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Abstract
We prove a bound for quintilinear sums of Kloosterman sums, with congruence conditions
on the “smooth” summation variables. This generalizes classical work of Deshouillers and
Iwaniec, and is key to obtaining power-saving error terms in applications, notably the
dispersion method.

As a consequence, assuming the Riemann hypothesis for Dirichlet L-functions, we prove
power-saving error term in the Titchmarsh divisor problem of estimating

∑
p≤x

τ(p− 1).
Unconditionally, we isolate the possible contribution of Siegel zeroes, showing it is always
negative. Extending work of Fouvry and Tenenbaum, we obtain power-saving in the
asymptotic formula for

∑
n≤x

τk(n)τ(n+ 1), reproving a result announced by Bykovskĭı
and Vinogradov by a different method. The gain in the exponent is shown to be independent
of k if a generalized Lindelöf hypothesis is assumed.
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1. Introduction

Understanding the joint multiplicative structure of pairs of neighboring integers such
as (n, n+ 1) is an outstanding problem in multiplicative number theory. A quantitative
way to look at this question is to try to estimate sums of the type∑

n≤x

f(n)g(n+ 1) (1.1)

when f, g : N→ C are two functions that are of multiplicative nature – multiplicative
functions for instance, or the characteristic function of primes. In this paper we are
motivated by two instances of the question (1.1): the Titchmarsh divisor problem, and
correlation of divisor functions.
In what follows, τ(n) denotes the number of divisors of the integer n, and more

generally, τk(n) denotes the number of ways one can write n as a product of k positive
integers. Studying the function τk gives some insight into the factorisation of numbers†,
which is deeper but more difficult to obtain as k grows.

1.1. The Titchmarsh divisor problem

One would like to be able to evaluate, for k ≥ 2, the sum∑
p≤x

τk(p− 1) (1.2)

where p denotes primes. A priori, this would require understanding primes up to x in
arithmetic progressions of moduli up to x1−1/k. The case k ≥ 3 seems far from reach of
current methods, so we consider k = 2.

2000 Mathematics Subject Classification 11L07 (primary), 11F30, 11N75, 11N13.
†There are a number of formulas relating the characteristic function of primes to linear combination of
divisor-like functions, for instance Heath-Brown’s identity [HB82].



ERROR TERM IN THE DISPERSION METHOD Page 3 of 48

In place of (1.2), one may consider

T (x) :=
∑

1<n≤x
Λ(n)τ(n− 1)

where Λ is the von Mangoldt function [IK04, formula (1.39)]. In 1930, Titchmarsh [Tit30]
first considered the problem, and proved T (x) ∼ C1x log x for some constant C1 > 1 under
the assumption that the Riemann hypothesis holds for all Dirichlet L-functions. This
asymptotic was proved unconditionally by Linnik [Lin63] using his so-called dispersion
method. Simpler proofs were later given by Rodriquez [Rod65] and Halberstam [Hal67]
using the theorems of Bombieri-Vinogradov and Brun-Titchmarsh. Finally the most pre-
cise known estimate was proved independently by Bombieri–Friedlander–Iwaniec [BFI86]
and Fouvry [Fou85]. To state their result, let us denote

C1 :=
∏
p

(
1 + 1

p(p− 1)

)
, C2 :=

∑
p

log p
1 + p(p− 1) .

Theorem A Fouvry [Fou85], Bombieri–Friedlander–Iwaniec [BFI86]. For all A > 0
and all x ≥ 3,

T (x) = C1x
{

log x+ 2γ − 1− 2C2
}

+OA
(
x/(log x)A

)
.

In this statement, γ denotes Euler’s contant. See also [Fel12, Fio12a] for gen-
eralizations in arithmetic progressions; and [ABSR15] for an analogue in function
fields.
The error term in Theorem A is due to an application of the Siegel-Walfisz theo-

rem [IK04, Corollary 5.29]. One could wonder whether assuming the Riemann Hypothesis
generalized to Dirichlet L-functions (GRH) allows for power-saving error term to be
obtained (as is the case for the prime number theorem in arithmetic progressions [MV07,
Corollary 13.8]). The purpose of this paper is to prove that such is indeed the case.

Theorem 1.1. Assume GRH. Then for some δ > 0 and all x ≥ 2,

T (x) = C1x
{

log x+ 2γ − 1− 2C2
}

+O(x1−δ).

Unconditionally, we quantify the influence of hypothetical Siegel zeroes. Define, for q ≥
1,

C1(q) := 1
ϕ(q)

∏
p-q

(
1 + 1

p(p− 1)

)
, C2(q) :=

∑
p-q

log p
1 + p(p− 1)

where ϕ is Euler’s totient function. Note that C1 = C1(1) and C2 = C2(1).

Theorem 1.2. There exist b > 0 and δ > 0 such that

T (x) = C1x
{

log x+ 2γ − 1− 2C2
}

− C1(q)x
β

β

{
log
( x
q2

)
+ 2γ − 1

β
− 2C2(q)

}
+O

(
xe−δ

√
log x).

The second term is only to be taken into account if there is a primitive character χ (mod q)
with q ≤ e

√
log x whose Dirichlet L-function has a real zero β with β ≥ 1− b/

√
log x.
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By partial summation, one deduces

Corollary 1.3. In the same notation as Theorem 1.2,

∑
p≤x

τ(p− 1) = C1{x+ 2 li(x)(γ − C2)} − C1(q){x
β

β
+ 2 li(xβ)(γ − log q − C2(q))}+O(xe−δ

√
log x).

The method readily allows for more general shifts τ(p− a), 0 < |a| ≤ xδ (cf. [Fio12b,
Corollary 3.4] for results on the uniformity in a). The contribution of the exceptional
character in Corollary 1.3 would then have a twist by χ(a). Since χ, if it exists, is a real
character, then χ(a) = 1 whenever a is a perfect square (for instance a = 1), in which case
we have an unconditional inequality.

Corollary 1.4. With an effective implicit constant, we have∑
p≤x

τ(p− 1) ≤ C1{x+ 2 li(x)(γ − C2)}+O(xe−δ
√

log x).

We conclude our discussion of the Titchmarsh divisor problem by mentioning the
important work of Pitt [Pit13], who proves

∑
p≤x a(p− 1)� x1−δ for the sequence (a(n))

of Fourier coefficients of an integral weight holomorphic cusp form (which is a special case
of (1.1) when the (a(n)) are Hecke eigenvalues). It is a striking feature that power-saving
can be proved unconditionally in this situation.

1.2. Correlation of divisor functions

Another instance of the problem (1.1) is the estimation, for integers k, ` ≥ 2, of the
quantity

Tk,`(x) :=
∑
n≤x

τk(n)τ`(n+ 1).

The conjectured estimate is of the shape

Tk,`(x) ∼ Ck,`x(log x)k+`−2

for some constants Ck,` > 0. The case k = ` is of particular interest when one looks at
the 2k-th moment of the Riemann ζ function [Tit86, §7.21] (see also [CG01]): in that
context, the size of the error term is a non-trivial issue, as well as the uniformity with which
one can replace n+ 1 above by n+ a, a 6= 0. Current methods are ineffective when k, ` ≥ 3,
so we focus on the case ` = 2. Let us denote

Tk(x) :=
∑
n≤x

τk(n)τ(n+ 1).

There has been several works on the estimation of Tk(x). There are nice expositions
of the history of the problem in the papers of Heath-Brown [HB86] and Fouvry-
Tenenbaum [FT85]. The latest published results may be summarized as follows.
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Theorem B. There holds:

T2(x) = xP2(log x) +Oε(x2/3+ε), ([DI82a]),
T3(x) = xP3(log x) +O(x1−δ), ([Des82], [Top15]),

Tk(x) = xPk(log x) +Ok(xe−δ
√

log x) for fixed k ≥ 4, ([FT85]). (1.3)

Here ε > 0 is arbitrary, δ > 0 is some constant depending on k, and Pk is an explicit
degree k polynomial.

The error term of (1.3) resembles that in the distribution of primes in arithmetic
progressions, where it is linked to the outstanding problem of zero-free regions of L-
functions. However there is no such process at work in (1.3), leaving one to wonder if
power-saving can be achieved. In [BV87], Bykovskĭı and Vinogradov announce results
implying

Tk(x) = xPk(log x) +Ok(x1−δ/k) (k ≥ 4, x ≥ 2) (1.4)

for some absolute δ > 0, and sketch ideas of a proof. The proposed argument, in a
way, is dual to the method adopted in [FT85]† (which is related to earlier work of
Motohashi [Mot76]). Here we take up the method of [FT85] and prove an error term of
the same shape.

Theorem 1.5. For some absolute δ > 0, the estimate (1.4) holds.

In view of [BV87], Theorem 1.5 is not new. However the method is somewhat different.
In the course of our arguments, the analytic obstacle to obtaining an error term Ok(x1−δ)
(δ independent of k) in the estimate (1.4) will appear clearly: it lies in the estimation of
sums of the shape

∑
n≤x τk(n)χ(n) for Dirichlet characters χ of small conductors. This

issue is know to be closely related to the growth of Dirichlet L-functions inside the critical
strip [FI05].

Theorem 1.6. Assume that Dirichlet L-functions satisfy the Lindelöf hypothe-
sis, meaning L( 1

2 + it, χ)�ε (q(|t|+ 1))ε for t ∈ R and χ (mod q). Then for some
absolute δ > 0,

Tk(x) = xPk(log x) +Ok(x1−δ) (k ≥ 4, x ≥ 2) (1.5)

The standard conjecture for the error term in the previous formula is Ok,ε(x1/2+ε). We
have not sought optimal values for δ in Theorems 1.5 and 1.6. In the case of (1.4), the
method of [BV87] seems to yield much better numerical results.

Our method readily allows to replace the shift n+ 1 in Theorem 1.5 by n+ a, 0 < |a| ≤
xδ with δ independent of k. We give some explanations in Section 7.3 below regarding
this point.

Acknowledgements. This work was done while the author was a CRM-ISM Postdoc-
toral Fellow at Université de Montréal. The author is indebted to R. de la Bretèche,
É. Fouvry, V. Blomer, D. Milićević, S. Bettin, G. Tenenbaum, B. Topacogullari and A.

