind .
More specifically, whereas Deshouillers and Iwaniec worked with modular forms with
trivial multiplier system, we find that working with multiplier systems defined by
Dirichlet characters allows one to encode congruence conditions (mod ¢) on the “smooth”
variables ¢ and d. This is partly inspired by recent work of Blomer and Mili¢evi¢ [BM15al.
The main result, which extends [DI82b}, Theorem 12] and has potential for applications
beyond the scope of the present paper, is the following.

THEOREM 2.1. Let C,D,N,R,S > 1, and q,co,dy € N be given with (cody,q) = 1.
Let (b,ys) be a sequence supported inside (0, N] x (R,2R] x (S,25] N N®. Let g : RS —
C be a smooth function compactly supported in |C,2C]x]D,2D] x (R%)3, satisfying the
bound

o +V2+V3+V4+ng

Oc’19dv2 OnVs Orva Jsvs (

Cd,n, T, 8) Koy vs s vavs {c_”ld_”zn_”3r_”4s_”5}1_50 (2.2)

for some small g > 0 and all fixed v; > 0. Then

; ; ; Z ; bnrsg(c,d,n,r, s)e(ng)

c=co and d=dp (mod q)
(grd,sc)=1

Zeco (CDNRS)*TOCIB2K(C, D, N, R, S)||bn.r.s ||2(, |
2.3

1/2
where ||by r.sll2 = (ans [brr,s]?) /? and

K(C,D,N,R,S)? = qCS(RS + N)(C + RD) + C?*DS+/(RS + N)R+ D*NRS™*.

We have made no attempt to optimize the dependence in ¢. In all of the applications
considered here, we only apply the estimate (2.3) for small values of ¢, say ¢ =
O((CDNRS)e) for some small e; > 0. Such being the case, the reader might still wonder
why the bound tends to grow with g. The main reason is that upon completing the sum
over d, we obtain a Kloosterman sum to modulus scq, which grows with g.

In the footsteps of previous work [Dral5|, for the proof of our equidistribution results,
we separate from the outset of the argument the contribution of characters of small
conductors (which is typically well-handled by complex-analytic methods). We only apply
the dispersion method to the contribution of characters of large conductors. There is
considerable simplification coming from the fact that no “Siegel-Walfisz”-type hypothesis
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is involved in the latter, which allows us to focus on the combinatorial aspect of the
method]

In Section [3] we state a few useful lemmas. In Section [} we adapt the arguments
of [DI82b] to prove Theorem In Section [5, we employ a variant of the dispersion
method to obtain equidistribution for binary convolutions in arithmetic progressions. In

Sections [] and [7} we derive Theorems and

Notations We use the convention that the letter ¢ denotes a positive number that
can be chosen arbitrarily small and whose value may change at each occurence. The
letter § > 0 will denote a positive number whose value may change from line to line, and
whose dependence on various parameters will be made clear by the context.

We define the Fourier transform f of a function f as

f@)=j Ft)e(—€t)dt.

R
If f is smooth and compactly supported, the above is well-defined and there holds

o~

£ = | Fiere(enac.
R

If moreover f is supported inside [~ M, M] for some M > 1 and || )|, < M~ for j €
{0,2}, then we have

~ M

f(f)«w-

3. Lemmas

In this section we group a few useful lemmas. The first is the Poisson summation
formula, which is very effective at estimating the mean value of a smooth function along
arithmetic progressions.

LeEMMA 3.1 [BFI86, Lemma 2]. Let M >1 and f:R — C be a smooth function
supported on an interval [—M, M] satistying || f() oo <; M7 for all j > 0. For all ¢ > 1
and (a,q) = 1, with H := ¢**¢ /M, we have

_L S 7(MYe(Y) 4 0. (h).
mﬂ}%dwﬂmw—%ggj(g (q) O(Q

The next lemma is quoted from work of Shiu [Shi80, Theorem 2], and gives an upper
bound of the right order of magnitude for sums of 7(n) in short intervals and arithmetic
progressions of large moduli. It is an analogue of the celebrated Brun-Titchmarsh
inequality [IK04| Theorem 6.6].

1t is more straightforward to study the mean value of 7 (n) in arithmetic progressions of small moduli,
than a k-fold convolution of slowly oscillating sequences, each supported on a dyadic interval.
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LEMMA 3.2 [Shi80, Theorem 2]. For k>2, z>2, 2'/2<y<uz (ga)eN
with (a,q) = 1 and q < y>/*,

Z Tk(n) <k Z(@EIQ) 1ng)k—1.

r—y<n<z
n=a (mod q)

Note that such a result could also be deduced from earlier work of Barban and
Vekhov [BV69]; see also [Hen12| for the most recent results on this topic.

The next lemma is the classical form of the multiplicative large sieve inequality [TK04,
Theorem 7.13].

LeEmMA 3.3. Let (an,) be a sequence of numbers, and N, M,Q > 1. Then

oo X ’ > anx(n)lé(Q%Nfl) S lanl

q<Q (P(q) x (mod q) M<n<M+N N<n<N+M
X primitive

We quote from [Har11l, Number Theory Result 1] the following version of the Pdlya-
Vinogradov inequality with an explicit dependence on the conductor.

LEMMA 3.4. Let x (mod q) be a character of conductor 1 # r|q, and M, N > 1. Then

Z x(n) < 7(q/r)/rlogr.

M<n<M+N

4. Sums of Kloosterman sums in arithmetic progressions

Theorem is proved by a systematic use of the Kuznetsov formula, which establishes
a link between sums of Kloosterman sums and Fourier coefficients of holomorphic and
Maaf cusp forms. There is numerous bibliography about this theory; we refer the reader
to the books [Iwa02| Iwa95| and to chapters 14-16 of [IKO04] for references.

Most of the arguments in [DI82b| generalizes without the need for substantial new
ideas. We will introduce the main notations, and of course provide the required new
arguments; but we will refer to [DI82b| for the parts of the proofs that can be
transposed verbatim.

4.1. Setting

4.1.1. Kloosterman sums Let g > 1. The setting is the congruence subgroup

I'=Ty(q) := { (CCL Z) € SLy(Z),c =0 (mod q)}

Let x be a character modulo ¢olq, and x € {0,1} such that x(—1) = (—1)". We warn
the reader that the variable ¢ has a different meaning in Sections [{.1] and [£.2] than in
the statement of Theorem (where it corresponds to grs). The character y induces a
multiplier (i.e. here, a multiplicative function) on I' by

(2 )

The cusps of T' are I'-equivalence classes of elements R U {co} that are parabolic, i.e.
each of them is the unique fixed point of some element of I". They correspond to cusps
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on a fundamental domain. A set of representatives is given by rational numbers u/w
where 1 < w, wlg, (u,w) =1 and w is determined (mod (w, q/w)).

For each cusp a, let 'y denote the stabilizer of a for the action of I'. A scaling matrix
is an element o4 € SL2(R) such that o400 = a and

{aa <(1) 117) ot be Z} =T,

Whenever a = u/w with v # 0, (u,w) = 1 and w|q, one can choose
ay/lg, w?] 0 )
Oq = . 4.1
= (Vi (o -y

A cusp a is said to be singular if x(y) =1 for any v € I'y. When a = u/w with v and w
as above, then this merely means that x has conductor dividing ¢/(w, ¢/w). The point at
infinity is always a singular cusp, with stabilizer

()]

For any pair of singular cusps a, b and any associated scaling matrices o4, op, define the
set of moduli

c d

This set actually only depends on a and b. For all ¢ € C(a, b), let Dyp(c) be the set of real
numbers d with 0 < d < ¢, such that

(Ccl Z) € Uglfab

for some a,b € R. For each such d, a is uniquely determined (mod c¢).
For any integers m,n > 0, and any ¢ € C(a, b), the Kloosterman sum is defined as (see
formula (3.13) and Chapter 4 of [Iwa97])

Se.op(Mm,n;c) = Z Y(Ua(gZ)Ugl)e(M)

Cc
d€Dqap ()

C(a,b) := {c €R}: Ja,b,d e R, (a b) € CTEIFO'b}.

where (‘C‘ 2) denotes any matrix v having lower row (c,d) such that oqayo, LI, This is
well-defined by our hypotheses that a and b are singular. This definition allows for a great
deal of generality. We quote from |[DI82b, section 2.1] the remark that the Kloosterman
sums essentially depend only on the cusps a, b, and only mildly on the scaling matrices oq
and oy, in the following sense. If @ and b are two cusps respectively I'-equivalent to a
and b, with respective scaling matrices o, and oy, then there exist real numbers ¢; and to,
independent of m or n, such that

So'ua'h (m7 U C) = e(mt1 + ntQ)SG:;OF_V[‘ (m’ n; C).

Moreover, the converse fact holds, that for any reals t;,¢5, any cusps a and b, and any
scaling matrices o, and op, there exist scaling matrices o, and oy, associated to a and b
such that the equality above holds. This rather simple fact is of tremendous help because
all of the results obtained through the Kuznetsov formula are uniform with respect to the
scaling matrices, so that one can encode oscillating factors depending on m and n at no
cost (it is crucial for separation of variables). Whenever the context is clear enough, we
write

Sap(m,n;c)

without reference to the scaling matrices.
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The first example is a = b = 0o and 04 = 0, = 1. Then C(00, c0) = ¢gN and
_ dm + dn
Socco (M, n;¢) = Sy (m,n;c) = Z X(d)e(i)

d (mod c¢)*

- (c € ¢N) (4.2)

is the usual (twisted) Kloosterman sum. Here and in the rest of the paper, we
write (mod ¢)* to mean a primitive residue class (mod c).

The next example that we need is the case a =b. The following is an extension
of |[DI82b, Lemma 2.5]. It is proven in an identical way, so we omit the details.

LEMMA 4.1.  Assume a = u/w is a cusp with (u,w) = 1, w|q and u # 0. Assume that a

is singular. Choose the scaling matrix as in (4.1). Then C(a,a) = WN, and if ¢ =
vq/(w, q/w) for some vy € N,
- * d—1 )
Saalim, mic) = e((mq/w)muq”)é > )x(a Fut)e(MEE) @y
mo c

where, in the sum Y_.", § runs over the solutions (mod ¢) of
(b, vq/w)=1, (y4+udw)=1, (y+ud)=u (mod (w,q/w)), (4.4)
and « is determined (mod ¢) by the equations
ad =1 (mod vq/w), a=~"u+u' (7 +u'd) (mod wy') (4.5)
where v' = v/(v,u) and v’ = u/(vy,u).

The sums Sqq(m,n;c) are expressed by means of the Chinese remainder theorem
(twisted multiplicativity) as a product of similar sums for moduli ¢ that are prime powers.
When ¢ = p¥ and v > 2, a bound is obtained by means of elementary methods as in [IK04,
Section 12.3]. When c is prime, the Weil bound (cf. [KL13, Theorem 9.3]) from algebraic
geometry can be used. In the general case, one obtains

LEMMA 4.2. For all ¢ € C(a,a), m,n € Z, we have
Saa(m,n;c) < (m,n,c)?r(c)°M (cq)'/?
where qq is the modulus of x.

Finally, we consider as in [DI82b] the following family of Kloosterman sums, which
will be of particular interest to us.

LEMMA 4.3. Assume that the level q is of the shape rs, with qo|r, where qq is the
modulus of x, and (r,s) = 1. The two cusps oo and 1/s are singular. Choose the scaling

matrices
_ _(vr 0
Uoo—Ida Ul/s_(s = 1/\/77 .
Then C(o0,1/s) = {esy/r,c € N, (¢,r) = 1}, and for (¢,r) = 1, we have
Soo,1/s(m,n;csy/r) = Y(C)Q(Q)S(mﬁ n; sc)
i T

where S(...) in the right-hand side is the usual (untwisted) Kloosterman sum.
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The main feature here is the presence of the character outside the Kloosterman sums,
as opposed to (4.2)). It is proven in a way identical to [DI82b, page 240], keeping track
of an additional factor X(D) in the summand.

4.1.2. Normalization In order to state the Kuznetsov formula, we first fix the
normalization. We largely borrow from [BHMO07a]. We also refer to [DFI02| Section 4]
for useful explanations on Maaf} forms, and to |[Pro03] for a discussion in the case of
general multiplier systems.