†In [Mot76, FT85], the authors study the distribution of τk(n) in progressions of moduli up to x1/2,
while in [BV87] the authors address the distribution of τ(n) in progressions of moduli up to x1−1/k.
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Blomer for making a preprint of [BM15a] available, and for making him aware of the
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2. Overview

The method at work in Theorems 1.1, 1.2 and 1.5 is the dispersion method, which was
pioneered by Linnik [Lin63] and studied intensively in groundbreaking work of Bombieri,
Fouvry, Friedlander and Iwaniec [Fou82, FI83, BFI86] on primes in arithmetic progres-
sions. It has received a large publicity recently with the breakthrough of Zhang [Zha14]
(see also [PCF+14]), giving the first proof of the existence of infinitely many bounded
gaps between primes (which was shown later by Maynard [May15] and Tao (unpublished)
not to require such strong results).
In our case, by writing τ(n) as a convolution of the constant function 1 with itself,

the problem is reduced to estimating the mean value of Λ(n) or τk(n) when n ≤ x
runs over arithmetic progressions (mod q), with an average over q. It is crucial that
the uniformity be good enough to average over q ≤

√
x. In the case of Λ(n), that is

beyond what can currently be done for individual moduli q, even assuming the GRH.
The celebrated theorem of Bombieri-Vinogradov [IK04, Theorem 17.1] allows to exploit
the averaging over q, but if one wants error terms at least as good as O(x/(log x)2) for
instance, it barely fails to be useful.
Linnik’s dispersion method [Lin63], which corresponds at a technical level to an

acute use of the Cauchy–Schwarz inequality, offers the possibility for such results, on
the condition that one has good bounds on some types of exponential sums related to
Kloosterman sums. One then appeals to Weil’s bound [Wei48], or to the more specific
but stronger bounds of Deshouillers-Iwaniec [DI82b] which originate from the theory of
modular forms through Kuznetsov’s formula.
The Deshouillers-Iwaniec bounds apply to exponential sums of the following kind:∑

c,d,n,r,s
(rd,sc)=1

bn,r,sg(c, d)e
(
n
rd

sc

)

where c, d, n, r, s are integers in specific intervals, (bn,r,s) is a generic sequence, and g(c, d)
depends in a smooth way on c and d. Here and in what follows, e(x) stand for e2πix,
and rd denotes the multiplicative inverse of rd (mod sc) (since e(x) is of period 1,
the above is well-defined). It is crucial that the variables c and d are attached to a
smooth weight g(c, d): for the variable d, in order to reduce to complete Kloosterman
sums (mod sc); and for the variable c, because the object that arises naturally in the
context of modular forms is the average of Kloosterman sums over moduli (with smooth
weight).
In the dispersion method, dealing with largest common divisors (appearing through the

Cauchy–Schwarz inequality) causes some issues. The most important of these is that the
phase function that arises in the course of the argument takes a form similar to

e
(
n
rd

sc
+ cd

q

)
(2.1)

rather than the above. Here q can be considered small and fixed, but even then, the second
term oscillates chaotically.
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Previous works avoided the issue altogether by using a sieve beforehand in order to
reduce to the favourable case q = 1 (see Lemma 4 and Section 3 of [Fou85], and Lemma
4 and Theorem 5* of [BFI86]). Two error terms are then produced, which take the form

e−δ(log x)/ log z + z−1

where z ≤ x is a parameter. Roughly speaking, the first term corresponds to sieving
out prime factors smaller than z, with the consequence that the “bad” variable q above
is either 1 or larger than z. The second term corresponds to a trivial bound on the
contribution of q > z. The best error term one can achieve in this way is e−δ

√
log x, whence

the estimate (1.3).
By contrast, in the present paper, we transpose the work of Deshouillers-Iwaniec

in a slightly more general context, which allows to encode phases of the kind (2.1).
More specifically, whereas Deshouillers and Iwaniec worked with modular forms with
trivial multiplier system, we find that working with multiplier systems defined by
Dirichlet characters allows one to encode congruence conditions (mod q) on the “smooth”
variables c and d. This is partly inspired by recent work of Blomer and Milićević [BM15a].
The main result, which extends [DI82b, Theorem 12] and has potential for applications
beyond the scope of the present paper, is the following.

Theorem 2.1. Let C,D,N,R, S ≥ 1, and q, c0, d0 ∈ N be given with (c0d0, q) = 1.
Let (bn,r,s) be a sequence supported inside (0, N ]× (R, 2R]× (S, 2S] ∩N3. Let g : R5

+ →
C be a smooth function compactly supported in ]C, 2C]×]D, 2D]× (R∗+)3, satisfying the
bound

∂ν1+ν2+ν3+ν4+ν5g

∂cν1∂dν2∂nν3∂rν4∂sν5
(c, d, n, r, s)�ν1,ν2,ν3,ν4,ν5 {c−ν1d−ν2n−ν3r−ν4s−ν5}1−ε0 (2.2)

for some small ε0 > 0 and all fixed νj ≥ 0. Then

∑
c

∑
d

∑
n

∑
r

∑
s

c≡c0 and d≡d0 (mod q)
(qrd,sc)=1

bn,r,sg(c, d, n, r, s)e
(
n
rd

sc

)

�ε,ε0 (qCDNRS)ε+O(ε0)q3/2K(C,D,N,R, S)‖bN,R,S‖2,
(2.3)

where ‖bN,R,S‖2 =
(∑

n,r,s |bn,r,s|2
)1/2 and

K(C,D,N,R, S)2 = qCS(RS +N)(C +RD) + C2DS
√

(RS +N)R+D2NRS−1.

We have made no attempt to optimize the dependence in q. In all of the applications
considered here, we only apply the estimate (2.3) for small values of q, say q =
O((CDNRS)ε1) for some small ε1 > 0. Such being the case, the reader might still wonder
why the bound tends to grow with q. The main reason is that upon completing the sum
over d, we obtain a Kloosterman sum to modulus scq, which grows with q.
In the footsteps of previous work [Dra15], for the proof of our equidistribution results,

we separate from the outset of the argument the contribution of characters of small
conductors (which is typically well-handled by complex-analytic methods). We only apply
the dispersion method to the contribution of characters of large conductors. There is
considerable simplification coming from the fact that no “Siegel-Walfisz”-type hypothesis
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is involved in the latter, which allows us to focus on the combinatorial aspect of the
method†.

In Section 3, we state a few useful lemmas. In Section 4, we adapt the arguments
of [DI82b] to prove Theorem 2.1. In Section 5, we employ a variant of the dispersion
method to obtain equidistribution for binary convolutions in arithmetic progressions. In
Sections 6 and 7, we derive Theorems 1.1, 1.2, 1.5 and 1.6.

Notations We use the convention that the letter ε denotes a positive number that
can be chosen arbitrarily small and whose value may change at each occurence. The
letter δ > 0 will denote a positive number whose value may change from line to line, and
whose dependence on various parameters will be made clear by the context.
We define the Fourier transform f̂ of a function f as

f̂(ξ) =
∫

R
f(t)e(−ξt)dt.

If f is smooth and compactly supported, the above is well-defined and there holds

f(t) =
∫

R
f̂(ξ)e(ξt)dξ.

If moreover f is supported inside [−M,M ] for some M ≥ 1 and ‖f (j)‖∞ �M−j for j ∈
{0, 2}, then we have

f̂(ξ)� M

1 + (Mξ)2 .

3. Lemmas

In this section we group a few useful lemmas. The first is the Poisson summation
formula, which is very effective at estimating the mean value of a smooth function along
arithmetic progressions.

Lemma 3.1 [BFI86, Lemma 2]. Let M ≥ 1 and f : R → C be a smooth function
supported on an interval [−M,M ] satisfying ‖f (j)‖∞ �j M

−j for all j ≥ 0. For all q ≥ 1
and (a, q) = 1, with H := q1+ε/M , we have∑

m≡a (mod q)

f(m) = 1
q

∑
|h|≤H

f̂
(h
q

)
e
(ah
q

)
+Oε

(1
q

)
.

The next lemma is quoted from work of Shiu [Shi80, Theorem 2], and gives an upper
bound of the right order of magnitude for sums of τk(n) in short intervals and arithmetic
progressions of large moduli. It is an analogue of the celebrated Brun-Titchmarsh
inequality [IK04, Theorem 6.6].

†It is more straightforward to study the mean value of τk(n) in arithmetic progressions of small moduli,
than a k-fold convolution of slowly oscillating sequences, each supported on a dyadic interval.
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Lemma 3.2 [Shi80, Theorem 2]. For k ≥ 2, x ≥ 2, x1/2 ≤ y ≤ x, (q, a) ∈ N
with (a, q) = 1 and q ≤ y3/4,∑

x−y<n≤x
n≡a (mod q)

τk(n)�k
y

q

(ϕ(q)
q

log x
)k−1

.

Note that such a result could also be deduced from earlier work of Barban and
Vekhov [BV69]; see also [Hen12] for the most recent results on this topic.
The next lemma is the classical form of the multiplicative large sieve inequality [IK04,

Theorem 7.13].

Lemma 3.3. Let (an) be a sequence of numbers, and N,M,Q ≥ 1. Then∑
q≤Q

q

ϕ(q)
∑

χ (mod q)
χ primitive

∣∣∣ ∑
M<n≤M+N

anχ(n)
∣∣∣ ≤ (Q2 +N − 1)

∑
N<n≤N+M

|an|2.

We quote from [Har11, Number Theory Result 1] the following version of the Pólya-
Vinogradov inequality with an explicit dependence on the conductor.

Lemma 3.4. Let χ (mod q) be a character of conductor 1 6= r|q, and M,N ≥ 1. Then∑
M<n≤M+N

χ(n)� τ(q/r)
√
r log r.

4. Sums of Kloosterman sums in arithmetic progressions

Theorem 2.1 is proved by a systematic use of the Kuznetsov formula, which establishes
a link between sums of Kloosterman sums and Fourier coefficients of holomorphic and
Maaß cusp forms. There is numerous bibliography about this theory; we refer the reader
to the books [Iwa02, Iwa95] and to chapters 14–16 of [IK04] for references.

Most of the arguments in [DI82b] generalizes without the need for substantial new
ideas. We will introduce the main notations, and of course provide the required new
arguments; but we will refer to [DI82b] for the parts of the proofs that can be
transposed verbatim.

4.1. Setting

4.1.1. Kloosterman sums Let q ≥ 1. The setting is the congruence subgroup

Γ = Γ0(q) :=
{(a b

c d

)
∈ SL2(Z), c ≡ 0 (mod q)

}
.

Let χ be a character modulo q0|q, and κ ∈ {0, 1} such that χ(−1) = (−1)κ. We warn
the reader that the variable q has a different meaning in Sections 4.1 and 4.2, than in
the statement of Theorem 2.1 (where it corresponds to qrs). The character χ induces a
multiplier (i.e. here, a multiplicative function) on Γ by

χ
((a b

c d

))
= χ(d).

The cusps of Γ are Γ-equivalence classes of elements R ∪ {∞} that are parabolic, i.e.
each of them is the unique fixed point of some element of Γ. They correspond to cusps
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on a fundamental domain. A set of representatives is given by rational numbers u/w
where 1 ≤ w, w|q, (u,w) = 1 and u is determined (mod (w, q/w)).

For each cusp a, let Γa denote the stabilizer of a for the action of Γ. A scaling matrix
is an element σa ∈ SL2(R) such that σa∞ = a and{

σa

(
1 b
0 1

)
σ−1
a , b ∈ Z

}
= Γa.

Whenever a = u/w with u 6= 0, (u,w) = 1 and w|q, one can choose

σa =
(
a
√

[q, w2] 0√
[q, w2] (a

√
[q, w2])−1

)
. (4.1)

A cusp a is said to be singular if χ(γ) = 1 for any γ ∈ Γa. When a = u/w with u and w
as above, then this merely means that χ has conductor dividing q/(w, q/w). The point at
infinity is always a singular cusp, with stabilizer

Γ∞ =
{(1 ∗

0 1

)}
.

For any pair of singular cusps a, b and any associated scaling matrices σa, σb, define the
set of moduli

C(a, b) :=
{
c ∈ R∗+ : ∃a, b, d ∈ R,

(
a b
c d

)
∈ σ−1

a Γσb
}
.

This set actually only depends on a and b. For all c ∈ C(a, b), let Dab(c) be the set of real
numbers d with 0 < d ≤ c, such that(

a b
c d

)
∈ σ−1

a Γσb

for some a, b ∈ R. For each such d, a is uniquely determined (mod c).
For any integers m,n ≥ 0, and any c ∈ C(a, b), the Kloosterman sum is defined as (see

formula (3.13) and Chapter 4 of [Iwa97])

Sσaσb
(m,n; c) =

∑
d∈Dab(c)

χ(σa
(
a ∗
c d

)
σ−1
b )e

(am+ dn

c

)
where

(
a ∗
c d

)
denotes any matrix γ having lower row (c, d) such that σaγσ−1

b ∈ Γ. This is
well-defined by our hypotheses that a and b are singular. This definition allows for a great
deal of generality. We quote from [DI82b, section 2.1] the remark that the Kloosterman
sums essentially depend only on the cusps a, b, and only mildly on the scaling matrices σa
and σb, in the following sense. If ã and b̃ are two cusps respectively Γ-equivalent to a
and b, with respective scaling matrices σ̃a and σ̃b, then there exist real numbers t1 and t2,
independent of m or n, such that

Sσaσb
(m,n; c) = e(mt1 + nt2)S

σ̃aσ̃b
(m,n; c).

Moreover, the converse fact holds, that for any reals t1, t2, any cusps a and b, and any
scaling matrices σa and σb, there exist scaling matrices σ̃a and σ̃b associated to a and b
such that the equality above holds. This rather simple fact is of tremendous help because
all of the results obtained through the Kuznetsov formula are uniform with respect to the
scaling matrices, so that one can encode oscillating factors depending on m and n at no
cost (it is crucial for separation of variables). Whenever the context is clear enough, we
write

Sab(m,n; c)

without reference to the scaling matrices.
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The first example is a = b =∞ and σa = σb = 1. Then C(∞,∞) = qN and

S∞∞(m,n; c) = Sχ(m,n; c) =
∑

d (mod c)×
χ(d)e

(dm+ dn

c

)
(c ∈ qN) (4.2)

is the usual (twisted) Kloosterman sum. Here and in the rest of the paper, we
write (mod c)× to mean a primitive residue class (mod c).

The next example that we need is the case a = b. The following is an extension
of [DI82b, Lemma 2.5]. It is proven in an identical way, so we omit the details.

Lemma 4.1. Assume a = u/w is a cusp with (u,w) = 1, w|q and u 6= 0. Assume that a
is singular. Choose the scaling matrix as in (4.1). Then C(a, a) = q

(w,q/w)N, and if c =
γq/(w, q/w) for some γ ∈ N,

Saa(m,n; c) = e
(

(w, q/w)m− n
uq

) ∑∗

δ (mod c)

χ
(
α+ u

αδ − 1
γ

)
e
(mα+ nδ

c

)
, (4.3)

where, in the sum
∑∗, δ runs over the solutions (mod c) of

(δ, γq/w) = 1, (γ + uδ, w) = 1, δ(γ + uδ) ≡ u (mod (w, q/w)), (4.4)

and α is determined (mod c) by the equations

αδ ≡ 1 (mod γq/w), α ≡ γ′u′ + u′(γ′ + u′δ) (mod wγ′) (4.5)

where γ′ = γ/(γ, u) and u′ = u/(γ, u).

The sums Saa(m,n; c) are expressed by means of the Chinese remainder theorem
(twisted multiplicativity) as a product of similar sums for moduli c that are prime powers.
When c = pν and ν ≥ 2, a bound is obtained by means of elementary methods as in [IK04,
Section 12.3]. When c is prime, the Weil bound (cf. [KL13, Theorem 9.3]) from algebraic
geometry can be used. In the general case, one obtains

Lemma 4.2. For all c ∈ C(a, a), m,n ∈ Z, we have

Saa(m,n; c)� (m,n, c)1/2τ(c)O(1)(cq0)1/2

where q0 is the modulus of χ.

Finally, we consider as in [DI82b] the following family of Kloosterman sums, which
will be of particular interest to us.

Lemma 4.3. Assume that the level q is of the shape rs, with q0|r, where q0 is the
modulus of χ, and (r, s) = 1. The two cusps ∞ and 1/s are singular. Choose the scaling
matrices

σ∞ = Id, σ1/s =
(√

r 0
s
√
r 1/

√
r

)
.

Then C(∞, 1/s) = {cs
√
r, c ∈ N, (c, r) = 1}, and for (c, r) = 1, we have

S∞,1/s(m,n; cs
√
r) = χ(c)e

(ns
r

)
S(mr, n; sc)

where S(. . .) in the right-hand side is the usual (untwisted) Kloosterman sum.
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The main feature here is the presence of the character outside the Kloosterman sums,
as opposed to (4.2). It is proven in a way identical to [DI82b, page 240], keeping track
of an additional factor χ(D) in the summand.

4.1.2. Normalization In order to state the Kuznetsov formula, we first fix the
normalization. We largely borrow from [BHM07a]. We also refer to [DFI02, Section 4]
for useful explanations on Maaß forms, and to [Pro03] for a discussion in the case of
general multiplier systems.
For each integer k > 0 with k ≡ κ (mod 2), we fix a basis Bk(q, χ) of holomorphic cusp

forms. It is taken orthonormal with respect to the weight k Petersson inner product:

〈f, g〉k =
∫
Γ\H

ykf(z)g(z)dxdy
y2 (z = x+ iy).

We let B(q, χ) denote a basis of the space of Maaß cusp forms. In particular they
are functions on H, are automorphic of weight κ ∈ {0, 1} (meaning they satisfy [Pro03,
formula (5)]), are square-integrable on a fundamental domain and vanish at the cusps
(note that when κ = 1, they do not induce a function on Γ\H). They are eigenfunctions
of the L2-extension of the Laplace-Beltrami operator

∆ = y2
( ∂2

∂x2 + ∂2

∂y2

)
− iκy ∂

∂x
.

This operator has pure point spectrum on the L2-space of cusp forms. For f ∈ B(q, χ),
we write (∆ + s(1− s))f = 0 with s = 1

2 + itf and tf ∈ R ∪ [−i/2, i/2]. The (tf )f∈B(q,χ)
form a countable sequence with no limit point in C (in particular, there are only finitely
many tf ∈ iR). We choose the basis B(q, χ) orthonormal with respect to the weight zero
Petersson inner product. Let

θ := sup
f∈B(q,χ)

| Im tf |, (4.6)

then Selberg’s eigenvalue conjecture is that θ = 0 i.e. tf ∈ R for all f ∈ B(q, χ). Selberg
proved that θ ≤ 1/4 (see [DI82b, Theorem 4]), and the current best known result is θ ≤
7/64, due to Kim and Sarnak [Kim03] (see [Sar95] for useful explanations on this topic).
The decomposition of the space of square-integrable, weight κ automorphic forms on H

with respect to eigenspaces of the Laplacian contains the Eisenstein spectrum E(q, χ)
which turns out to be the orthogonal complement to the space of Maaß forms. It can be
described explicitely by means of the Eisenstein series Ea(z; 1

2 + it) where a runs through
singular cusps, and t ∈ R. Care must be taken because these are not square-integrable;
see [IK04, Section 15.4] for more explanations.
Let j(g, z) := cz + d where g = ( ∗ ∗c d ) ∈ SL2(R). We write the Fourier expansion of f ∈

Bk(q, χ) around a singular cusp a with associated scaling matrix σa as

f(σaz)j(σa, z)−k =
∑
n≥1

ρfa(n)(4πn)k/2e(nz). (4.7)

We write the Fourier expansion of f ∈ B(q, χ) around the cusp a as

f(σaz)e−iκ arg j(σa,z) =
∑
n 6=0

ρfa(n)W |n|
n
κ
2 ,itf

(4π|n|y)e(nx)

where the Whittaker function is defined as in [Iwa02, formula (1.26)]. Finally, for every
singular cusp c, we write the Fourier expansion around the cusp a of the Eisenstein series
associated with the cusp c as

Ec(σaz, 1
2 + it)e−iκ arg j(σa,z) = c1,c(t)y1/2+it + c2,c(t)y1/2−it +

∑
n 6=0

ρca(n, t)W |n|
n
κ
2 ,it

(4π|n|y)e(nx).
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4.1.3. The Kuznetsov formula Let φ : R+ → C be of class C∞ and satisfy

φ(0) = φ′(0) = 0, φ(j)(x)� (1 + x)−2−η (0 ≤ j ≤ 3) (4.8)

for some η > 0. In practice, the function φ will be C∞ with compact support in R∗+. We
define the integral transforms

φ̇(k) := 4ik
∫∞
0
Jk−1(x)φ(x)dx

x
, (4.9)

φ̃(t) := 2πitκ

sinh(πt)

∫∞
0

(J2it(x)− (−1)κJ−2it(x))φ(x)dx
x
, (4.10)

φ̌(t) := 8i−κ cosh(πt)
∫∞
0
K2it(x)φ(x)dx

x
(4.11)

where we refer to [Iwa02, Appendix B.4] for the definitions and estimates on the Bessel
functions. We have borrowed the normalization from [BHM07b], apart from a constant
factor 4 which we included in the transforms. The sizes of these transforms is controlled by
the following Lemma (we need only consider |t| ≤ 1/4 in the second estimate, by Selberg’s
theorem that θ ≤ 1/4). The bounds we state are not the best that can be obtained, but
they will be sufficient for our purpose.