For each integer k > 0 with £ = x (mod 2), we fix a basis By(g, x) of holomorphic cusp
forms. It is taken orthonormal with respect to the weight & Petersson inner product:

— dxd .
(f. ahe = L\H VIR (=),

We let B(q,x) denote a basis of the space of Maafl cusp forms. In particular they
are functions on H, are automorphic of weight « € {0,1} (meaning they satisfy [Pro03|
formula (5)]), are square-integrable on a fundamental domain and vanish at the cusps
(note that when k = 1, they do not induce a function on I'\H). They are eigenfunctions
of the L%-extension of the Laplace-Beltrami operator

A 0? 0? .0
=Y (8x2 + 87342) R

This operator has pure point spectrum on the L2-space of cusp forms. For f € B(q, x),
we write (A + s(1—s))f =0 with s = 2 + ity and t; € RU[—i/2,i/2]. The (t7)ren(q)
form a countable sequence with no limit point in C (in particular, there are only finitely
many t; € iR). We choose the basis B(g, x) orthonormal with respect to the weight zero
Petersson inner product. Let

0:= sup |Jmty|, (4.6)

feB(a,x)

then Selberg’s eigenvalue conjecture is that =0 i.e. t; € R for all f € B(g, x). Selberg
proved that 8 < 1/4 (see [DI82b, Theorem 4]), and the current best known result is 6 <
7/64, due to Kim and Sarnak [KimO03] (see [Sar95| for useful explanations on this topic).

The decomposition of the space of square-integrable, weight « automorphic forms on H
with respect to eigenspaces of the Laplacian contains the Eisenstein spectrum &(g, x)
which turns out to be the orthogonal complement to the space of Maafl forms. It can be
described explicitely by means of the Eisenstein series Fy(z; % + it) where a runs through
singular cusps, and ¢ € R. Care must be taken because these are not square-integrable;
see [IKO04, Section 15.4] for more explanations.

Let j(g, z) := cz + d where g = (£ ;) € SL2(R). We write the Fourier expansion of f €
By (g, x) around a singular cusp a with associated scaling matrix o4 as

floaz)j(0q, 2 pra (47n)* %e(nz). (4.7)
n>1
We write the Fourier expansion of f € B(q, x) around the cusp a as
F(0az)e irargi(@az) — pra Win (47T|n|y) (nz)
n#0 "
where the Whittaker function is defined as in [Iwa02] formula (1.26)]. Finally, for every

singular cusp ¢, we write the Fourier expansion around the cusp a of the Eisenstein series
associated with the cusp ¢ as

B, (Ua + Zt) —ikargj(oa,z) _ Cl,c(t)yl/H“ + 627c(t)y1/27it + cha(mt)WLg
n#0

o
2

. (47[nfy)e(nz).
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4.1.3. The Kuznetsov formula Let ¢ : R; — C be of class C*>° and satisfy
6(0)=¢'(0)=0, ¢V(z) < (1+2)"*7" (0<j<3) (4.8)

for some 1 > 0. In practice, the function ¢ will be C* with compact support in R} . We
define the integral transforms

P(k) := 4 J:o Jk,l(x)¢(x)d§, (4.9)
30 = s |Gt — (1) aate)o) 2 (4.10)
G(t) := 8" cosh(rt) L Kzlt(x)qﬁ(x)d?x (4.11)

where we refer to [Iwa02, Appendix B.4] for the definitions and estimates on the Bessel
functions. We have borrowed the normalization from [BHMO7b|, apart from a constant
factor 4 which we included in the transforms. The sizes of these transforms is controlled by
the following Lemma (we need only consider [¢| < 1/4 in the second estimate, by Selberg’s
theorem that 6 < 1/4). The bounds we state are not the best that can be obtained, but
they will be sufficient for our purpose.

LEMMA 4.4 . If ¢ is supported on x < X with ||¢\) || < X7 for 0 < j < 4, then

|9(2)]
1+ [t"

|6(t)] + 6(t)] <

+o(1)] < (teR), (4.12)

o+ Ll f, (L2

1+ X 1+ Jt[3
1+ X2
_— te[—i/4,1/4]).
1+X ( E [ Z/ 72/ ])

Proof. These bounds are analogues of [DI82b, Lemma 7.1] and [BHMO7b),
Lemma 2.1]. Taking into account the factor t” in front of ¢(t), the arguments there
are easily adapted. The only non-trivial fact to check is that the decaying factor in (4.12))
only requires the hypotheses ||¢)||, < X7 for j < 4. This is seen by reproducing the
proof of [BHMO7b| Lemma 2.1] with the choices j =1 and i = 2. O

Recall that « is defined by x(—1) = (—1)*. We are ready to state the Kuznetsov formula
for Dirichlet multiplier system and general cusps.

LEMMA 4.5. Let a and b be two singular cusps with associated scaling matrices o4
and oy, and ¢ : Ry — C as in (4.8). Let m,n € N. Then

1 4/
Z ESab(m,n; c)cﬁ(w) =H+E+M, (4.13)
ceC(a,b)
3 %Sab(m, —n; c)¢(47r ch”) =&+ M, (4.14)

ceC(a,b)
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where H, £, M (“holomorphic”, “Eisenstein”, “Maaf}”) are defined by
He= S S0 SRk mnpra(m)pse(n), (4.15)

k>k fe€Br(a:x)

k=r (mod 2)
em X | a0 s palm Dol (4.16)
Mim Y ) s aratmlossn) (417)
fGqu)
) I ﬂt)pwm Dpeo (=, t)dt, (4.18)
M= Z m*/z)pfum)pfb(—n). (4.19)
€B(q

Proof. For a =b = oo, the formula and the case kK = 0 of can be found
in Section 2.1.4 of |[BHMO7a]. The extension to general cusps a, b is straightforward.

The case kK =1 of was obtained by B. Topacogullari (private communication).
We restrict here to mentionning that it can be proved by reproducing the computations
of page 251 of [DI82b| and Section 5 of [DFI02]] O

The right-hand side of the Kuznetsov formula (the so-called spectral side) naturally
splits into two contributions. The regular spectrum consists in H, £ and the contribution
to M of those f € B(q, x) with t; € R ; the conjecturally inexistant exceptional spectrum
is the contribution to M of those f with ¢; € iR* (similarly with & and M’). The
technical reason for this distinction is the growth properties of the integral transforms.
Indeed, when X is small (i.e. when the average over the moduli of the Kloosterman sums
is long, since X =< y/mn/c), we see from Lemma that while ¢(t), ¢(t) and ¢(t) are
essentially bounded for ¢ € R, ¢(it) is roughly of size X ~2I*/ when t € [~1/2,1/2].

We remark that in contrast with other works (e.g. [BM15b]), we do not make use of
Atkin-Lehner’s newform theory, nor of Hecke theory. In fact, we do not use any information
about the Fourier coefficients pyq(n) and pcq(n,t) other than the fact that Kuznetsov’s
formula holds, so the reader unfamiliar with the subject can go through the following
sections without knowing what they are. The main feature of the Kuznetsov formula
which is used is the decay properties of the integral transforms -, and the fact
that it separates the variables m and n in a way that combines very nicely with the
Cauchy—Schwarz inequality.

4.2. Large sieve inequalities
4.2.1. Quadratic forms with Sqq Given N € N, ¥ € R, A > 0, a sequence (by,) of

complex numbers, a singular cusp a and ¢ € C(a, a), let

BaA e N) = Y bl NS, e 2V ).

N<m,n<2N

TNote that in the expression for hy(t) given on page 518 of [DFI02|, the term T'(1 — g — 4r) should
read I'(1 — % + ir).
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We also define

1/2

lonlles= (> bal?)

N<n<2N

The following extends [DI82b|, Proposition 3].

LEMMA 4.6 [DI82b| Proposition 3]. We have

|Ba(X 050, N)| < 7(e)°M (qoe) /2N [lbw 1%, (4.20)
|Ba(A\, 050, N)| < (c+ N +VIeN)|bylf2,
|Ba(\, 056, N)| < 972 2NY24 by |2 (4.21)

where the last bounds holds for ¢ < 2 and ¢ < N.

Proof.  Suppose A = 0. The first bound is an immediate consequence of Lemma[4.2] For
the second bound, the proof given in [DI82b| page 256] transposes without any change:
after expanding out the sum Sqq(. .. ), one uses the triangle inequality with the effect that
the factors involving x are trivially bounded. For the last bound, the proof is adapted
with the following modification: the Cauchy—Schwarz inequality yields

B0, NP <ol Y bbmaxCrax(rale( ") 7 )

N<mi,m2<2N n
01,02
(4.22)
where f(n) is deﬁned as in |[DI82b) page 256, (51 and dg run over residue classes
modulo ¢ satisfying (4.4), and r; := 67 +u(ojd; —1)/y for j e {1,2}, where «; is

determined by (4.5]). The only dlfference is the presence of the x factors. Upon using
Poisson summation on the sum ) f(n), the argument is split in two cases according to
whether a1 = ap (mod ¢) or not. If a; Z a (mod ¢), then one uses the triangle inequality
on so that the x factors do not intervene. If on the contrary a; = e (mod c¢), then
we deduce from that also §; = d3 (mod ¢). The x factors cancel out and the rest of
the argument carries through without change.

The case of arbitrary A > 0 reduces to the case A = 0 by Mellin inversion

1 [itico 1 [~1/2+ico
-~y _ = T Sds =14+ — T —°d
¢ 2mi J (s)y"da =1+ 2m J 1/2—ico (s)y™"ds

1—i00

at y = A\y/mn, using the first expression when AN > 1 and the second otherwise. |

4.2.2. Large sieve inequalities for the regular spectrum We proceed to state the
following large sieve-type inequalities, which extend [DI82b)| Proposition 4].

PROPOSITION 4.7. Let (a,) be a sequence of complex numbers, and a a singular cusp
for the group T'g(¢q) and Dirichlet multiplier x (mod qo). Suppose T'> 1 and N > 1/2.
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Then each of the three quantities

S ok Y | Y e

k<k<T f€BK(q,x) N<n<l2N
k=rk (mod 2)

+K
Z (1 +|tys]) ‘ Z /i sa(£0)

cosh(mty)
FeB(q,x) N<n<2N
[ty |I<T

T +x
14|t 2
> J (Cosh|(|72t)) > an\/ﬁpm(in,t)’ dt, (4.25)
¢ sing. =T N<n<2N

, (4.23)

° (4.24)

is majorized by
O=((T + 5/ (@) N'+*) Jan ).
Here, if a is equivalent to u/w with w|q and (u,w) = 1, then p(a) := (w,q/w)/q.

Proof. These formulas are deduced from two summation formulas, namely the
Petersson formula [Iwa97, Theorem 3.6]

. 1 4m\/mn
1,—p+2mi k Z ESau(mv'rL;C)Jk—l( \éi)
ceC(a,a) (426)
=Al(k —1)v'm Z pra(m Pfa( ),
fEBk(q,X)

valid for k > 1, k = k (mod 2), and a “pre-Kuznetsov” formula [DFI02| Proposition 5.2
which, for general cusps, is

—IF“*%“""W{ Lot YD LSalm nsoyr (V)

42
ceC(a, a)
- 1 © /mn —
t + + — ——H(t + +n)dt
e; )COSh (mts) Ht r)psaCEmlpsalin) + 4m c'zg J—oo cosh(mt) (t:7)pea(Em)pca(Ln)
q,X sing.

(4.27)
for all real r and positive integers m, n. Here,

cosh(rt) cosh(rr)

HT) = o = 1) cosh(n(t 1)

(r,te Cor & £t+1i/2+1i7Z),

Ii(z) = -2z Ji'(—iv)i'“lei,«(vx)dv (x > 0),

where v varies on the half-circle |v| = 1, Re(v) > 0 counter-clockwise. Note that by the
complement formula

2 T 1, €=1,
I'l—%+4 = — X 4.28
[T =5 +n)] cosh(r) {i—|—r2, e=—1. (4.28)
Given the formulas (4.26) and (4.27), the arguments in [DI82b| pages 258-261] are
adapted as follows. When x = 0, the details are strictly identical. Consider the case k = 1
of (#.23). We multiply both sides of (&.26) by (k — 1)e=*~1/Tg ~qa, and sum over k,
m and n. The analogue of the function Fk () defined in |[DI82b| page 258] is (up to a
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constant factor) the function

1 1, (! uw?xJy (ur)du
Er(z) =Y (~1)'26e72/7 :—f"h*J 1
() £>1( ) 2le Jao() o St (T) o (cosh(1/T)2 — u2)3/2°

as can be seen by reproducing the computations in [Iwa82, page 316]|ﬂ We then write

(see |GROT, eq. 8.411.3, page 912])

2 71'/2
Ji(y) = . L cos T sin(y cos 7)dr,

split the integral at A € (0,7/2] and deduce the bound (4.23) by following the steps

in [DI82b| page 259].