Lemma 4.4 . If φ is supported on x � X with ‖φ(j)‖∞ � X−j for 0 ≤ j ≤ 4, then

|φ̇(t)|+ |φ̃(t)|
1 + |t|κ + |φ̌(t)| � 1 + | logX|

1 +X
min

{
1,
(1 +X3/2

1 + |t|3
)}

(t ∈ R), (4.12)

|φ̃(t)|+ |φ̌(t)| � 1 +X−2|t|

1 +X
(t ∈ [−i/4, i/4]).

Proof. These bounds are analogues of [DI82b, Lemma 7.1] and [BHM07b,
Lemma 2.1]. Taking into account the factor tκ in front of φ̃(t), the arguments there
are easily adapted. The only non-trivial fact to check is that the decaying factor in (4.12)
only requires the hypotheses ‖φ(j)‖∞ � X−j for j ≤ 4. This is seen by reproducing the
proof of [BHM07b, Lemma 2.1] with the choices j = 1 and i = 2.

Recall that κ is defined by χ(−1) = (−1)κ. We are ready to state the Kuznetsov formula
for Dirichlet multiplier system and general cusps.

Lemma 4.5. Let a and b be two singular cusps with associated scaling matrices σa
and σb, and φ : R+ → C as in (4.8). Let m,n ∈ N. Then

∑
c∈C(a,b)

1
c
Sab(m,n; c)φ

(4π
√
mn

c

)
= H+ E +M, (4.13)

∑
c∈C(a,b)

1
c
Sab(m,−n; c)φ

(4π
√
mn

c

)
= E ′ +M′, (4.14)
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where H, E ,M (“holomorphic”, “Eisenstein”, “Maaß”) are defined by

H :=
∑
k>κ

k≡κ (mod 2)

∑
f∈Bk(q,χ)

φ̇(k)Γ(k)
√
mnρfa(m)ρfb(n), (4.15)

E :=
∑
c sing.

1
4π

∫∞
−∞

φ̃(t)
√
mn

cosh(πt)ρca(m, t)ρcb(n, t)dt, (4.16)

M :=
∑

f∈B(q,χ)

φ̃(tf )
√
mn

cosh(πtf )ρfa(m)ρfb(n), (4.17)

E ′ :=
∑
c sing.

1
4π

∫∞
−∞

φ̌(t)
√
mn

cosh(πt)ρca(m, t)ρcb(−n, t)dt, (4.18)

M′ :=
∑

f∈B(q,χ)

φ̌(tf )
√
mn

cosh(πtf )ρfa(m)ρfb(−n). (4.19)

Proof. For a = b =∞, the formula (4.13) and the case κ = 0 of (4.14) can be found
in Section 2.1.4 of [BHM07a]. The extension to general cusps a, b is straightforward.

The case κ = 1 of (4.14) was obtained by B. Topacogullari (private communication).
We restrict here to mentionning that it can be proved by reproducing the computations
of page 251 of [DI82b] and Section 5 of [DFI02]†.

The right-hand side of the Kuznetsov formula (the so-called spectral side) naturally
splits into two contributions. The regular spectrum consists in H, E and the contribution
toM of those f ∈ B(q, χ) with tf ∈ R ; the conjecturally inexistant exceptional spectrum
is the contribution to M of those f with tf ∈ iR∗ (similarly with E ′ and M′). The
technical reason for this distinction is the growth properties of the integral transforms.
Indeed, when X is small (i.e. when the average over the moduli of the Kloosterman sums
is long, since X �

√
mn/c), we see from Lemma 4.4 that while φ̇(t), φ̃(t) and φ̌(t) are

essentially bounded for t ∈ R, φ̃(it) is roughly of size X−2|t| when t ∈ [−1/2, 1/2].
We remark that in contrast with other works (e.g. [BM15b]), we do not make use of

Atkin-Lehner’s newform theory, nor of Hecke theory. In fact, we do not use any information
about the Fourier coefficients ρfa(n) and ρca(n, t) other than the fact that Kuznetsov’s
formula holds, so the reader unfamiliar with the subject can go through the following
sections without knowing what they are. The main feature of the Kuznetsov formula
which is used is the decay properties of the integral transforms (4.9)-(4.11), and the fact
that it separates the variables m and n in a way that combines very nicely with the
Cauchy–Schwarz inequality.

4.2. Large sieve inequalities

4.2.1. Quadratic forms with Saa Given N ∈ N, ϑ ∈ R∗+, λ ≥ 0, a sequence (bn) of
complex numbers, a singular cusp a and c ∈ C(a, a), let

Ba(λ, ϑ; c,N) :=
∑

N<m,n≤2N
bmbne−λ

√
mnSaa(m,n, c)e

(2
√
mn

c
ϑ
)
.

†Note that in the expression for hp(t) given on page 518 of [DFI02], the term Γ(1− k
2 − ir) should

read Γ(1− k
2 + ir).
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We also define

‖bN‖2 :=
( ∑
N<n≤2N

|bn|2
)1/2

.

The following extends [DI82b, Proposition 3].

Lemma 4.6 [DI82b, Proposition 3]. We have

|Ba(λ, ϑ; c,N)| ≤ τ(c)O(1)(q0c)1/2N‖bN‖2, (4.20)
|Ba(λ, ϑ; c,N)| � (c+N +

√
ϑcN)‖bN‖2,

|Ba(λ, ϑ; c,N)| �ε ϑ
−1/2c1/2N1/2+ε‖bN‖2 (4.21)

where the last bounds holds for ϑ < 2 and c < N .

Proof. Suppose λ = 0. The first bound is an immediate consequence of Lemma 4.2. For
the second bound, the proof given in [DI82b, page 256] transposes without any change:
after expanding out the sum Saa(. . . ), one uses the triangle inequality with the effect that
the factors involving χ are trivially bounded. For the last bound, the proof is adapted
with the following modification: the Cauchy–Schwarz inequality yields

|Ba(0, ϑ; c,N)|2 ≤ ‖bN‖22
∑

N<m1,m2≤2N
δ1,δ2

bm1bm2χ(r1)χ(r2)e
(m1δ1 −m2δ2

c

)∑
n

f(n)

(4.22)
where f(n) is defined as in [DI82b, page 256], δ1 and δ2 run over residue classes
modulo c satisfying (4.4), and rj := δ−1

j + u(αjδj − 1)/γ for j ∈ {1, 2}, where αj is
determined by (4.5). The only difference is the presence of the χ factors. Upon using
Poisson summation on the sum

∑
n f(n), the argument is split in two cases according to

whether α1 ≡ α2 (mod c) or not. If α1 6≡ α2 (mod c), then one uses the triangle inequality
on (4.22) so that the χ factors do not intervene. If on the contrary α1 ≡ α2 (mod c), then
we deduce from (4.5) that also δ1 ≡ δ2 (mod c). The χ factors cancel out and the rest of
the argument carries through without change.
The case of arbitrary λ ≥ 0 reduces to the case λ = 0 by Mellin inversion

e−y = 1
2πi

∫1+i∞

1−i∞
Γ(s)y−sds = 1 + 1

2πi

∫−1/2+i∞

−1/2−i∞
Γ(s)y−sds

at y = λ
√
mn, using the first expression when λN ≥ 1 and the second otherwise.

4.2.2. Large sieve inequalities for the regular spectrum We proceed to state the
following large sieve-type inequalities, which extend [DI82b, Proposition 4].

Proposition 4.7. Let (an) be a sequence of complex numbers, and a a singular cusp
for the group Γ0(q) and Dirichlet multiplier χ (mod q0). Suppose T ≥ 1 and N ≥ 1/2.
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Then each of the three quantities∑
κ<k≤T

k≡κ (mod 2)

Γ(k)
∑

f∈Bk(q,χ)

∣∣∣ ∑
N<n≤2N

an
√
nρfa(n)

∣∣∣2, (4.23)

∑
f∈B(q,χ)
|tf |≤T

(1 + |tf |)±κ

cosh(πtf )

∣∣∣ ∑
N<n≤2N

an
√
nρfa(±n)

∣∣∣2, (4.24)

∑
c sing.

∫T
−T

(1 + |t|)±κ

cosh(πt)

∣∣∣ ∑
N<n≤2N

an
√
nρca(±n, t)

∣∣∣2dt, (4.25)

is majorized by

Oε
(
(T 2 + q

1/2
0 µ(a)N1+ε)‖aN‖22

)
.

Here, if a is equivalent to u/w with w|q and (u,w) = 1, then µ(a) := (w, q/w)/q.

Proof. These formulas are deduced from two summation formulas, namely the
Petersson formula [Iwa97, Theorem 3.6]

1m=n+2πi−k
∑

c∈C(a,a)

1
c
Saa(m,n; c)Jk−1

(4π
√
mn

c

)
= 4Γ(k − 1)

√
mn

∑
f∈Bk(q,χ)

ρfa(m)ρfa(n),
(4.26)

valid for k > 1, k ≡ κ (mod 2), and a “pre-Kuznetsov” formula [DFI02, Proposition 5.2]
which, for general cusps, is∣∣Γ(1∓ κ

2 + ir)|2

4π2

{
1m=n +

∑
c∈C(a,a)

1
c
Saa(±m,±n; c)I±

(4π
√
mn

c

)}
=

∑
f∈B(q,χ)

√
mn

cosh(πtf )H(tf , r)ρfa(±m)ρfa(±n) + 1
4π

∑
c sing.

∫∞
−∞

√
mn

cosh(πt)H(t, r)ρca(±m)ρca(±n)dt

(4.27)
for all real r and positive integers m, n. Here,

H(t, r) = cosh(πt) cosh(πr)
cosh(π(t− r)) cosh(π(t+ r)) (r, t ∈ C, r 6∈ ±t+ i/2 + iZ),

I±(x) = −2x
∫ i
−i

(−iv)±κ−1K2ir(vx)dv (x > 0),

where v varies on the half-circle |v| = 1, Re(v) ≥ 0 counter-clockwise. Note that by the
complement formula

∣∣Γ(1− ε
2 + ir)

∣∣2 = π

cosh(πr) ×
{

1, ε = 1,
1
4 + r2, ε = −1.

(4.28)

Given the formulas (4.26) and (4.27), the arguments in [DI82b, pages 258-261] are
adapted as follows. When κ = 0, the details are strictly identical. Consider the case κ = 1
of (4.23). We multiply both sides of (4.26) by (k − 1)e−(k−1)/Taman and sum over k,
m and n. The analogue of the function EK(x) defined in [DI82b, page 258] is (up to a
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constant factor) the function

ET (x) =
∑
`≥1

(−1)`2`e−2`/TJ2`(x) = −1
2 sinh

( 1
T

) ∫1

0

u2xJ1(ux)du
(cosh(1/T )2 − u2)3/2 ,

as can be seen by reproducing the computations in [Iwa82, page 316]†. We then write
(see [GR07, eq. 8.411.3, page 912])

J1(y) = 2
π

∫π/2
0

cos τ sin(y cos τ)dτ,

split the integral at ∆ ∈ (0, π/2] and deduce the bound (4.23) by following the steps
in [DI82b, page 259].
Consider next the case κ = 1 and positive sign of (4.24) and (4.25). We multiply both

sides of (4.27) by r2 cosh(πr)e−(r/T )2
aman, integrate over r ∈ R and sum over m and n.

The analogue of the function Φ(x) of [DI82b, page 260] is the function

Φ+(x) =
∫∞
−∞

r2e−(r/T )2
∫ i
−i
K2ir(xv)dvdr.

We use the expression K2ir(y) =
∫∞

0 e−y cosh ξ cos(2rξ)dξ (Re y > 0). For x > 0, we obtain
by integrations by parts

Φ+(x) = − i
√
πT 3

∫∞
0

e−(ξT )2
ξ tanh ξ

{
cos(x cosh ξ)− 1

2

∫1

−1
cos(xϑ cosh ξ)dϑ

}
dξ

= i
√
π
T 3

x

∫∞
0

e−(ξT )2
(1− 2(ξT )2) sinh(x cosh ξ) dξ

cosh ξ ,

and from there, the bounds (4.24) and (4.25) are obtained by reproducing the
computations of [DI82b, page 261].
Consider finally the case of negative sign in (4.24) and (4.26). We multiply both

sides of (4.27) by r2 cosh(πr)/( 1
4 + r2)e−(r/T )2

aman. The analogue of the function Φ(x)
of [DI82b, page 260] is now

Φ−(x) =
∫∞
−∞

r2e−(r/T )2
∫ i
−i
K2ir(xv)dv

v2 dr,

and we have by integration by parts

Φ−(x) = i
√
πT 3

∫∞
0

e−(ξT )2
ξ tanh ξ

{
cos(x cosh ξ)− 1

2i

∫ i
−i

e−vx cosh ξ

v2 dv
}

dξ

= − i
√
π
T 3

x

∫∞
0

e−(ξT )2
(1− 2(ξT )2)

{
sinh(x cosh ξ) + 1

i

∫ i
−i

e−xv cosh ξ

v3 dv
} dξ

cosh ξ .

From there, it is straightforward to reproduce the computations of [DI82b, page 261]
using the bounds of Lemma 4.6.

4.2.3. Weighted large sieve inequalities for the exceptional spectrum The objects we
would like to bound now are of the shape

Eq,a(Y, (an)) :=
∑

f∈B(q,χ)
tf∈iR

Y 2|tf |
∣∣∣ ∑
N<n≤2N

ann
1/2ρfa(n)

∣∣∣2

†There is a slight convergence issue in the Fourier integral for yJ1(y), which is resolved by changing b =
cosh(1/T ) to b+ iε, ε > 0 and letting ε→ 0.
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where Y ≥ 1 is to be taken as large as possible while still keeping this quantity comparable
to the bounds (1 + µ(a)N)

∑
n |an|2 coming from Proposition 4.7. The following is the

analogue of [DI82b, Theorem 5].

Lemma 4.8. Assume that the situation is as in Proposition 4.7. Then for any Y ≥ 1,

Eq,a(Y, (an))�ε

(
1 + (µ(a)NY )1/2)(1 + (q0µ(a)N)1/2+ε)‖aN‖22.

The important aspect in this bound is that it is as good as those coming from the regular
spectrum (i.e. the upper bound in Proposition 4.7) in the situation when µ(a) = 1/q
(which will typically be the case), N < q and Y ≤ q/N . Note also that the previous
bound holds for any individual q.

Proof. The arguments in [DI82b, section 8.1, pages 270-271] transpose identically.†.

The next step is to produce an analogue of [DI82b, Theorem 6], which is concerned with
the situation when an average over q is done. Deshouillers and Iwaniec make use of the
very nice idea that with the choice a =∞ for each q, the roles of q and c can be swapped
in the Kuznetsov formula. Through an induction process, this enhances significantly the
bounds obtained. This switching technique is specific to the choice a =∞ for all q, with
scaling matrices independent of q.

Lemma 4.9. Assume the situation is as previously. Recall that χ has modulus q0 ≥ 1.
Then for all Y ≥ 1 and Q ≥ q0,∑

q≤Q
q0|q

Eq,∞(Y, (an))�ε (QN)ε(Qq−1
0 +N +NY 1/2)‖aN‖22,

where the scaling matrices are chosen independently of q.

Note that now, in the situation when N ≤ Q, the parameter Y is allowed to be as
large as (Q/N)2 while still yielding a bound of same quality as the regular spectrum.
The final situation is the special case when (an) is the characteristic sequence of an
interval of integers. Then Deshouillers and Iwaniec are able to provide an even stronger
bound [DI82b, Theorem 7], by enhancing the initial step in the induction.

Lemma 4.10. Assume that the situation is as in Lemma 4.9. Assume moreover
that (an)N<n≤2N is the characteristic sequence of an interval of integers. Then∑

q≤Q
q0|q

Eq,∞(Y, (an))�ε (QN)ε(Qq−1
0 +N + (NY )1/2)N.

In the situation when N ≤ Q, the parameter Y can then be taken as large as Q2/N
while still yielding an acceptable bound.

†Note that in the last display of the proof [DI82b, page 271], L(Y ) should read L(Y −1).
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We now proceed to justify Lemmas 4.9 and 4.10. For the rest of this section, we rename q
into q0q, so that now q runs over intervals. The object of interest is

S(Q,Y,N, s) :=
∑

Q<q≤16Q

∑
f∈B(q0q,χ)
tf∈iR

Y 2|tf |
∣∣∣ ∑
N<n≤2N

ann
s+1/2ρf∞(n)

∣∣∣2.

Lemma 4.11. Let N,Y,Q ≥ 1 and a sequence (an) be given. Then

S(Q,Y,N, 0)�ε

∫∞
−∞

S
(πNY
q0Q

,Y,N, it
) dt
t4 + 1

+ (QYN)ε
(
Q+ N

q
1/2
0

+ NY

q
1/2
0 Q

)
‖aN‖22.

(4.29)

Moreover, if (an) is the characteristic sequence of an interval, then

S(Q,Y,N, 0)�ε (NY )ε(Q+N + Y )N (4.30)

Proof of (4.29). The arguments in [DI82b, pages 272-273] are adapted with minimal
effort; however we take the opportunity to justify more precisely one of the claims made
there. Fix a smooth function Φ : R → [0, 1] supported inside [1/2, 5/2] and majoriz-
ing 1[1,2]. Letting g(q) = Φ(q/Q) and φ(x) = Φ(Y x) (these kind of homotheties of Φ we
refer to as test functions) we have

S(Q,Y,N, 0)� |S1|,

S1 :=
∑
q≥1

g(q)
∑

f∈B(q0q,χ)
tf∈iR

φ̃(tf )
cosh(πtf )

∣∣∣∑
n

ann
1/2ρf∞(n)

∣∣∣2.
This is seen by approximating the Bessel function in the definition of φ̃ by its first order
term, as in [DI82b, formula (8.1)]. Opening the squares in S1 and applying the Kuznetsov
formula and the large sieve estimates (Lemma 4.5 and Proposition 4.7), one gets

S1 =
∑
m,n

amanS2(m,n) +Oε
(
(QNY )ε

(
Q+ N

q
1/2
0

)∑
n

|an|2
)
,

S2(m,n) :=
∑
q,c≥1

g(q)
q0qc

φ
(4π
√
mn

q0qc

)
S∞∞(m,n; qc),

Letting h(x) = hm,n,c(x) = φ(x)g
( 4π
√
mn

q0cx

)
, one applies the Kuznetsov formula for the

group Γ0(q0c) (which requires that the scaling matrices be independent of q) and obtains

S1 � |S3|+Oε
(
(QNY )ε

(
Q+ N

q
1/2
0

+ NY

q
1/2
0 Q

)∑
n

|an|2
)
,

S3 :=
∑
m,n

aman
∑

C<c≤16C

∑
f∈B(q0c,χ)
tf∈iR

h̃(tf )
cosh(πtf )

√
mnρf∞(m)ρf∞(n).

Note that h(tf ) = hm,n,c(tf ) = 0 unless C < c ≤ 16C, where C = πNY/(q0Q). Let

Kκ,t(x) := 2πitκ

sinh(πt)
(
J2it(x)− (−1)κJ−2it(x)

)
,
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and ğ(s) :=
∫∞

0 g(x)xs−1dx be the Mellin transform of g. Then

h̃(t) = 1
2π

∫∞
−∞

ğ(iτ)
( q0c

4π
√
mn

)iτ ∫∞
0
Kκ,t(x)xiτφ(x)dxdτ.

Inserting into the definition of S3 and using the triangle inequality, we obtain

S3 �
∫∞
−∞
|ğ(iτ)|

∑
C<c≤16C

∑
f∈B(q0c,χ)
tf∈iR

∣∣∣∑
m

amm
(1+iτ)/2ρf∞(m)

∣∣∣∣∣∣∑
n

ann
(1−iτ)/2ρf∞(m)

∣∣∣×
×
∣∣∣ ∫∞

0
Kκ,t(x)xiτφ(x)dx

∣∣∣dτ.
From there, the arguments in [DI82b, page 273] apply and yield∣∣∣ ∫∞

0
Kκ,t(x)xiτφ(x)dx

∣∣∣�ε Y
2|tf | + Y ε

from which the claimed bound follows in the same way as [DI82b, page 273].