Consider next the case Kk = 1 and posmve sign of ( and ( . We multiply both
sides of ( - by 72 cosh(mr)e™ (r/T)? UGy 1ntegrate over r € R and sum over m and n.
The analogue of the function ®(z) of [DI82b| page 260] is the function

b, (z) = J r2e=(r/T) J Ko (xv)dudr.

We use the expression Ko, (y) = fgo e~V CoshE cog(2r€)dE (Rey > 0). For x > 0, we obtain
by integrations by parts

o) 1
O, (z) = —i/aT? L e*(gT)Qf tanhf{ cos(z cosh &) — % J,l cos(zd coshf)d’ﬁ}d&

= z\/%T?S J:O e_(gT)z(l — 2(£T)%) sinh(z cosh f)&,

and from there, the bounds (4.24) and (4.25) are obtained by reproducing the

computations of [DI82b| page 261].
Consider finally the case of negative Sign2 in (4.24) and (4.26). We multiply both
sides of ([:27) by r%cosh(nr)/(3 + r*)e~ /1) "G a,. The analogue of the function ®(z)

of [DI82b) page 260] is now

O_(z) = JOO 72

— 00

' d
e (r/T)? J ‘ KZiT(LUU)?ZdT’a

and we have by integration by parts

1 % —vx cosh &
o_(z) J ¢ -
i

i/mT? J ~(7) ¢ tanh f{ cos(zcosh &) — — 5 dv}d§

21 v

T3 oo , 1 i e~V cosh & d§
. . — (€T 2 j
_ z\/%? L e~ €T (1 —2(eT) ){ sinh(z cosh &) + 7 J_i 3 dv} cosh ¢’

From there, it is straightforward to reproduce the computations of [DI82b|, page 261]

using the bounds of Lemma
U

4.2.3. Weighted large sieve inequalities for the exceptional spectrum The objects we
would like to bound now are of the shape

EyalY, (@)= 32 Y| 37 aintppa(n)
feB(q,x) N<n<2N
treiR

2

TThere is a slight convergence issue in the Fourier integral for yJ; (y), which is resolved by changing b =
cosh(1/T) to b+ ie, € > 0 and letting ¢ — 0.
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where Y > 1 is to be taken as large as possible while still keeping this quantity comparable
to the bounds (14 p(a)N) 3", |an|* coming from Proposition The following is the
analogue of [DI82b], Theorem 5.

LEMMA 4.8. Assume that the situation is as in Proposition Then for any Y > 1,
Eqa(Y.(an)) <o (14 (n(@NY)"?) (1 + (qop(@)N)'/2+) [lan 3.

The important aspect in this bound is that it is as good as those coming from the regular
spectrum (i.e. the upper bound in Proposition in the situation when p(a) =1/q
(which will typically be the case), N < ¢ and Y < ¢/N. Note also that the previous
bound holds for any individual q.

Proof. The arguments in [DI82b, section 8.1, pages 270-271] transpose identicallyﬂ
O

The next step is to produce an analogue of [DI82b| Theorem 6], which is concerned with
the situation when an average over ¢ is done. Deshouillers and Iwaniec make use of the
very nice idea that with the choice a = oo for each g, the roles of ¢ and ¢ can be swapped
in the Kuznetsov formula. Through an induction process, this enhances significantly the
bounds obtained. This switching technique is specific to the choice a = oo for all ¢, with
scaling matrices independent of q.

LEMMA 4.9. Assume the situation is as previously. Recall that x has modulus gy > 1.
Then for all Y > 1 and Q) > qo,

D Eyoo(Yi(an) < (@N)*(Qqp " + N+ NY'2)|lax |3,
q<Q
qolq

where the scaling matrices are chosen independently of q.

Note that now, in the situation when N < @, the parameter Y is allowed to be as
large as (Q/N)? while still yielding a bound of same quality as the regular spectrum.
The final situation is the special case when (a,) is the characteristic sequence of an
interval of integers. Then Deshouillers and Iwaniec are able to provide an even stronger
bound [DI82b} Theorem 7], by enhancing the initial step in the induction.

LEMMA 4.10. Assume that the situation is as in Lemma Assume moreover
that (an)N<n<on is the characteristic sequence of an interval of integers. Then

Z E 7OO(Y7 (an)) < (QN)E(qu_l 4+ N+ (NY)1/2)N.

q<Q
9lq

In the situation when N < @Q, the parameter Y can then be taken as large as Q?/N
while still yielding an acceptable bound.

TNote that in the last display of the proof [DI82b) page 271], L(Y) should read L(Y ~1).
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We now proceed to justify Lemmas[4.9]and For the rest of this section, we rename ¢
into goq, so that now ¢ runs over intervals. The object of interest is

S(Q7Y7 N, 8) = Z Z YQIth‘ Z anns+1/2pfoo(n)

Q<q<16Q feB(qoq,x) N<n<2N
ty€iR

‘ 2

LEMMA 4.11. Let N,Y,Q > 1 and a sequence (a,,) be given. Then

o NY dt
S(Q,Y,N,0) <. J S oY i) g
oo B0 (4.29)
N NY 9
+(62)/]\[) (Q+ 1/2 1/2 )”a’N”Q
9 "Q
Moreover, if (a,,) is the characteristic sequence of an interval, then
S(Q,Y,N,0) <. (NY)*(Q+ N+Y)N (4.30)

Proof of , The arguments in |[DI82b, pages 272-273] are adapted with minimal
effort; however we take the opportunity to justify more precisely one of the claims made
there. Fix a smooth function ® : R — [0,1] supported inside [1/2,5/2] and majoriz-
ing 171 9). Letting g(q) = ®(¢/Q) and ¢(x) = ®(Y'x) (these kind of homotheties of & we
refer to as test functions) we have

S(Q,Y,N,O) < |81‘7

S = Zg(q) Z cosh 7rtf ‘Za” “ps00(n)

q>1 feB(q0q,x)
thiR.

‘ 2

This is seen by approximating the Bessel function in the definition of 5 by its first order
term, as in [DI82Db)| formula (8.1)]. Opening the squares in S; and applying the Kuznetsov
formula and the large sieve estimates (Lemma and Proposition B, one gets

S = ZamanSg(m n)+ 0. ((QNY)*(Q + q1/2 Z\an|

m,n

Sa(m,mn) := Z M(b(@)smm(m,ch)’

2, q0ae T qoge

Letting A(z) = hyn,c(z) = ¢(2)g(ZX2"), one applies the Kuznetsov formula for the

qocT
group I'y(goc) (which requires that th(e scaling matrices be independent of ¢) and obtains

1/2 1/2 Z|a”|

81 < |85+ O ((QNY)* (Q +

D DI S Ry )

m,n C<c<16C feB(qoc,x)
ty€iR
Note that h(tf) = hpn.c(tf) =0 unless C' < ¢ < 16C, where C = 7NY/(goQ). Let

2mith

Kipi(z) = m(bit(fﬂ) - (_1)HJ72it(x))v
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and g(s fo )z~ 1dz be the Mellin transform of g. Then

%u) _ % | an () | Ktolaotaaar.

Inserting into the definition of Ss and using the triangle inequality, we obtain

Sy < J Z Z ’ Za m 1+’LT)/2 (m)H Z ann(lfi‘r)/proo(m) %

C<c<L16C feB(qoc,x) ™
ty€iR

X ’ J:O lCm(a:)m”qb(x)dm‘dT.

From there, the arguments in [DI82b)| page 273] apply and yield

’J Kﬁvt(x)x”gb(x)dx’ <, Y2|tf| +Y*®
0

from which the claimed bound follows in the same way as [DI82b)| page 273]. O

Proofof (4.30). Assume that (a,)n<n<an is the characteristic sequence of the integers
inside (I, Np] for some Ny < 2N. We proceed as in [DI82b| page 276]. By applying the
Kuznetsov formula and the large sieve inequalities, one obtains

S(Q,N,Y,0) <. Y Z— > qb(“m)sm(m,n;qqoc)

0<q<160Q e>1 109" N <, dogc

N1+5
+(Q+ i )N

dp

for a test function ¢ supported inside [1/(2Y),5/(2Y")]. Here one may restrict summation
to C/4 < ¢ < 8C for C:=7NY/(qoQ). Let k := gogc. The first term above is majorized
by

7= @0 Y | Y oY) )|

k=qoQC N<m,n<N;
qlk

Let ¢(z) = o= [ 2~ dt, where the Mellin transform ¢(s = [ ¢(z)z*~'dz satis-
fies ¢(i ) (1+¢ ) , so that (after reinterpreting ¢ by 2t)

T < (quC)_H‘EJ Z ‘ Z (mn) " e((m — n)¥)Sy(m, n; k)‘dt
quoQC' N<m,n<N;
qolk

for some ¥ € [0,1) (depending on the scaling matrix). By m~" = N; " + it fm u~ = 1du,
we obtain

T < (@QC)™'  sup > Uik, M',N"),
NN’ M'SNy ) S
9|k
N = \ 3" e((m — n)9)S, (m,n; k)’.
m<M’
n<N’

Opening the summation in S, we have

Uy (k, M',N'") < Us(k, M’,N") := ‘ 3 (—+mz9)H 3 (——m?)‘

§ (mod k)X m<M’ n<N’
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It is crucial to note that the quantity on the RHS also exists for £ not multiple of ¢g, so
trivially

T < (¢QC)~ " sup > Us(k,M',N'),
N<M'N'SNi S

From there on, the calculations in [DI82b, page 276] apply and yield, in the notation
of |DI82b| Lemma 8.2],

UZ(ka M/a NI) < Z fAM’ (m)e(mﬂ)fl\//(n)e(inﬁ)s(mv n; k)
m,ne€Z
The proof of Theorem 14 of [DI82b] follows through, and yields for all K > 1,
> Us(k, M',N') <. (KMN)*K(K + MN).
k<K
Taking K =< qyQC, we conclude that
T << (90QC)*(90QC + N?).
The rest of the arguments in [DI82b|, page 277] applies and yields
S(Q,N,Y,0) < (NY)(@+ N +Y)N
as claimed. ]
Proof of Lemmas |4.9 and In addition to the recurrence relation (4.29)), we have
the properties
S(Q,Y,N,0) < (Y/2)Y%8(Q,Z,N,0) (1<Z<Y),

S(Q.1.V,0) <. (QN)*(Q + q{fz)nazvn%.
0

The second one follows from Proposition [{.7] Having these at hand, the induction
arguments in [DI82b, page 274] and [DI82b| page 277] are easily reproduced. It is useful
to notice that qo appears only with negative powers in the error terms, and that its
presence in the denominator of TNY/(gQ) in is beneficial for the induction. [

REMARK. The previous three lemmas used only Selberg’s theorem that 8 < 1/4 (recall
the definition ) One could make the bounds explicit in terms of # and thus benefit
from recent progress towards the Ramanujan-Selberg conjecture. It is straightforward to
check that Lemmas and hold with the right-hand sides replaced by

(L4 (u(@)NY ) (1 + g/ (@) N)'=24) a3,
(QN)(Qay" + N + Y NQI=1) a3,
(QN)(Qqy" + N +Y¥N¥Q! =)\

respectively (compare with [IK04], Proposition 16.10]). We refrain from doing so because
it would not impact the applications considered here.