Proof of (4.30). Assume that (an)N<n≤2N is the characteristic sequence of the integers
inside (N,N1] for some N1 ≤ 2N . We proceed as in [DI82b, page 276]. By applying the
Kuznetsov formula and the large sieve inequalities, one obtains

S(Q,N, Y, 0)�ε

∑
Q<q≤16Q

∑
c≥1

1
q0qc

∣∣∣ ∑
N≤m,n≤N1

φ
(4π
√
mn

q0qc

)
S∞∞(m,n; qq0c)

∣∣∣
+
(
Q+ N1+ε

q
1/2
0

)
N

for a test function φ supported inside [1/(2Y ), 5/(2Y )]. Here one may restrict summation
to C/4 < c ≤ 8C for C := πNY/(q0Q). Let k := q0qc. The first term above is majorized
by

T := (q0QC)−1+ε
∑

k�q0QC
q0|k

∣∣∣ ∑
N<m,n≤N1

φ
(4π
√
mn

k

)
S∞∞(m,n; k)

∣∣∣.
Let φ(x) = 1

2π
∫∞
−∞ φ̆(it)x−itdt, where the Mellin transform φ̆(s) =

∫∞
0 φ(x)xs−1dx satis-

fies φ̆(it)� (1 + t4)−1, so that (after reinterpreting t by 2t)

T � (q0QC)−1+ε
∫∞
−∞

1
t4 + 1

∑
k�q0QC
q0|k

∣∣∣ ∑
N<m,n≤N1

(mn)−ite((m− n)ϑ)Sχ(m,n; k)
∣∣∣dt

for some ϑ ∈ [0, 1) (depending on the scaling matrix). By m−it = N−it1 + it
∫N1
m
u−it−1du,

we obtain
T � (q0QC)−1+ε sup

N≤N ′,M ′≤N1

∑
k�q0QC
q0|k

U1(k,M ′, N ′),

U1(M ′, N ′) :=
∣∣∣ ∑
m≤M ′
n≤N ′

e((m− n)ϑ)Sχ(m,n; k)
∣∣∣.

Opening the summation in Sχ, we have

U1(k,M ′, N ′) ≤ U2(k,M ′, N ′) :=
∑

δ (mod k)×

∣∣∣ ∑
m≤M ′

e
(δm
k

+mϑ
)∣∣∣∣∣∣ ∑

n≤N ′
e
(δn
k
− nϑ

)∣∣∣.
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It is crucial to note that the quantity on the RHS also exists for k not multiple of q0, so
trivially

T � (q0QC)−1+ε sup
N≤M ′,N ′≤N1

∑
k�q0QC

U2(k,M ′, N ′),

From there on, the calculations in [DI82b, page 276] apply and yield, in the notation
of [DI82b, Lemma 8.2],

U2(k,M ′, N ′)�
∑

m,n∈Z

f̂M ′(m)e(mϑ)f̂N ′(n)e(−nϑ)S(m,n; k).

The proof of Theorem 14 of [DI82b] follows through, and yields for all K ≥ 1,∑
k≤K

U2(k,M ′, N ′)�ε (KMN)εK(K +MN).

Taking K � q0QC, we conclude that

T �ε (q0QC)ε(q0QC +N2).

The rest of the arguments in [DI82b, page 277] applies and yields

S(Q,N, Y, 0)�ε (NY )ε(Q+N + Y )N

as claimed.

Proof of Lemmas 4.9 and 4.10. In addition to the recurrence relation (4.29), we have
the properties

S(Q,Y,N, 0) ≤ (Y/Z)1/2S(Q,Z,N, 0) (1 ≤ Z ≤ Y ),

S(Q, 1, N, 0)�ε (QN)ε
(
Q+ N

q
1/2
0

)
‖aN‖22.

The second one follows from Proposition 4.7. Having these at hand, the induction
arguments in [DI82b, page 274] and [DI82b, page 277] are easily reproduced. It is useful
to notice that q0 appears only with negative powers in the error terms, and that its
presence in the denominator of πNY/(q0Q) in (4.29) is beneficial for the induction.

Remark. The previous three lemmas used only Selberg’s theorem that θ ≤ 1/4 (recall
the definition (4.6)). One could make the bounds explicit in terms of θ and thus benefit
from recent progress towards the Ramanujan-Selberg conjecture. It is straightforward to
check that Lemmas 4.8, 4.9 and 4.10 hold with the right-hand sides replaced by

(1 + (µ(a)NY )2θ)(1 + q
1/2
0 (µ(a)N)1−2θ+ε)‖aN‖22,

(QN)ε(Qq−1
0 +N + Y 2θN4θQ1−4θ)‖aN‖22,

(QN)ε(Qq−1
0 +N + Y 2θN2θQ1−4θ)N

respectively (compare with [IK04, Proposition 16.10]). We refrain from doing so because
it would not impact the applications considered here.

4.3. Proof of Theorem 2.1

4.3.1. Estimates for sums of generalized Kloosterman sums We begin by the following
statement regarding the generalized Kloosterman sums Sa,b(m,n; c). For the sake of
simplifying the presentation of the bound obtained, we discard powers of the modulus q.
This does not have consequences on our applications.
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Proposition 4.12. Let the real numbersM,N,R, S ≥ 1,X > 0 and the integer q ≥ 1
be given, let χ be a character modulo q, let φ be a smooth function supported on the
interval [X, 2X] such that ‖φ(j)‖∞ � X−j for 0 ≤ j ≤ 4, and let (am) and (bn,r,s) be
sequences of complex numbers supported on M < m ≤ 2M , N < n ≤ 2N , R < r ≤ 2R
and S < s ≤ 2S. Assume that (am) is the characteristic sequence of an interval of integers.
Then ∑

m,n,r,s
(s,rq)=1

ambn,r,s
∑

c∈C(∞,1/s)

1
c
φ
(4π
√
mn

c

)
S∞,1/s(m,±n; c)

�ε (q(X +X−1)RSMN)ε
{
Lreg + Lexc

}
,

(4.31)

Lreg :=
(
1 +X +

√
N

RS

)(
1 +X +

√
M

RS

) √RS
1 +X

√
M‖bN,R,S‖2,

Lexc :=
(
1 +

√
N

RS

)√1 +X−1

RS

( MN

RS +N

)1/4 √RS
1 +X

√
M‖bN,R,S‖2.

where the Kloosterman sum is defined with respect to the congruence group Γ(qrs) with
multiplier induced by χ, with scaling matrices σ∞ and σ1/s that are both independent
of m and n, with σ∞ independent of r and s as well.

Remark. If (am) is not the characteristic sequence of an interval, then the
bound (4.31) still holds with Lexc replaced by M1/4Lexc (see [DI82b, Theorems 10
and 11]).

Proof. This estimate is deduced from Proposition 4.7 and Lemmas 4.8 and 4.10 by
following the computations of Section 9.1 of [DI82b]. It is useful to notice that the bounds
of Lemmas 4.8, 4.10 and Proposition 4.7 (for a ∈ {∞, 1/s}) decrease with q0.

4.3.2. Estimates for the complete Kloosterman sums twisted by a character We now
justify the transition from Proposition 4.12 to an estimate for twisted sums of usual
Kloosterman sums S(m,n; c).

Proposition 4.13. Let the real numbers M,N,R, S,C ≥ 1, and the integer q ≥ 1 be
given, let χ be a character modulo q, let g be a smooth function supported on [C, 2C]×
[M, 2M ]× (R∗+)3 such that

∂ν0+ν1+ν2+ν3+ν4g

∂cν0∂mν1∂nν2∂rν3∂sν4
(c,m, n, r, s)� C−ν0M−ν1N−ν2R−ν3S−ν4 (4.32)

for 0 ≤ νj ≤ 12. Let (bn,r,s) be a sequence of complex numbers supported on N < n ≤ 2N ,
R < r ≤ 2R and S < s ≤ 2S. Then uniformly in t ∈ [0, 1),∑

c,m,n,r,s
(sc,rq)=1

bn,r,s χ(c)g(c,m, n, r, s)e(mt)S(nr,±mq; sc)

�ε (CRSMNq)εq3/2{Kreg +Kexc
}√

M‖bN,R,S‖2,

(4.33)

K2
reg := RS

(C2S2R+MN + C2SN)(C2S2R+MN + C2SM)
C2S2R+MN

,

K2
exc := C3S2

√
R(N +RS).
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Proof. We present the proof in the case where there is a + sign in the Kloosterman
sums. The complementary case is similar. The main issue is separation of variables, as
explained in [DI82b, page 269]. The nuisance is mainly notational. We write

g(c,m, n, r, s) =
∫

R4

1
sc
√
rqG( 4π

√
mn

sc
√
rq , ξ1, ξ2, ξ3, ξ4)e(−mξ1 − nξ2 − rξ3 − sξ4)

4∏
j=1

dξj ,

by Fourier inversion, where for all (x, ξ1, . . . , ξ4) ∈ R∗+ ×R4,

G(x, ξ1, . . . , ξ4) :=
∫

R4
g∗(x, x1, . . . , x4)e(x1ξ1 + · · ·+ x4ξ4)

4∏
j=1

dxj ,

g∗(x, x1, . . . , x4) :=
4π√x1x2

x
g
(4π√x1x2

xx4
√
x3q

, x1, . . . , x4
)
.

By integration by parts, for any non-negative integers (`, `1, . . . , `4) with ` ≤ 4 and `j ≤ 2,

∂`G

∂x`
(x, ξ1, . . . , ξ4) =

∏
j

(2πiξj)−`j
∫

R4

( ∂`+`1+···+`4

∂x`∂x`1
1 · · · ∂x

`4
4
g∗(x, x1, . . . , x4)

)
×

× e(x1ξ1 + · · ·+ x4ξ4)
∏
j

dxj

assuming ξj 6= 0 if `j > 0. The derivatives are estimated using (4.32). Choose `1 = 0
or `1 = 2 according to whether |ξ1|M < 1 or not, and similarly for `2, `3, `4. Then

∂`G

∂x`
(x, ξ1, . . . , ξ4)� MNRS2C

√
qR(
√
MN/(CS

√
qR))−`

(1 + (ξ1M)2)(1 + (ξ2N)2)(1 + (ξ3R)2)(1 + (ξ4S)2) .

We abbreviate further

φ(x) = φξ1,...,ξ4(x) := (1 + (ξ1M)2)(1 + (ξ2N)2)(1 + (ξ3R)2)(1 + (ξ4S)2)
MNRS2C

√
qR

G(x, ξ1, . . . , ξ4).

This function satisfies the hypotheses of Proposition 4.12, with† X =
√
MN/(CS

√
qR),

uniformly in ξj . Define

b̃n,r,s := bn,r,se(−n(ξ2 + s/(rq))− rξ3 − sξ4
)
.

Finally, by Lemma 4.3 with the scaling matrices

σ∞ =
(

1 ξ1 − t
0 1

)
, σ1/s =

(√
rq 0

s
√
rq 1/√rq

)
,

we have
χ(c)S(nr,mq; sc)e(m(t− ξ1) + ns/(rq)) = S∞,1/s(m,n; sc√rq).

Proposition 4.12 can therefore be applied and yields∑
m,n,r,s
(s,rq)=1

b̃n,r,s
∑

(c,rq)=1

1
cs
√
rq

φ
(4π
√
mn

sc
√
rq

)
S∞,1/s(m,n; sc√rq)

�ε
q3/2(CMNRS)ε

CS
√
qR

(Wreg +Wexc)
√
M‖bN,R,S‖2,

†Note that in [DI82b, page 278], some occurences of X should read X−1.
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with

W 2
reg = RS

(C2S2R+MN + C2SN)(C2S2R+MN + C2SM)
C2S2R+MN

,

W 2
exc = C3S2

√
R(N +RS).

From the definitions of φ and G, we deduce the claimed bound.

4.3.3. Bounds for incomplete Kloosterman sums In this section, we prove Theo-
rem 2.1. As a first reduction, we remark that it suffices to prove the result when the
sequence bn,r,s is supported on N < n ≤ 2N , by summing dyadically over N and by
concavity of

√
· (losing a factor (logN)1/2 in the process). Secondly, we let s0 (mod q)×

be fixed and assume without loss of generality that

bn,r,s = 0 unless s ≡ s0 (mod q). (4.34)

We will recover the full bound (2.3) by summing over s0 (mod q)× (losing a factor q1/2

in the process by concavity). Let

g̈(c,m, n, r, s) :=
∫∞
−∞

g(c, ξ, n, r, s)e(ξm)dξ. (4.35)

By Poisson summation, we write the left-hand side of (2.3) as∑
c,n,r,s

(qr,sc)=1
c≡c0 (mod q)

bn,r,s
∑

δ (mod sc)
(δ,sc)=1

e
(
n
rδ

sc

) ∑
d≡δ (mod sc)
d≡d0 (mod q)

g(c, d, n, r, s)

=
∑
c,n,r,s

(qr,sc)=1
c≡c0 (mod q)

bn,r,s
scq

∑
(δ,sc)=1

e
(
n
rδ

sc

)∑
m

g̈(c,m/sqc, n, r, s)e
(
− md0sc

q
− mδq

sc

)

=
∑

c,m,n,r,s
(qr,sc)=1

c≡c0 (mod q)

bn,r,s
scq

g̈(c,m/scq, n, r, s)e
(−md0s0c0

q

)
S(nr,−mq; sc) (4.36)

where S(. . .) is the usual Kloosterman. LetM > 0 be a parameter. We write (4.36) asA0 +
A∞ + B, where A0 is the contribution of m = 0, A∞ is the contribution of indices m such
that |m| > M , and B is the contribution of indices m with 0 < |m| ≤M . By the bound
for Ramanujan sums [IK04, formula (3.5)],

A0 �
1
q

∑
c,n,r,s

(qr,sc)=1
c≡c0 (mod q)

|bn,r,s|
sc
|g̈(c, 0, n, r, s)|(n, sc)� q−2(logS)2D{NR/S}1/2‖bN,R,S‖2.

By repeated integration by parts in the integral (4.35), for fixed k ≥ 1 and m 6= 0 we
have

g̈(c,m/(scq), n, r, s)�k D
1−k(1−ε0)

( scq
|m|

)k
.

Taking k � 1/ε0, we have that there is a choice of M � (SCqD)ε+O(ε0)SCq/D such that
the bound

g̈(c,m/(scq), n, r, s)�ε 1/m2 (|m| > M)

holds. Bounding trivially the Kloosterman sum in (4.36) by sc, we obtain

A∞ �ε (SCqD)ε+O(ε0)q−2D{NR/S}1/2‖bN,R,S‖2 (4.37)
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which is also acceptable (if ε0 is small enough, the factor q−2+ε+O(ε0) is bounded).
There remains to bound B; we may assume that M ≥ 1 for otherwise B is void. By

dyadic decomposition,
|B| � log 2M sup

1/2≤M1≤M
|B(M1)|,

where

B(M1) :=
∑

c,m,n,r,s
(qr,sc)=1

M1<|m|≤2M1
c≡c0 (mod q)

bn,r,s
scq

g̈(c,m/scq, n, r, s)e
(−md0s0c0

q

)
S(nr,−mq; sc).

We insert the definition of g̈ after having changed variables ξ → ξscq/m, to obtain

|B(M1)| � DM1

SCq
sup

ξ�DM1/(SCq)
|B′(M1, ξ)|,

where

B′(M1, ξ) :=
∑

c,m,n,r,s
(qr,sc)=1

M1<|m|≤2M1
c≡c0 (mod q)

bn,r,s
m

g(c, ξscq/m, n, r, s)e
(−md0s0c0

q

)
S(nr,−mq; sc). (4.38)

By orthogonality of multiplicative characters, we have

B′(M1, ξ) = 1
M1ϕ(q)

∑
χ (mod q)

χ(c0)S(M1, ξ, χ),

where

S(M1, ξ, χ) :=
∑
r,s

(s,qr)=1

∑
m,n
|m|�M1

bn,r,s
∑

(c,rq)=1

χ(c)g1(c,m, n, r, s)e
(−md0s0c0

q

)
S(nr,−mq; sc),

g1(c,m, n, r, s) := M1m
−1g(c, ξscq/m, n, r, s).

Proposition 4.13 can be applied to the sums S(M1, ξ, χ), at the cost of enlarging the
bound by a factor O((CDNRS)60ε0) in order for the derivative conditions (4.32) to be
satisfied. We obtain

S(M1, ξ, χ)�ε q
3/2(CDNRSq)ε+O(ε0){Lreg + Lexc

}√
M1‖bN,R,S‖2,

L2
reg := RS

(C2S2R+M1N + C2SN)(C2S2R+M1N + C2SM1)
C2S2R+M1N

,

L2
exc := C3S2

√
R(N +RS).

From there, computations identical to [DI82b, page 282] allow to bound

L2
reg � RS

(
C2S2R+M1N + C2M1N

R
+ C2S(M1 +N)

)
.

We deduce successively

|B(M1)| �ε (CDNRSq)ε+O(ε0) qD
√
M1

SC
L∗(M1)‖bN,R,S‖2,

L∗(M1)2 := RS(C2S2R+M1N + C2M1N/R+ C2S(M1 +N)) + C3S2
√
R(N +RS),

and finally
B �ε (CDNRSq)ε+O(ε0)qK, (4.39)
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K2 := qCS(N +RS)(C +RD) + C2DS
√

(N +RS)R.

Grouping our two bounds (4.37) and (4.39), and summing over s0 (mod q)×, we obtain
the claimed result.

5. Convolutions in arithmetic progressions

In this section, we proceed with an instance of the dispersion method, for convolutions
of two sequences one of which is supported in [xη, x1/3−η] for some η > 0. This
extends [BFI86, Section 13] and [Fou85, Section V].
Given a parameter R ≥ 1, an integer q ≥ 1 and a residue class n (mod q), we let

Xq(R) := {χ (mod q), cond(χ) ≤ R},

and
uR(n; q) := 1n≡1 (mod q) −

1
ϕ(q)

∑
χ∈Xq(R)

χ(n)

= 1
ϕ(q)

∑
χ (mod q)
cond(χ)>R

χ(n).
(5.1)

Note that this vanishes when q ≤ R or (n, q) > 1. We have the trivial bound

|uR(n; q)| � 1n≡1 (mod q) + Rτ(q)
ϕ(q) . (5.2)

It will also be sometimes useful to write

uR(n; q) =
(

1n≡1 (mod q) −
1(n,q)=1

ϕ(q)

)
− 1
ϕ(q)

∑
χ (mod q)

1<cond(χ)≤R

χ(n). (5.3)

Theorem 5.1. Let M , N , Q, R ≥ 1 and η be given, with x := MN and x1/4 ≤
Q. Then there exists δ depending at most on η such that the following holds. Let two
sequences (αm), (βn) supported in n ∈ (N, 2N ] and m ∈ (M, 2M ] be given, which satisfy
for some A ≥ 1,

|αm| ≤ τ(m)A, |βn| ≤ τ(n)A. (5.4)

Let a1, a2 ∈ Z r {0}, and assume that
xη ≤ N ≤ Q2/3−η,

Q ≤ x1/2+δ,

R, |a1|, |a2| ≤ xδ.
(5.5)

Then for small enough η, we have∑
Q<q≤2Q

(q,a1a2)=1

∑
n,m

(n,a2)=1

αmβnuR(mna1a2; q)� x(log x)O(1)R−1. (5.6)

The implicit constants depend on η and A at most.

Introducing uR(n; q) is technically much more convenient than the usual

u1(n; q) = 1n≡1 (mod q) −
1(n,q)=1

ϕ(q) . (5.7)
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Indeed, there are no equidistribution assumptions on our sequences in Theorem 5.1.

5.1. Bombieri-Vinogradov range

Before we embark on the dispersion method we need an estimate which is relevant to
values of the moduli less than the threshold x1/2−ε.

Lemma 5.2. Let M,N,R ≥ 1. Let x = MN , and suppose we are given two se-
quences (αm) and (βn) supported on the integers of (M, 2M ] and (N, 2N ] respectively,
satisfying the bounds (5.4). Suppose that Q ≤ x1/2/R and R ≤ Q. Then∑

Q<q≤2Q
max

0<a<q
(a,q)=1

∣∣∣∑
m,n

αmβnuR(mna; q)
∣∣∣� x(log x)O(1)(R−1 +M−1/2 +N−1/2).

Proof. See [IK04, Theorem 17.4]. Only the case r > R appears in our case.