4.3. Proof of Theorem [2.1]

4.3.1. Estimates for sums of generalized Kloosterman sums We begin by the following
statement regarding the generalized Kloosterman sums Sq(m,n;c). For the sake of
simplifying the presentation of the bound obtained, we discard powers of the modulus q.
This does not have consequences on our applications.
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PROPOSITION 4.12.  Let the real numbers M, N, R, S > 1, X > 0 and the integer ¢ > 1
be given, let x be a character modulo q, let ¢ be a smooth function supported on the
interval [X,2X] such that ||¢\Y) || < X7 for 0 < j <4, and let (a,,) and (b, ) be
sequences of complex numbers supported on M <m <2M, N <n <2N, R<r <2R
and S < s < 25. Assume that (a,,) is the characteristic sequence of an interval of integers.
Then

S anbure Y 6T S L m,tnie)

p e (430

e (q(X + X Y)RSMN)*{Lyeg + Lexc }»

N VR
Lyeg = (1+X—|—\/ﬁ)(l+X+\/RS)1+X\ﬁ||bNRSH27

- N 1+ X1 1/4 VR
Lese = (144 5s)\| g (RS+N) 1+X\ﬁ”bNRS”2

where the Kloosterman sum is defined with respect to the congruence group I'(qrs) with
multiplier induced by x, with scaling matrices 0, and 01,5 that are both independent
of m and n, with 0., independent of r and s as well.

REMARK. If (a,,) is not the characteristic sequence of an interval, then the
bound (&31) still holds with Leye replaced by MY%L.. (see [DI82b, Theorems 10
and 11]).

Proof. This estimate is deduced from Proposition [I.7] and Lemmas [£.8] and [£.10] by
following the computations of Section 9.1 of [DI82b]. It is useful to notice that the bounds
of Lemmas and Proposition (for a € {00,1/s}) decrease with go.

O

4.3.2. Estimates for the complete Kloosterman sums twisted by a character We now
justify the transition from Proposition [f.12] to an estimate for twisted sums of usual
Kloosterman sums S(m,n;c).

PROPOSITION 4.13. Let the real numbers M, N, R, S,C > 1, and the integer ¢ > 1 be
given, let x be a character modulo q, let g be a smooth function supported on [C,2C] x
[M,2M] x (Rj_)?’ such that

8V0+V1+V2+V3+V4g
Acvo Im¥1Onv2 Orvs Qsv4
for 0 < v; < 12. Let (by,rs) be a sequence of complex numbers supported on N < n < 2N,
R<r<2Rand S < s <2S5. Then uniformly in t € [0,1),

Z bnrs X(€)g(c,m,n,r, s)e(mt)S(nF, £mg; sc)
(eng)mt (4.33)
<e (CRSMN(])EQS/Z{Kreg + Kexc} Vv M||bN,R,S||2a

(e,m,n,r,s) K CT"O M "IN V2R3 G (4.32)

(C2S2R + MN + C2SN)(C2S2R + MN + C2SM)
C2S?R+ MN ’

K., :=RS
KZ%.:=C*S?\/R(N + RS).

exc
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Proof. We present the proof in the case where there is a + sign in the Kloosterman
sums. The complementary case is similar. The main issue is separation of variables, as
explained in [DI82b, page 269]. The nuisance is mainly notational. We write

4
g(c,m,n,r, S) = JR‘I sc\l/ﬁG(Zl:c\/E?Elv§2a§37§4)e(_m£1 - ng? - T€3 - 554) H d£]7

Jj=1

by Fourier inversion, where for all (z,&1,...,&) € R x RY,

4
G(x,&1,..., &) = J \ G« (@, 1,y za)e(w1y + - -+ w46a) Hd%y

R :

j=1
B 4\ /x122 (47r./x1z2
- T g 1’(E4\/m’m1’”
By integration by parts, for any non-negative integers (¢, ¢1,. .., 4¢,) with £ <4 and ¢; <2,
‘G N0

W(%ﬁl, &) = [ @mig) J

( / [1 E4
; Rt Ozt0xy' ---0xy

xe(ri&y + -+ x4&s) Hdzj
J

g*(xaxlv"'7x4): -7$4)-

G+l
(T, 21, . .. ,J;4)) X

assuming &; # 0 if ¢; > 0. The derivatives are estimated using (4.32). Choose ¢; =0
or {1 = 2 according to whether |£;|M < 1 or not, and similarly for ¢, ¢3, £4. Then
y—G(x ¢ £) < MNRS?*C\/qR(VMN /(CS\/qR))~*
0xt N (T (GM)?)(1+ (&N)2) (1 + (&R)2)(1 + (€45)%)

We abbreviate further

_ _ A+ (EM)P)A+ (N (L + (&R)*)(1 + (45)?)
¢($) —¢517...,£4(1') = MNRSQOMB G(l‘,fl,...,€4)-

This function satisfies the hypotheses of Proposition Wit X =vMN/(CSVqR),
uniformly in &;. Define

gn,7',s = bn,7',se(_n(§2 + g/(TQ)) - 7"53 - 354)
Finally, by Lemma [4.3] with the scaling matrices

0o = (é &ft), 71/ = (s\\//r% 1/\()/7"’61)’

T(S(rF, T sc)e(m(t — &) + 15/(r0)) = Soeya(ms 5 56/77).
Proposition [1.12] can therefore be applied and yields

b 1 4\/mn
m;‘,s e (C%—l c84/7q ¢( scy/Tq )Soo,l/s(m,n; s¢\/Tq)

(s,rq)=1
¢*/>(CMNRS)®
CSvVqR

we have

<e (Wreg + Wexc)\/MHbN,R,S”27

TNote that in |DI82b, page 278], some occurences of X should read X 1.
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with
W2 _ RS (C?S?R+ MN + C?SN)(C?S?R+ MN + C?SM)
ree C252R+ MN ’
W2 _=C3S?\/R(N + RS).
From the definitions of ¢ and G, we deduce the claimed bound. |

4.3.3. Bounds for incomplete Kloosterman sums In this section, we prove Theo-
rem As a first reduction, we remark that it suffices to prove the result when the
sequence by, , s is supported on N < n < 2N, by summing dyadically over N and by
concavity of /- (losing a factor (log N)/? in the process). Secondly, we let so (mod ¢)*
be fixed and assume without loss of generality that

bp,rs = 0 unless s = 59 (mod ¢). (4.34)

We will recover the full bound (2.3) by summing over sy (mod ¢q)* (losing a factor ¢'/2
in the process by concavity). Let

oo

gle,m,n,r, 8) := J g(c, & n,r, s)e(Em)dE. (4.35)

— 00

By Poisson summation, we write the left-hand side of ([2.3) as

Z bors Z e(ng) Z gle,d,n,r, s)

G, T8 6 (mod sc) d=46
(grisc)=1 (6,s¢)=1 d=dp (mod q)
c=cp (mod q)

bn T8 75 . d SC 57
Z E Z e(n%) gn:g(c7 m/sqc,m,r, s)e( _ qOSC - %)

C;M,Ty8 (8,s¢)=1
(grse)=1
c=co (mod q)
b —md
_ Z n,r,sg(c’ m/scq,n,r, s)e(m>5(7ﬁ, —mg; sc) (4.36)
c,m,n,r,s scq q

(gr,sc)=1
c=co (mod q)
where S(...) is the usual Kloosterman. Let M > 0 be a parameter. We write as Ag +
Ao + B, where Ay is the contribution of m = 0, A is the contribution of indices m such
that |m| > M, and B is the contribution of indices m with 0 < |m| < M. By the bound
for Ramanujan sums [IKO04, formula (3.5)],

1 b’n 8 . —
dv s S Pl oo )i s0) < 02108 S DINR/SY 2 by 2
(q?j,sgil
c=cop (mod q)

By repeated integration by parts in the integral (4.35)), for fixed &k > 1 and m # 0 we
have
ﬂ)k
Im|/
Taking k = 1/eo, we have that there is a choice of M = (SCqD)s+9(=0) SCq/D such that
the bound

gle,m/(scq),n, 1, 5) < Dl—kﬂ—so)(

i(c,m/(scq),n,r,s) <. 1/m? (Im|] > M)
holds. Bounding trivially the Kloosterman sum in (4.36]) by sc, we obtain
Ao <e (SCgD)=HOE0) g 2DINR/S}'/?||bw r 5|2 (4.37)
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which is also acceptable (if ¢ is small enough, the factor g 2tet0) g bounded).
There remains to bound B; we may assume that M > 1 for otherwise B is void. By
dyadic decomposition,

|B| < log2M  sup  |B(My)],
1/2< M <M

—mdo SoCo

B(My) := Z Mg(q m/seq,m,r, s)e(

c,m,n,r,s scq q

(gr,sc)=1
M, <|m|<2M;
c=cop (mod q)

)S(n?, —mg; sc).

We insert the definition of § after having changed variables £ — £scq/m, to obtain

DM,
M)| < ——  sup B'(My, )],
BN < Go s ()
where
bnrs —mdosoco _ _
/ L )T —nios0t0 . .
B'(My,¢€) := CW;TS o g(c,fscq/m,n,r,s)e( . )S(nr7 mg; sc). (4.38)
(qr,sc)=1

M <|m|<2M;
c=co (mod q)

By orthogonality of multiplicative characters, we have

1
Bl(th) = Z X(Co)S(Ml,f,X),
Mip(q)
x (mod q)
where
—mdySgCo
(tha . Z Z bnrs Z X(C)gl(Qm,Tl,T,S)G(%)S(nf, 7’[716; .SC)7
(CvTQ):l

(7qr) 1|m\ M1
g1(e,m,n,r, 8) = M17n_1g(c7 Eseq/mym, 1, s).

Proposition can be applied to the sums S(My,&,x), at the cost of enlarging the
bound by a factor O((C DN RS)%%¢0) in order for the derivative conditions (4.32) to be
satisfied. We obtain

S(Mlv 57 X) <e q3/2(CDNRSQ)E+O(EO){Lreg + Lexc} V M1||bN,R,S||27
12 RS(0252R+M1N+C2SN)(0252R+M1N+C2SM1)
reg "= C252R + M1 N ’
L. :=C*S?*\/R(N + RS).
From there, computations identical to [DI82b)] page 282] allow to bound
C?MN

2, < RS(C?SR+ M;N +

reg

+ C?S(My + N)).

We deduce successively

e+O0(go) 42V M1 qDV

|B(M;)| <. (CDNRSq) L*(My)|lby,r,s]l2;

L*(M;)? := RS(C*S*R + M, N + C?*M,;N/R + C2S(M1 + N)) + C3S?\/R(N + RS),
and finally
B <. (CDNRSq)FHOE) gk, (4.39)
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K? := qCS(N + RS)(C + RD) + C*DS+/(N + RS)R.

Grouping our two bounds (4.37)) and (4.39), and summing over sy (mod ¢)*, we obtain
the claimed result.

5. Convolutions in arithmetic progressions

In this section, we proceed with an instance of the dispersion method, for convolutions
of two sequences one of which is supported in [z7, 2'/37"] for some 7 > 0. This
extends |BFI86| Section 13] and [Fou85| Section V].

Given a parameter R > 1, an integer ¢ > 1 and a residue class n (mod ¢), we let

Xq(R) = {x (mod gq), cond(x) < R},
and

uR(n;q) = 1,=1 (mod ¢q) — @ Z X(n)

_ 1 Z (o). (5.1)

PlD) (ot o)
cond(x)>R

Note that this vanishes when ¢ < R or (n,q) > 1. We have the trivial bound

Rr(q)
ur(n;q)| < 1,=1 (mo + —=. 5.2

It will also be sometimes useful to write

-1 1
Ur(n;q) = 1n£ mo - - x\n). 5.3
(15) = (Lumt o @(q)> ¢(q) X(mzodq) ) 53)
1<cond(x)<R

THEOREM 5.1. Let M, N, Q, R>1 and n be given, with x:= MN and z'/* <
Q. Then there exists § depending at most on n such that the following holds. Let two
sequences (o), (Brn) supported in n € (N,2N] and m € (M, 2M] be given, which satisfy
for some A > 1,

|| < T(m)4, 1Bn] < 7(n)A. (5.4)
Let a1, a2 € Z ~ {0}, and assume that
2" <N < QP
Q < &V/2+9, (5.5)
R, |a1], |as| < 2°.
Then for small enough n, we have

> > amBaug(mnaras; q) < z(logz) DR (5.6)

Q<q<2Q
(q,alqaz):l (n,az2)=1

The implicit constants depend on 1 and A at most.

Introducing ug(n; q) is technically much more convenient than the usual
L(n,g=1

©(q) (5.7)

uy (n; Q) =1,=1 (mod q) —
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Indeed, there are no equidistribution assumptions on our sequences in Theorem

5.1. Bombieri-Vinogradov range

Before we embark on the dispersion method we need an estimate which is relevant to
values of the moduli less than the threshold z!/2—¢.

LEMMA 5.2. Let M,N,R>1. Let x = MN, and suppose we are given two se-
quences (a,,) and (f,) supported on the integers of (M,2M] and (N,2N] respectively,
satisfying the bounds (5.4). Suppose that Q@ < 2'/2/R and R < Q. Then

Z max ‘ Z O Brtir(mna; q)| < x(logz)® D (R + M~1/2 4 N~1/2),

0<a<gq
Q<q<L2Q (a,q)=1 M1

Proof. See [IK04} Theorem 17.4]. Only the case r > R appears in our case. O

5.2. First reductions

First we apply two reductions, following Section V.2 of [Fou85|] and Section 3 of [FI83].
We replace the sharp cutoff for the sum over ¢ by a smooth function v(g) ; and we transfer
the squareful part of n into the number as, allowing us to assume that n is squarefree.
The squarefreeness assumption on n will be useful when dealing with GCD’s (in particular
in equation below). Note also that the statement of Theorem is monotonically
weaker as § — 0, so that whenever needed, we will take the liberty of reducing the value
of § in a way that depends at most on 7.

PROPOSITION 5.3. Let x, M,N,Q, R,n and the sequences (,,) and (3,) be as in
Theorem Assume that (3,) is supported on squarefree integers. There exists 6 > 0
such that for any smooth function v : Ry — [0, 1] with

Lie@2@) = 7(0) < le(@/2.30/2); (5:8)
and |79 o <; Q7B for some B > 0 and all fixed j > 0, under the conditions (5.5),

we have

Z ~v(q) Z O Brtig (mnazas; ¢) < z(logz)° MR~ (5.9)
(q7a132):1 (n,TcLL’;;L:l

The implicit constants depend on 1, A (in (5.4))), B and the function v at most.

Proof that Proposition implies Theorem We replace the sharp cutoff Q < ¢ <
2Q by a smooth weight v(g) such that

Lie(@.2q) < (@) < Lie@1-@-105) 2Q(1+Q~105)]-

We can pick v such that ||7)]| s < Q711095 for all fixed j > 0. The error term in this
procedure comes from the contribution of those integers ¢ at the transition range 2Q <
¢ <2Q(1+ Q') and Q(1 — Q~'%%) < ¢ < Q. Tt is bounded by the triangle inequality,
using our trivial bound and following the reasonning of [BFI86)| page 219 and 240,
choosing Qo = z'%° there. We obtain

Z (1g<g<20 —7(q)) Z O Bt (mnarag; q) < wR(logz)°MQ 1% (5.10)

q n,m
(g,a1a2)=1 (n,a2)=1
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Given our hypotheses R < 2% and @ > x'/4, this is an acceptable error term.
Let K denote the set of squareful numbers:

K={keN: plk=p?k}.

Factor each integer n as n = n'k with u(n’)? =1, (n/,k) = 1 and k € K, so that k < z/3
and (k,ay) = 1. Here p is the Mébius function. There are only O(K'/?) squareful numbers
up to K [ES34], therefore

1
> Z < K='? (K >1).
k>K
keK
Proceeding as in [Fou85| Section V.2] and using the trivial bound (5.2]), we deduce for
any K > 1,

Yo @ Y. amBaur(mnaiaz;q)

(q,algz)zl (n:Lz’gn)lzl
k<K q n,m
ke (ga1a2)=1 (n,kaz)=1

(k,a2)=1
+ O(Rz(log 2)°M K~1/2),
We are left to analyze, for k € K, k < K, (k,az) = 1, the sum

Z v(q) Z amﬂknu(n)QuR(mnaTkag;q).

q n,m
(g,a1a2)=1 (n,kaz)=1

Assume K < 2%. For each fixed k, the sequences (am)m and (k=u(n)?Brn)n. are
supported in m € (M,2M] and n € (N/k,2N/k], respectively. We apply Proposition
with 7 replaced by 1/2, N replaced by N/k and as replaced by kas (the factor k9 ensures

that the condition (5.4) holds for (k=%(n)?Ben)n). If § is small enough in terms of 7, we
obtain, uniformly for k < K,

Z v(q) Z O Benp(n)*ug(mnarkas; q) <k~ 0x(logz) MR

q n,m
(g,a1a2)=1 (n,kaz)=1

Note that the sum Y, ., k' converges. Inserting in (5.11]), we obtain
Z ~v(q) Z O Bntig(mnarag; q) < w(logz)® M (R~ + RK~1/?)

q n,m
(g,a1a2)=1 (n,a2)=1

and so we conclude by the choice K = R*. |

5.3. Applying the dispersion method

Let us prove Proposition Recall that the sequence (f,,) is assumed to be supported
on squarefree integers. Let D denote the left-hand side of ([5.9). By the triangle inequality

|D| = ‘ Z ~v(q) Z amﬁnuR(mmTlag;q)‘ < Z (|am|’ ZZ D (5.12)
(g,a1a2)=1 m,n m qg n
(n,a2)=1
Define a smooth and non-negative function a(m) (not to be confused with our se-
quence ), with a(m) >1 for M < m < 2M, supported inside [M/2,3M] and such
that [|[al) ||, <; M. Note that |a,,,| < 7(m)?a(m) by the hypothesis (5.4). Therefore,
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the Cauchy—Schwarz inequality yields

D] < (; a(m)T(m)A) . ( %: a(m)‘ zq: zn: D

< (logz)°W /2 (81 —2ReSs + S3) 1z (5.13)
where
Si= Y Aahle) D, Bube > o(m)
(q192,a1a2)=1 n1,M2 mni=aiaz (mod ¢1)
(ning,az)=1 mna=ajaz (mod qz)

and Sy and Sz are defined similarly, replacing the sum over m by

LY ymma) Y a(m)xaim),

@(QQ) X2€Xq, (R) mni=ai1az (mod q1)

! Z Z X1(ni@raz)xz(n2aras) Z a(m)xixz(m)

o(q1)p(g2) X1€Xq, (R) x2€Xqy (R) (mn1,q1)=1
(mna,q2)=1

respectively. We will prove
S1 —2Re Sy + S5 = O((log ) Y MN2R2). (5.14)

5.3.1. Evaluation of S3 The term S3 is defined by
> @) r(az) > > BubBa Y, alm)xa(mmaias)xa(mnsaras).

o(a1)p(g2) X1E€Xq, (R) T2 (m,q1q2)=1
X2E€Xqy (R) (13:4502)=1
(5.15)

Ss =

(q192,a1a2)=1

Let W := [q1,q2] and H := W€ /M. By Poisson summation (Lemma ,

Y atmpwem) = w0)
m b (mod W)*
TERDS a(%) 3 e(%))ﬁﬁ(b)—&—Og(Wa).
0<|h|<H b (mod W)*

The conductor of x;1X3 is at most R, so that [IK04], Lemma 3.2]|f| yields

> e(ﬁ)X1E(b) <RYZ N

b (mod W)* W d|(h, W)

We deduce

Za(m)xlﬁ(m) = % Z x1xz2(b) + O (WeR'?).
m b (mod W)*

The error term is O(2?) while the trivial bound is M > /3. We deduce
Ss = a(0) X3 + O(MN2z~1/2),

TNote that in Lemma 3.2 of [IK04|, 7(x) should read 7(x*) and an additional factor x*(m/(dm*))

should appear in the summand.
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where, having changed b to bajasz,

K= Y (a1)7(42) 3 S BB Y. xa(bna)xa(bng).

i 91, g2]0(q1)p(q2) X (R) T b (mod W)*
(q192,a102)=1 X2EXqy (R) (1:4502)=1

By orthogonality,
Z x1x2(b) = (W)l e
b (mod W)X

where by x1 ~ x2 we mean that x; and y2 are induced by the same primitive character
— which necessarily has conductor dividing (g1, g2). Therefore,

Z X1(n1)xz(n2) 1y vy, = Z Xo(n1mz).
X1€Xq, (R) X0EX (g1 ,q9) (1)
X2E€Xq, (R)

Since ¢([q1, g2]) = ¢(q1)¢(g2)/¢((q1, g2)), we deduce

Xs = Z V(q1)7(g2) Z Z By Broxo(mimz).  (5.16)

_ (91, a2]((q1, G2))
(q192,a102)=1 X0€X(qy ,q5) (R) (njzllj’:;):l

5.3.2. Evaluation of S The term S, is defined by

82 = Z M Z ﬁ”lm Z Z Oz(m))@ (anCTlag).

(q192,a1a2)=1 <,0(CJ2) (n '7211-7:22):1 X2€Xq, (R) m=aiazny (mod q1)
(5.17)
As before, let W = [q1, 2] and H = W1+ /M. By Poisson summation,
a(0
3 a(m)ya(m) = % 3 x2(b) + O. (R2 n Wf), (5.18)
m=aiazn; (mod q) b (mod W)X

b=aiazny (mod q1)

> xQ(b)e<%) ‘ (5.19)

0<|h|<H b (mod W)X
b=aiazny (mod q1)

where

R2 =

SIS

We wish to express the sum over b as a complete sum over residues. We write W =
[91, 2] = ¢ids, where (¢h,q1) =1 and ¢1|¢?° (meaning that p|g] = plg1). Note that
then ¢1]¢} and (g}, ¢5) = 1. Let

¥ (Z/0Z) x (Z/¢3Z) — (Z/WZ)
denote the canonical ring isomorphism (so 1 ~! is the projection map). Note that
by = x2(¥(1,b2))

defines a character (mod ¢}) of conductor at most R. Finally, we have

1 _d &%
= =B B yq ),
Wty ety

The sum over b in (5.19) is in absolute values at most

) ’ > XQ(w(l,bz»e(bQqul)’ (5.20)

b1 (mod g¢7)* b2 (mod g35)* 2
bi=ajazni (mod q1)
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since t(b1, b2) = by (mod ¢1), and by factoring

X2(¥(b1,b2)) = X2(¥ (b1, 1))x2(1(1, b2)).
The sum over by in ((5.20) is a Gauss sum; by [IK04, Lemma 3.2],

bohg,
‘ Y ek ( : 1)‘<R1/2 > d (5.21)
by (mod g)* d|(h,q})
Note that
e(q1) oo
1= = (g2, 5.22
Z (p(ql) (QQ a; ) ( )

b1 (mod ¢7)*
bi=ajazn1 (mod q1)

which is a shor-thand for Hp“llqm plgy P”- Multiplying (5.21) with (5.22) and summing
over h, we obtain

Ro <. WoT(q2)(q2,¢°)RY.

Inserting this estimate into (5.18) then (5.17)), the error term contributes

<. R3/2N2We Z 7(q2)(g2, 47°) < x35/2+5N2Q.
~ a2
q1,92<Q
In the last inequality we used standard facts about the kernel function k(n) = Hp‘ P, for
which we refer to |[dB62]. The error term above is acceptable, since
23012 < g1/2H3 < 42/3-20 < N R=2,0
if § is small enough. We therefore have

Sy = a(0)Xs + O(MN?R™?)

with (having changed b into ba;az)

Xo = Z M Z B B Z x2(n2) Z x2(b)-
(q192,a1a2)=1 [q17 qQ}SD(qQ) ny,n2 X2€Xq, (R) b (mod W)X

(nj,9502)=1 b=n1 (mod q1)

Fix x2 € X4, (R) and let X2 (mod g2) be the primitive character inducing x». If S denotes

the sum over b above, then S = x3(¢)S for any ¢ (mod W)*, ¢ =1 (mod ¢;). Thus S =0

if x2 is not ¢i-periodic, that is, if g2 1 (¢1,¢2). If on the contrary gz2|(q1,¢2), then S =

X2(M)e(W)/o(q1) = X2(m1)¢(g2)/¢((q1, 42)). We therefore find

Y el = Ay e,

q21(q1,q2
b (mod W)X o((q1,92))
b=n1 (mod q1)

Summing over x2 € Xy, (R) and since (ning, (q1,¢2)) = 1, we obtain

q __
Z x2(n2) Z x2(b) = (il(zq))) Z Xo(M1nz2),
X2E€Xq, (R) b (mod W) P 2 X0€X(qy,q2) (R)

b=n1 (mod q1)

and so X9 = X3.
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5.4. Second reduction

‘We now wish to evaluate

Si= > y@)(e) > Bry By > a(m).

(q192,a1a2)=1 nLne m=aiazn; (mod qp)
(nj,qja2)=1 m=ajaznz (mod g2)
n1=nz (mod (q1,92))

The expected main term is «(0)X;, where

X= 3 dable e e (5.23)

[Q17 Q2] ni,no
(nj,qja2)=1
ni1=ng (mod (q1,92))

(q192,a102)=1

For all integers qo, ng with (no,qo) = 1, let S1(qo, no) denote the contribution to S; of
those integers satisfying (¢1,¢2) = qo and (n1,n2) = ng. Then we have

|S1(g0,m0)| < a® Y > > a(m)

q1,92<Q/qo n1,n2<XN/ng aznonam=ai (mod gogq2)

(g0g2,a2m0)=1n1=n2 (mod qo) q1|maznoni—ay
(n2,90q2)=1
< 2 E E E a(m)7r(|magsnon; — ay|)
32xXQ/no n1,n2xN/ng mazngna=a1 (mod qogz2)
(g0q2,a2mn0)=1n1=n2 (mod qo)
(n2,90q2)=1
- MN?2 MN
Le ¥\ 55+ —-
URLG) 040

where we used our hypotheses on M and |a;| to justify that m|a; cannot be satisfied.
Therefore, for some § > 0 and all 1 < K < 2%, we have

Z |S1(go,m0)| < 2 MN?K .

(go,m0)=1
max{qo,no}>K

Similarly, if X;(go,n0) denotes the contribution to X; of indices with (¢1,q92) = qo
and (n1,n2) = ng, we have

N N
> 1 X1 (g0, m0)| < 2° > — (— + 1) <. 2°N2K~L.
domo \NqoTo
(go,m0)=1 (g0,m0)=1
max{qo,no}>K max{qo,n0}>K

By choosing K appropriately, it will therefore suffice to show that
S1(q0, no) = @(0)X1(go, no) + O(MN?z~°) (g0, no < 2°).

5.5. Evaluation of 81(qo, no)

Let the integers qo, no be coprime, at most z°, such that (qo,a1a2) = (ng,as) = 1. Let
us rename ¢ into gpq; and g2 into goqo, and similarly for ny and ns. We wish to evaluate

S1(go, o) = Z 7(q091)7(q042) Z Bron Brons Z
41,92 ni,n2 =aiasngn; (mod )
(q192,a1a2)=(q1,92)=1 (nomj,qoqjaz)=1 m=a1@2mon; (mod gog;)
(nl,nz):].

n1=nz (mod qo)

Using Poisson summation, we have

—

S1(q0,m0) = (0)X1(q0,10) + R1 + O (2 R2)

a(m).
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where, having put W = qoq1q2 and H := WIiTe M1,

- 1 __,h hut
Rl - Z Z fY(qoql)’Y(QOQQ)ﬁnonl6n0n2 Z 704(7)6(7);
w W w
q1,q2 ni,n2 0<|h|<H
(q192,a1a2)=(q1,92)=1(non;,q0q;a2)=1
(n1,n2)=1

ni=n2 (mod qo)
1 2
e Y Y beow
q1,92XQ/qo n1,m2<N/no
and the residue class p (mod W) satisfies
p = aanony (mod gog;) (7 € {1,2}).

We seek an error term O(M N2z7?). The contribution of Ry is acceptable.
We now focus on R;. Recall that 5, is non-zero only when n is squarefree (so
that (ng,n1) = 1). We have the equality modulo 1

= +ay 1
404192 qoq142a2mon1 q0 n1q2 azno
This is found following the steps in [FI83, p.208], but can also be more easily
verified by multiplying each side by ¢oq1g2a2ngni, and checking the resulting congru-
ence modulo asng, n1qo, goq1 and qoqo respectively. Taking the exponential, we may
approximate

M ai a N1 — Ng q1a2NeN2 a qdoqi192m1 (mod 1). (5.24)

h h
o(— Ty ol
doq1492a2noM1 (JOQ1(]2|a2|non1

Inserting in Rq, the error term contributes a quantity

lar|goH Q? N? . on -1
B ialL C i S NQ>*M
w20 Q2N ¢ o < 2%|a1|NQ

which is clearly acceptable. We therefore evaluate

Y(g091)7(g091) —
/1 = Z Wﬁnomﬁnoma(

).

N1 — N2 qi1aznon2 qoq192M1
elarh —arth—————).

qoq192 q0 ni1qs aamno

q1,92,M1,N2

Now we insert the definition of & as

a( ) = Qq192 JR a(qoq1q28€)e(—h&)de,

qoq192

we detect the condition (a1, q1¢2) = 1 by Mébius inversion, and we split the sums over ¢y,
g2 into congruence classes modulo ngas. We obtain

M
IR} | <. x°(nolaz|)? ng sup sup sup RY (5.25)
ExMqo/Q?  &1,02la1 Ay, Ay (mod ngasz)™
(51,62):1
(6102,n0a2)=1
where
9_/ = Z '7(q051q1)7(QO52Q2) Z ﬁnonlﬁnong X
q1,92 ni,n2
(81q1,62q2)=1 (nonj,qod;q5a2)=1
q]-E/\jéij (mod mnpaz) (n1,n2)=1

n1=ng (mod go)

qO/\l)\Q’ﬂl ny — N9 a2n0n251q1
x> aéqdidaqiga)e(—Eh — arh )e<a1h " 1 Gats )

asn
0<|h|<H 270
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We write R in the form (2.3]), with

ny —n2
c+q, d+q, n+ah , T4 asngnady, S<nida, q < ngaz, (5.26)

do
HN N§
Cei, D<—i, Ne& R < as01 N, S — 2
qo02 qo01 domo 1o
Here bold letters denote the “new” summation variables in (2.3)). The analogue of the
sequence by, r s is defined through

bnrs = Z Z ﬁnonlm Z 6(—fh — alh@).

asm
ny ng 0<|h|<H 270
(nomj,q0djaz2)=1 gon=a1h(ni—n2)
(n1,m2)=1

ni=n2 (mod qo)
r=asngonsdi
s=n102

Note that this has at most one term since the case my = no is prohibited by the
conditions (n1,m2) = 1 and N > 2. Note also that it is void unless (r,s) = 1 (here we use
the fact that f is supported on squarefree integers). The quantity g(c,d,n,r,s) in (2.3)
is

¥(q0d1d)y(god2¢)(Egod102cd).

The derivative conditions (2.2)) are satisfied with ey = B, by virtue of our hypothesis
on v. Note that the congruence and coprimality conditions on ¢; and ¢- translate exactly
into

c = A0y (mod q), d=Ad; (mod q), (d,cs)=(c,r)=1.

At this point, we are in a situation analogous to |[BFI86, formula (13.2)]. Applying
Theorem [2.1] and estimating the resulting expression as in [BFI86)|, page 241], we obtain

R/ll < xO(é)A1/281/2’
where A < HN? is the contribution coming from [|by g 5|3 in (2.3)), and
B< @Q*N’N(H+N)+Q*N*VH + N+ Q*HN < (QN)*{N(H + N) + QVH + N}.

We have H < 2PN, so that B < Q*N22°0)(N? + Qv/N) (compare with [BFIS6,
formula (13.4)]). Inserting in (5.25)), we obtain

Rll < xO(é)MNQ(Q—lNSM + Q_1/2N3/4) < p1/2H00) pr N2

by the hypothesis N < Q2?/3~". Taking ¢ sufficiently small in terms of 7, we have the
required bound O(M N2z7?).

5.6. The main terms

The main terms X; and X3 defined in (5.23]) and (5.16)) are real numbers. They combine

to form

X1 —-X3= Z W Z B Broutr(ninz; (g1, ¢2))-

(q192,a102)=1
’ (nj,q;a2)=1

Notice the summands are zero unless (g1, g2) > R. We use Mobius inversion

Lojagp—1= Y nldy)

d;l(gq;,m;)
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to detect the conditions (n;, ¢;) = 1, in order to separate the sums over nq, ny from those
over q1, q2. We insert the definition of ug in the form

1
ur(mimz; (g1, ¢2)) = ———— x (1) x(n2).
@((qh CI2)) X plgn:itive
cond(x)>R
cond(x)|(q1,92)
We can assume (dj,cond(x)) =1 because of the factors x(n;). Quoting from |[Ten95,

)
Theorem 1.5.4] the bound ¢(q) > ¢/ loglog q, we obtain

2
1
XX oon) XY (X ) XTI S ]
R<r<Q dids ez D927 piimitive =1 (n.ag)=1
d; <Q/r 4;=Q x (mod 7)
rd;lq;
The sum over q1, g2 is O(1/(r?d1dz)). By Cauchy—Schwarz, and the symmetry between n;
and ns, we obtain

XX <logr? Y2 Y 4 Y [ Y fuxtn)

d< N R<r<@Q X primitive (n,as)=1
x (mod )

‘ 2

For all ¢ > R, the multiplicative large sieve inequality (Lemma and our hypothe-

sisyields
=Y X | X st < (ogn)r(@ A+ NN

R<r<tx primitive (n,az)=1
x (mod )

after ignoring denominators d. We obtain by partial summation
L(GQ  [¢GW
2
X — X3k (logm) Z E( 02 +JR e
d<N

By hypothesis R < z°, so we have the desired bound X; — X3 <« N2R~2(logz)°W).
Given @(0) < M, our claimed estimate (5.14]) is proved, and therefore Proposition
as well.

dt) < (logz)°M(N + N2R™2).

6. Application to the Titchmarsh divisor problem
The aim of this section is to justify Theorems [T.1] and Recall the definition

T(z):= Y  Alm)r(n—1).

l<n<z
We let
bana) = S Am, b= Y AWm), vl = 3 Am)x(n).
n<x n<x n<x
n=a (mod q) (n,q)=1

Let us recall the following classical theorem of Page [IK04, Theorems 5.26, 5.28].

LEMMA 6.1. There is an absolute constant b such that for all Q,T > 2, the following
holds. The function s — [],<q Il (moa ¢ L(s:X) has at most one zero s = 3 satisty-
ing Re(s) > 1 —b/log(QT) and |Im(s)| < T. If it exists, the zero § is real and it is the
zero of a unique function L(s,X) for some primitive real character X.
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Given a large x, we shall say that Y is xz-exceptional if the above conditions are met
with @ =T = eV!°67_ For all ¢ > 1 for which g|g, we let Y, denote the character (mod q)
induced by x.

6.1. Primes in arithmetic progressions

We deduce from the previous sections the following result about equidistribution of
primes in arithmetic progressions.

THEOREM 6.2. Assume the GRH. For some 6 >0, all > 1, Q < 2240 and all
integers 0 < |a1|,|az| < 2°,

N D
Z (Ql)(l',q, 1 2) tp(q)wq( )) < .

q<Q
(g,a1a2)=1

Unconditionally, under the same assumptions,

1~ Y(asay X
Z (¢($§Q,G1@) _ qu(x) + q|qX(a2a1)¢(Ji Xq)) < xe_é\/@7

= v(q)

(g,a1a2)=1

where the term 1(x; X,) is to be taken into account only if the x-exceptional character X
exists.

Using the Dirichlet hyperbola method (see in particular section VII of [Fou85|), it
follows that the same estimate holds on the condition ¢ < 1% for any fixed ¢ > 0 (the
implicit constants and 6 may then depend on ). Note however that the symmetry point is
at g =~ (z]az|)"/?, rather than z'/2 (so the flexibility of taking Q somewhat larger than z'/2
is not superfluous). We refer to [Fiol2b| for more explanations on what happens when @
is very close to x.

As mentioned in the introduction, the uniformity in a1 and as is an interesting question.
At the present state of knowledge, bounds coming from the theory of automorphic
forms are typically badly behaved in that aspect. By using a more refined form of the
combinatorial decomposition (6.4), Friedlander and Granville [FG92| prove that |a;| <
x/4=¢ is admissible for all € > 0 (in the case ap = 1), with a somewhat larger error term.

For the application to the Titchmarsh divisor problem, the following slightly weaker
statement suffices.

PROPOSITION 6.3. For some § >0, all x > 2 and 0 < |a| < 2°, assuming the GRH,
we have

ba(x) = ¥g(°)

Ta.a) — 2, a) — xlfd. )
q;:; (¢ (x5q,0) — ¥(q°; g, a) @ ) < (6.1)
(g,0)=1
Unconditionally,
_ 2 D) 2.3
Z (w(x;q’ a) _ w(qz;q,a) _ ¢q(1') ¢q(q ) - 1aqx(a)w(x7Xq) ¢(q »Xq))

oy ©(q)

(g,a)=1
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We will focus here on proving Proposition only, because the presentation is slightly
simpler and addresses all the essential issues.

Proof of Proposition Let 1< R< z0 he a parameter. Let

Y
<V ¢*<n<z
(g,a)=1n=a (mod q)

By orthogonality of characters,

s=Y — % S« (6.3)

e wla) (oot @) oo
(g,0)=1

We decompose S; = S + 8] where S; is the contribution of those characters x of

conductor at most R, and
> > Am)ug(n;q).
9<VT ¢*<n<ax
(q,0)=1
We first focus of S;7. By the Heath-Brown identity |BFI86} lemma 5] and a dichotomy
argument similar to [F'T85, Section 2.(a)], the problem is reduced to showing

Z ZZ M(ml).../u(mj)(lognl)uR(nlml...njmjﬁ; q)
Q<qL2Q (1-A)M; <m;<min{M;,z/*
(g,a)=1 ( )(1 A)N;<n; iN ) (6.4)
1<i<y

< z(logz)° VR

where j € {1,2,3,4}, 27/ < A <1/2, and Q, M;, N; > 1 (1 < i < j) are real numbers
such that

Q@ <[[MiNi <o, M <2072,

Let us justify briefly this step. The Heath-Brown identity states that S;© is a linear
combination of the expression on the 1eft hand side of (6.4) for various values of j, with the
conditions q < v/z, m; < /% and ¢% < min; - --mjn; < x. We then localize ¢ in dyadic
intervals, and each n;, m; in intervals [(1 — A) X, X] (X = N, or M;). Having done this, the
subset of (M;, N;) for which the condition @ < ]_L m;n; < x is relevant will only concern
those indices with [], m;n; € [(1 — A)3z, (1 — A)=8z] or [(1 — A)3%¢?, (1 — A)~8¢?]. For
those M;, N;, we apply Lemma or a trivial bound (if ¢ is very small); for the others,
the bound will apply. We deduce respectively

St < zA(logz)°M + zA 3 (log z) VR (6.5)

and optimizing A yields S} < z(logz)?M R=1/9.

Let 7 > 0 be small. The contribution of tuples such that [[, M;N; < 27" is trivially
bounded by O.(x!=77¢) using Lemma Suppose then [], M;N; > z'~". For conve-
nience we rename x = [[, M;N;. Our objective bound for is O(x'~?%) and we now
have M; < /40 if 71 is small enough.

Fix n € (0,1/100]. At least one of the three following cases must hold:

(a) there exists an index k such that Ny > 2!~ (7=,
(b) we have min{Ny, N/} > /37" for two indices k # k',
(¢) there exists an index k such that Mj or Ny lies in the interval [z, z/3~7].
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In case (a), our sum (6.4) is at most

Sui=a" Y > ‘ > Baur(mnaiq) (6.6)

Q<q<2Q M/2<m<M (1—A)N<n<N
(g,a)=1

with 3 =1 or log, MN = and N > z!~™. Choose 1 < 1/30, for the sum over n, we
express up as (5.3)). Using

Yoo1= 2 +0(1)  (2>1,(aq) € N?) (6.7)

n<z
n=a (mod q)

and partial summation in case 5 = log, we get that the sum over n above is

> Baug(mna;q) < logz + L S > Buxn).

(1-A)N<n<N Sﬁ(q) x (mod q) (1-A)N<n<N
1<cond(x)<R

For each x in the above, the sum over n is estimated using Lemma as
Z Bnx(n) < RY?(log x)?7(q).
(1-A)N<n<N
Dropping the condition cond(y) < R, we obtain for a crude bound
S, < xEMQRl/Q < QR1/2$877 < x11/20+8n+5

which is acceptable.
Consider case (b). Then the sum on the LHS of (6.4) is of the form

Sp= . Y>> alm)B(n)yun(mnia;q) (6.8)

Q<q<L2Q (1-A)N<n<N
(g,a)=1 (1—-A)M<m<M
(1-A)Y 2L <e<L
where M, N > z'/3=1 M NL = z, o and 3 are either 1 or log, and ~, satisfies
[ve| < Toj5-2(£) log €

By partial summation and upon rewriting the size restrictions on m,n, ¢, q as differences
of one-sided inequalities, it suffices to establish the bound

S=Y Y Y Y wbmmg

<L| q<Q m<Mn<N
(g,at)=1

whenever M, N > z'/3=27 and Q < 2\/x. Writing ug as in ([5.3)), we have by the triangle
inequality

< g0

S < Sy + Sho,s

where

Sl;lzz ’

<L

S >0 Y w(mntaq)

g<Q m<Mn<N

(g,a0)=1
=Y o 2| X xm| X x|
(<L q<Q Ly x (mod q) m<M n<N

1<cond(x)<R

Theorem 7 of [BFI86| yields the acceptable bound S}, < 2!~ aslong as < 1/30. In S,
by Lemma the sums over m and n are majorized by O(r(¢)R'/?**¢). Dropping the
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condition cond(x) < R, we obtain for a bound
Spy < 2°LRQ <. 2 14/15+5n

which is also acceptable.
In case (c¢), we write our sum as

Se= Y YD amBuur(mnaq) (6.9)

Q<q=2Q (1-A)2 T M<m<M
(g,0)=1  (1—A)N<n<N

where 27 < N < x1/3_"7 so M > z2/3. We may assume that R < a2 1f Q< x1/2_77/2,
then Lemmais applicable. If on the contrary z'/2-7/2 < Q < \/x, then Theoremis
applicable with 1 < 1/2 (assuming |a| < 2%/2 as we may). In both cases, we obtain that
the quantity is majorized by
S. < x(logz)°V R,
Summarizing the above and in view of ([6.5)), we have obtained
St < z(logz) VRO,

We consider now S;, which we recall is

s;= Y —— Y Amya). (6.10)

a<vz wla) x (mod ¢q) ¢*<n<z
(g,0)=1 cond(x)<R

First let us assume the GRH. Isolating the contribution of the principal character, we
write
S = Z Yq(w) _wq(‘f) _’_SL
e ¢(q)
(g;a)=1
say. For any non-trivial character x (mod ¢q) with ¢ <z, the GRH [MVO07, for-
mula (13.19)] yields

Z x(n)A(n) <« xl/z(logx)z.

¢?<n<z
We therefore have
1
S < z'/?(log z)? 2@ Z 1 < Rz'/?(log z)?
<V via X (mod q)
cond(x)<R

which is acceptable. The choice R = 2% for small enough & concludes the proof of (6.1)).

Unconditionally, for any ¢ < eV!°8% and any non-principal, non z-exceptional charac-
ter x (mod ¢), we have by a straightforward adaptation of [MV07, Theorem 11.16] the
estimate

Z x(n)A(n) < ro—cVlogz

q2<n§a:

for some absolute constant ¢ > 0. Choose R =e°V1°8%/2 We extract from Sy the
contribution from the principal character and the possible x-exceptional characters, and
write accordingly
x) — )+ 1~ x(a 5 Xq) — 2:xX
S Z 1/%1( ) 7//q(q ) q|qX(( i(d’( Xq) Y(q Xq)) —i—S'{b—&—O(xe_c\/@m)
»lq

<V
(g,a)=1
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the error term being there to cover the trivial case when either ¥ was inexistant, or ¢ > R.
By the same computation as above,

S?b < Rzx(logx)e™ Vv logz o pe—cVlogz/3
This concludes the proof of ((6.2]) hence of Proposition

6.2. Proof of Theorems[I.1] and

It is now straightforward to deduce Theorems [I.1] and [I.2] By the Dirichlet hyperbola
method [FT85, page 45] we have

=23 (¥(x30,1) = (¢ ¢, 1)) + OV log ).
<V
Assume first the GRH. Then Proposition @ yields

72 Z 1/1q ) )+O(1’176)
<V
The GRH |[MV07, formula (13.19)] allows us to deduce
L= q
=2 Z zt0).
<V

The main term is computed using [Fou82, Lemme 6], which yields the claimed estimate.

Unconditionally, from Proposition we merely have to add to our estimate for T'(x)
the additional contribution of the z-exceptional character (if it exists), which takes the
form

(w5 Xq) — ¥(a* Xo)
2y Z (q) Z (6.11)
<V
dlg
We have from [MV07, Theorem 11.16]
=~ mﬂ logx
(@5 Xq) = _F + O(ze )
and similarly
2.~ > 1
Y(q §Xq)__7+0( )

at the possible cost of changing the numerical value of §. We obtain that (6.11]) equals
2 P — ¢?P
- 4 O(ze?Vlos),
B 2 e(q) ( )
ala

The sums over ¢ are computed using [Fou82, Lemme 6] (and part1al summation in the

form 2 — ¢*# = f t8=1dt), which yields Theorem% Corollary 3|is straightforward.

There remains to Justlfy Corollary. Note that Cs(q) is absolute bounded, while ¢ <
eViogs by definition. Therefore 2° — oo, and Bli(z%)/2f ~ (logx)~!. We deduce

logq + Ca(q) — v
PIBLEP) s

in an effective way. For x large enough, it is less than 1/3 and Corollary follows.
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REMARK. If we were to consider 7(n — a) instead of 7(n — 1), for some a which is
not a perfect square, then the Siegel zero contribution (if it existed) would have a twist
by x(a), which is a priori of unpredictable sign.

7. Application to correlation of divisor functions

In this section, we justify Theorem [I.5] The proof has the same structure as that of
Theorems and replacing the function A(n) by 7% (n).

7.1. An equidistribution estimate

The analogue of Theorem [6.2]is the following:

THEOREM 7.1. There exists ) > 0 such that under the conditions k > 4, 0 < |a| < z"
and Q < xz'/?*n,

Z ( Z Te(n) — % Z Tk(n)) < gtk (7.1)

a<Q n<ae n<a
(¢;a)=1 n=a (mod q) (n,q)=1

If the Lindelof hypothesis is true for all Dirichlet L-functions, then the right-hand side
can be replaced by x!7".

In order to simplify the presentation, we put

c_ {a: if the generalized Lindel6f hypothesis is assumed,
- 1/k

T unconditionally.

To handle the small conductor case, we require the following.

LEMMA 7.2. For some § > 0 and any non-principal character x (mod ¢q) with ¢ < z,
of conductor r < £° we have

> m(n)x(n) < z€7°.

n<x
Proof. Starting from the representation

1 14+1/(log x)+ico 5ds
> nlontn) = 5 | L(s,0)"

(z ¢ N),

n<w 14+1/(log ) —ioco

one may truncate the contour at 7' = 2%/% and shift it to the abscissa Re(s) =1 — §/k.
The convexity bound |L(1 —6&/k +it,x)| < ¢¢(r(Jt| +1))%/*+¢ (for some ¢ > 0) yields
the desired estimate if € = z'/*. If the Lindelsf hypothesis L(1 + it, x) < (q([t| + 1))°
is true, then one chooses 7' = 2 and shifts the contour to PRe(s) = 1 — &, where the
bound L(1 —d +it, x) < (¢(|t| + 1))¢ holds by convexity. O

7.1.1. Small conductors Let Sy denote the quantity in the left-hand side of (7.1]), and
let R < &£%. The contribution of those characters x having conductors at most R is

— 1
Z Z x(a) Z @ Z T(n)x(n).

1<r<R x (mod r) q<@Q n<z
X primitive (g,a)=1 (n,q)=1
rlq
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By Lemma applied to the character (mod q) induced by x, we have a bound

zE° Z Z Z — << zE°R(log z)%.

r<R x (mod r) q<Q
X primitive 7|g

Letting R = £%/2, this is an acceptable error term. There remains to bound

Z ZTk n)ur(na;q).

9<Q n<z
(g,a)=1

7.1.2. Dyadic decomposition We dyadically decompose in S; the sums over ¢ and n
in (7.1}, yielding an upper bound

S; < (logz)®  sup ‘ Z Z n)ug(na; q)‘ (7.2)
Q’Sj\f:j*" Q'<q<2Q' N<n<2N
= (g,0)=1

Let 7 > 0 and assume throughout that ¢ is small with respect to . When N < x!~
by the triangle inequality, our trivial bound and Lemma m the sum over g
and n above is Oy (z'~"/2), so we may add the restrlctlon N > 217" in the supremum
with an acceptable error. Then we relax the condition Q' < z!/2%7 into Q' < N/2+2n,
Renaming N into z, and expanding out 74 (n), we obtain that it will suffice to prove

> > ur(ngcomd;q) < x€7" (7.3)

QRQ<qL2Q x<ny - np <2z

(q,0)=1
under the constraints |a| < 227 and Q < x'/2t27. We decompose the sums over ny, ..., n
dyadically to obtain an upper bound
Sy < Sz := (log x)* sup ‘ Z Z ug(ny -+ nka;q)|. (7.4)

N N2 /20 02000 wany g <2
(g:0)=1 Nj<n;<2N;

7.1.3. Splitting cases Let the parameter 0 < d; < 1/100 be fixed. We separate into
two cases according to whether there is a subset J C {1,...,k} such that

I N € @ a3,
JjeT
or not. Suppose there is no such subset, and let
Ki={j: 1<j<k, Nj>a'/370}

Necessarily card K < 3. Since N; < 2% for each j ¢ KC, and by assumption there is no
subset £ C {1,...,k} ~ K such that []... N; € (2%, 21/37%], it is necessarily the case
that

JEL
H Nj S 1’61.
JjEK
This implies card IC > 1. Define
W = {(u,) € CN ¢ Ju,| < T(n)k (n>1)}.
Summarizing the above, we have

S3 Lk e Ig(A + Bs + By + Bl), (7.5)
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where

A= sup Z Z Qm Bnttr (nMa; q)

I61<ﬁ§ﬁ_1/3761 Q<q<2Q  N<n<2bN
Sew (@=L po—k o cang
(@m),(Bn)€ r<mn<2x

B; = sup E g QU (N1N2n3ma; q)
N1,N2,N3>z1/3751 Q<q<2Q N;<n;<2N;
MN1 Nz N3=z (g,0)=1 M/8<m<2M
(a'm)ew r<mningng <2z

By = sup > > amur(mingma;q)

3-6
Nl,N2>z1“6 ' Q<q<2Q Nj<n;<2N;
NiNo>a' =% (qa)=1 M/8<m<2M
]\?Nli\gV:Vw r<mnine<2x
A,

By = sup ’ E E amuR(nmE;q)‘.
N>o' 01 Q<<2Q  N<n<2
o (qa)=1 M/8<m<2M
(am)EW r<mn<2zx

)

7

i

We will focus on A and B3, since the treatment of B; and B, is analogous to Bs and
actually simpler.

7.1.4. Separation of variables Fix another small parameter do > 0. We smoothen the
cutoff using a smooth function ¢ : R — [0, 1] with ¢(§) =1 for £ € [1,2], ¢(£) =0 for £ &
[1 — £7%,2 4 £7%], whose derivatives satisfy ||¢\7) || o, <; £7%2. The cost of replacing in A
and Bs the sharp cutoff condition x < nm < 2z (resp. x < ningngm < 2z) by ¢(nm/x)
(resp. ¢(ningngm/x)) is at most O(x£%2/2), by trivially bounding the contribution of
the transition ranges using Lemma [3.2

Integration by parts shows that the Mellin transform ¢(s) = o7 #(&)&~1d¢ satisfies

502
¢(Zt) < W (t € R)

We use the inversion formula ¢(&) = (27)~! [5 (it)e~"dt at € =nm/x (resp. &=
mningng/x) in the case of A (resp. Bs), to obtain the upper bounds

A <, xE€792/2 4 g5 ) sup1 . Z Z amBrutr(mna;q)|,  (7.6)
* 1<]I§”§VI_; T Q<e22Q  N<n<oRN
()5 (Bn) EW (@:a)=1 pro—kcm<am
1
By <, €7 %2/2 4 5% su _
P P e

N1,Ng,N3>z'/37m,
(am)EW, teR

X ’ Z Z am(nlngng)“uR(nlngngma; q)‘

Q<q<2Q N;<n;<2N;
(g,a)=1 M/8<m<2M

(7.7)

7.1.5. The case of A Let (o), (Bn) and N be given as in the supremum in (7.6).
We wish to bound

K Z Z Qm Brur(mna; q). (7.8)

Q<q<2Q N<n<2FN
(@:0)=1 pro—k cmconm
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By dyadic decomposition, enlarging our bound by a factor of k2, we may assume the
conditions are Ny <n < 2N; and M; < m < 2M; for M;N; € [227F, 22%+1]. Suppose
first Q > x'/279/2, Then Theorem with 7+ min{d;/2,1/30} gives the existence
of 65 > 0 depending on §; such that (7.8) is majorized by O(2¥2£~%), on the condition
that |a| < 27%2% and Q < 2~%21/21% which are satisfied assuming 17 < d5/4 and taking
large enough in terms of k.

If on the contrary Q < 21/2791/2_ we appeal to Lemma We again obtain for a
bound

Sa < 2Fag0

for some 03 (depending on d7).
Summarizing, we have obtained in any case

A < 2E702/2 4 p£59270 (7.9)

for d3 > 0. Choosing d» appropriately, it is an acceptable error term once we can prove
that 6; > 0 can be chosen independently of k.

7.1.6. The case of By Let (ay,), N1, Na, N3 > 213791 and t € R be as in supremum
in . The quantity we wish to bound is at most

1 .
Sp = W Z Z ’ Z (n1n2n3)”uR(n1n2n3mE; Q)‘

M/8<m<2M Q<q<2Q n1,n2,13
(g,am)=1 Nj<n;<2N;

where N1 NoN3M = 2 and M < 3% . Writing n” (2N;) — it jziv’ 2%*~1dz, the above
is bounded by

Sp < sup Z Z ’ Z ur(ningngma; q)‘ (7.10)
NiUNGNs - pf/s<m<M Q<q<2Q  71,n2,ns
N, <N/<2N; (gam)=1 Nj<n;<N}
Fix Ni, N, N} as in the supremum. Using (5.3 and the triangle inequality,

Sb g 81/7 + Slly/a

S{) = Z Z ‘ Z Uy (nlngngma) s

M/8<m<M Q<q<2Q  M1,n2,ns
(gam)=1 N;j<n;<N;

si= Y X ) 3 ﬁ] (n)’. (7.12)

M/8<m<M Q<q<2Q SO x (mod ¢) j=1 N; <n<N’
1<cond(x)<R

where

(7.11)

To S we apply [BFI87, Lemma 2] for each ¢ individually (note that this is a very
deep result [FI85, [HB86|, relying on Deligne’s proof of the Weil conjectures [Del74]).
For some small, absolute ¢, on the condition that Q < x'/2*%4 (requiring n < 64/2), the

quantity (7.11) is bounded by
Sp < Ma'=0 < glm0at30, (7.13)

Consider then S;'. By Lemma each sum over n is bounded by O, (z°R'/?), and so we
obtain a bound

S) <. x°R°2M
which is absorbed in the term (7.13)). Inserting in (7.7]), we have obtained for B3 a bound
By < x£7%2 4 £502 17044301 (7.14)
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The terms By and By are shown in the same way to satisfy the same bound with d4 > 0
absolute and small enough. Choosing our parameters adequately, we can choose absolute
constants d1, dz, d in such a way that both bounds (7.14)) and (7.9)) are true and O(z€~7).

Inserting back into (7.5) and ([7.4), we obtain the claimed bound (|7.3).

7.2. Proof of Theorems[L.3 and

As a last step, we deduce from Theorem [7.]] the estimate

S (X nm-—s X onm)<weEn 0<la<a”)  (715)
a<v@ n<g’ #(a) n<q?
(g,a)=1 n=a (mod q) (n,q)=1
where as before £ = z if the generalized Lindeldf is true and € = z'/* otherwise. Let A €
(0,1/10) be fixed and decompose the sums over ¢ and n into intervals ((1+ A)~1Q, Q]
and ((1+ A)~'N, N]. Calling Sf the left-hand side of (7.15)), we have

S < > ‘ > > r(n)ur (n@; q)|,
J0,j1>0 (1+A)"1Q<g<Q (1+A) "' N<n<N
Q=(1+A)"70x nng
N=(14A)"I1g
where we used the notation (5.7). The inner sums are void if Q? < N and the condition n <
q? is automatically satisfied if N < Q?(1 + A)~2. The contribution of jg, j1 such that (1 +
A)72Q? < N < @? is at most

Z Z 7 (n) w1 (n@; q)| < Az(logx)*

<V ?(1+A4)73<n<q?(1+A)?

(g,a)=1
by virtue of Lemma [3.2] Therefore
S; < Az(logz)* + (logz)?A~% sup ’ Z Z Tr(n)uy (na; q)‘
SV (142)71Q<4=Q (14+4) TN <n<N

Let @, N be as in the supremum, and let 7 > 0 be the real number given by Theorem [7-1]
Lemma [3:2] gives the bound

‘ > > i (n)w (na@; q)’ < 2°N
(1+A)7'Q<q<Q (1+A) "' N<n<N

which is acceptable if N < z!="/10. Suppose N > z!="/10  then Theorem applies
with 2 < N and yields a bound O(z£~"/19) for |a| < 2"/1°. Therefore,

S| e x'TEA+ AT TegT/I0,
Taking e.g. A = £~7/30 and reinterpreting 7, we have the claimed estimate .
From the Dirichlet hyperbola method, Theorem and estimate , we deduce
Ti(z) =2 Z Z 7i(n) 4+ O (z/27)

¢<Vz  ¢’<n<z
n=-—1 (mod q)

=2 Z % Z 7,(n) + O(z€7°)

<Vz v ¢®<n<z
(n,q)=1

The main terms are computed in [FT85, Théoréme 2], with an error term O(z'~%/%)
(unconditionally). If one assumes the generalized Lindelof hypothesis, then the proof is
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adapted in the following way. Under the hypotheses and in the notations of [FT85|
Lemma 6], there holds |0(p”)| < Cp~9( kljgj) (IFT85, first display page 52]). Therefore
the series Fj(s) in [FT85, Lemma 7& is bounded in terms of k£ only in the half-
plane MRe(s) > 1— /2. In the proof of [FT85, Lemma 7], one chooses T = 2%/2 and
shift the contour to Re(s) = 1 — /2, where the Lindeldf hypothesis implies ((s) < t€ by
convexity, to produce the conclusion

3" W(n)ri(n) = 2Qu_1(log x) + O- i (a1 ~9/>¥).

n<z
The rest of the argument in Corollaries 1-2 of Lemma 7, and Corollary of Lemma 8
of [FT85| are transposed verbatim to yield

1 1—c
2 Z 2@ Z Tr(n) = Py (log z) + Ok (z"~°)

q<VT ¢*<n<ax
(n,q)=1

for some ¢ > 0, as claimed.

7.3. Remark on the uniformity in a

If we were to replace the shift 7(n + 1) by 7(n 4 a), 0 < |a| < 2°, then the deduction of
an asymptotic formula analogous to from Theorem would go along similar lines.
We briefly indicate how one reduces to our previous setting. From Dirichlet’s hyperbola
method, the problem reduces to the evaluation of

Skalz) =2 > wn).

<Vz  ¢*<n<az
n=—a (mod q)

Extracting the largest factor di|a® from n, we rewrite this as

Ska —2 Z Tk dl Z Z Tk(n)

dy|a> a<Vz ¢*/di<n<x/dy
(n,a)=1
ndi=—a (mod q)

Writing ds := (g, d1), the congruence condition is equivalent to dz|a and
n = —(a/ds2)(d1/ds) (mod q/ds).
We therefore have

Ska —2 Z Tk d1 Z Z Z 'rk(n)

dy|ac® dz2|(d1,a) q<\/z/d2 ¢*/d1<n<z/d;
(g,d1/d2)=(q,a/d2)=1 (n,a)=1
n=—(a/d2)(d1/d2) (mod q)

Summing for each d; 1nd1v1dually, the contribution of d; > 2° is bounded trivially using
Lemmam When dl < 29, the sum over n and ¢ is handled by an adequate generalization
of Theorem |7 1nvolv1ng a congruence of the type n = biby (mod q), as well as an
additional coprimality condition (n, bs) = 1, for integers |b;| < 2%, Our arguments readily
adapt to account for both these modifications. Note however that it is now important that
the method is able to handle values of the modulus ¢ up to z*/2+% with § independent
of k (cf. the statement of Theorem [7.1)).
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