5.2. First reductions

First we apply two reductions, following Section V.2 of [Fou85] and Section 3 of [FI83].
We replace the sharp cutoff for the sum over q by a smooth function γ(q) ; and we transfer
the squareful part of n into the number a2, allowing us to assume that n is squarefree.
The squarefreeness assumption on n will be useful when dealing with GCD’s (in particular
in equation (5.24) below). Note also that the statement of Theorem 5.1 is monotonically
weaker as δ → 0, so that whenever needed, we will take the liberty of reducing the value
of δ in a way that depends at most on η.

Proposition 5.3. Let x,M,N,Q,R, η and the sequences (αm) and (βn) be as in
Theorem 5.1. Assume that (βn) is supported on squarefree integers. There exists δ > 0
such that for any smooth function γ : R+ → [0, 1] with

1q∈(Q,2Q) ≤ γ(q) ≤ 1q∈(Q/2,3Q/2], (5.8)

and ‖γ(j)‖∞ �j Q
−j+Bδj for some B ≥ 0 and all fixed j ≥ 0, under the conditions (5.5),

we have ∑
q

(q,a1a2)=1

γ(q)
∑
n,m

(n,a2)=1

αmβnuR(mna1a2; q)� x(log x)O(1)R−1. (5.9)

The implicit constants depend on η, A (in (5.4)), B and the function γ at most.

Proof that Proposition 5.3 implies Theorem 5.1. We replace the sharp cutoff Q < q ≤
2Q by a smooth weight γ(q) such that

1q∈(Q,2Q] ≤ γ(q) ≤ 1q∈(Q(1−Q−10δ),2Q(1+Q−10δ)].

We can pick γ such that ‖γ(j)‖∞ �j Q
−j+10δj for all fixed j ≥ 0. The error term in this

procedure comes from the contribution of those integers q at the transition range 2Q <
q ≤ 2Q(1 +Q−10δ) and Q(1−Q−10δ) ≤ q ≤ Q. It is bounded by the triangle inequality,
using our trivial bound (5.2) and following the reasonning of [BFI86, page 219 and 240],
choosing Q0 = x10δ there. We obtain∑

q
(q,a1a2)=1

(1Q<q≤2Q − γ(q))
∑
n,m

(n,a2)=1

αmβnuR(mna1a2; q)� xR(log x)O(1)Q−10δ. (5.10)
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Given our hypotheses R ≤ xδ and Q ≥ x1/4, this is an acceptable error term.
Let K denote the set of squareful numbers:

K = {k ∈ N : p|k ⇒ p2|k}.

Factor each integer n as n = n′k with µ(n′)2 = 1, (n′, k) = 1 and k ∈ K, so that k ≤ x1/3

and (k, a2) = 1. Here µ is the Möbius function. There are only O(K1/2) squareful numbers
up to K [ES34], therefore ∑

k≥K
k∈K

1
k
� K−1/2 (K ≥ 1).

Proceeding as in [Fou85, Section V.2] and using the trivial bound (5.2), we deduce for
any K ≥ 1, ∑

q
(q,a1a2)=1

γ(q)
∑
n,m

(n,a2)=1

αmβnuR(mna1a2; q)

=
∑
k≤K
k∈K

(k,a2)=1

∑
q

(q,a1a2)=1

γ(q)
∑
n,m

(n,ka2)=1

αmµ(n)2βknuR(mnka1a2; q)

+O(Rx(log x)O(1)K−1/2).

(5.11)

We are left to analyze, for k ∈ K, k ≤ K, (k, a2) = 1, the sum∑
q

(q,a1a2)=1

γ(q)
∑
n,m

(n,ka2)=1

αmβknµ(n)2uR(mna1ka2; q).

Assume K ≤ x4δ. For each fixed k, the sequences (αm)m and (k−δµ(n)2βkn)n are
supported in m ∈ (M, 2M ] and n ∈ (N/k, 2N/k], respectively. We apply Proposition 5.3
with η replaced by η/2, N replaced by N/k and a2 replaced by ka2 (the factor k−δ ensures
that the condition (5.4) holds for (k−δµ(n)2βkn)n). If δ is small enough in terms of η, we
obtain, uniformly for k ≤ K,∑

q
(q,a1a2)=1

γ(q)
∑
n,m

(n,ka2)=1

αmβknµ(n)2uR(mna1ka2; q)� k−1+δx(log x)O(1)R−1.

Note that the sum
∑
k∈K k

−1+δ converges. Inserting in (5.11), we obtain∑
q

(q,a1a2)=1

γ(q)
∑
n,m

(n,a2)=1

αmβnuR(mna1a2; q)� x(log x)O(1)(R−1 +RK−1/2)

and so we conclude by the choice K = R4.

5.3. Applying the dispersion method

Let us prove Proposition 5.3. Recall that the sequence (βn) is assumed to be supported
on squarefree integers. Let D denote the left-hand side of (5.9). By the triangle inequality

|D| =
∣∣∣ ∑

(q,a1a2)=1

γ(q)
∑
m,n

(n,a2)=1

αmβnuR(mna1a2; q)
∣∣∣ ≤∑

m

(
|αm|

∣∣∣∑
q

∑
n

∣∣∣). (5.12)

Define a smooth and non-negative function α(m) (not to be confused with our se-
quence αm), with α(m) ≥ 1 for M < m ≤ 2M , supported inside [M/2, 3M ] and such
that ‖α(j)‖∞ �j M

−j . Note that |αm| ≤ τ(m)Aα(m) by the hypothesis (5.4). Therefore,
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the Cauchy–Schwarz inequality yields

|D| �
(∑

m

α(m)τ(m)A
)1/2(∑

m

α(m)
∣∣∣∑
q

∑
n

∣∣∣)1/2

� (log x)O(1)M1/2(S1 − 2ReS2 + S3
)1/2 (5.13)

where

S1 =
∑

(q1q2,a1a2)=1

γ(q1)γ(q2)
∑
n1,n2

(n1n2,a2)=1

βn1βn2

∑
mn1≡a1a2 (mod q1)
mn2≡a1a2 (mod q2)

α(m)

and S2 and S3 are defined similarly, replacing the sum over m by
1

ϕ(q2)
∑

χ2∈Xq2 (R)

χ(n2a1a2)
∑

mn1≡a1a2 (mod q1)

α(m)χ2(m),

1
ϕ(q1)ϕ(q2)

∑
χ1∈Xq1 (R)

∑
χ2∈Xq2 (R)

χ1(n1a1a2)χ2(n2a1a2)
∑

(mn1,q1)=1
(mn2,q2)=1

α(m)χ1χ2(m)

respectively. We will prove

S1 − 2ReS2 + S3 = O((log x)O(1)MN2R−2). (5.14)

5.3.1. Evaluation of S3 The term S3 is defined by

S3 =
∑

(q1q2,a1a2)=1

γ(q1)γ(q2)
ϕ(q1)ϕ(q2)

∑
χ1∈Xq1 (R)
χ2∈Xq2 (R)

∑
n1,n2

(nj ,qja2)=1

βn1βn2

∑
(m,q1q2)=1

α(m)χ1(mn1a1a2)χ2(mn2a1a2).

(5.15)
Let W := [q1, q2] and H := W 1+ε/M . By Poisson summation (Lemma 3.1),∑

m

α(m)χ1χ2(m) = α̂(0)
W

∑
b (mod W )×

χ1χ2(b)

+ 1
W

∑
0<|h|≤H

α̂
( h
W

) ∑
b (mod W )×

e
( bh
W

)
χ1χ2(b) +Oε(W ε).

The conductor of χ1χ2 is at most R, so that [IK04, Lemma 3.2]† yields∑
b (mod W )×

e
( bh
W

)
χ1χ2(b)� R1/2

∑
d|(h,W )

d.

We deduce ∑
m

α(m)χ1χ2(m) = α̂(0)
W

∑
b (mod W )×

χ1χ2(b) +Oε(W εR1/2).

The error term is O(xδ) while the trivial bound is M ≥ x2/3. We deduce

S3 = α̂(0)X3 +O(MN2x−1/2),

†Note that in Lemma 3.2 of [IK04], τ(χ) should read τ(χ∗) and an additional factor χ∗(m/(dm∗))
should appear in the summand.
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where, having changed b to ba1a2,

X3 :=
∑
q1,q2

(q1q2,a1a2)=1

γ(q1)γ(q2)
[q1, q2]ϕ(q1)ϕ(q2)

∑
χ1∈Xq1 (R)
χ2∈Xq2 (R)

∑
n1,n2

(nj ,qja2)=1

βn1βn2

∑
b (mod W )×

χ1(bn1)χ2(bn2).

By orthogonality, ∑
b (mod W )×

χ1χ2(b) = ϕ(W )1χ1∼χ2

where by χ1 ∼ χ2 we mean that χ1 and χ2 are induced by the same primitive character
– which necessarily has conductor dividing (q1, q2). Therefore,∑

χ1∈Xq1 (R)
χ2∈Xq2 (R)

χ1(n1)χ2(n2)1χ1∼χ2 =
∑

χ0∈X(q1,q2)(R)

χ0(n1n2).

Since ϕ([q1, q2]) = ϕ(q1)ϕ(q2)/ϕ((q1, q2)), we deduce

X3 =
∑

(q1q2,a1a2)=1

γ(q1)γ(q2)
[q1, q2]ϕ((q1, q2))

∑
χ0∈X(q1,q2)(R)

∑
n1,n2

(nj ,qja2)=1

βn1βn2χ0(n1n2). (5.16)

5.3.2. Evaluation of S2 The term S2 is defined by

S2 =
∑

(q1q2,a1a2)=1

γ(q1)γ(q2)
ϕ(q2)

∑
n1,n2

(nj ,qja2)=1

βn1βn2

∑
χ2∈Xq2 (R)

∑
m≡a1a2n1 (mod q1)

α(m)χ2(mn2a1a2).

(5.17)
As before, let W = [q1, q2] and H = W 1+ε/M . By Poisson summation,∑

m≡a1a2n1 (mod q1)

α(m)χ2(m) = α̂(0)
W

∑
b (mod W )×

b≡a1a2n1 (mod q1)

χ2(b) +Oε

(
R2 +W ε

)
, (5.18)

where
R2 := M

W

∑
0<|h|≤H

∣∣∣ ∑
b (mod W )×

b≡a1a2n1 (mod q1)

χ2(b)e
( bh
W

)∣∣∣. (5.19)

We wish to express the sum over b as a complete sum over residues. We write W =
[q1, q2] = q′1q

′
2, where (q′2, q1) = 1 and q′1|q∞1 (meaning that p|q′1 ⇒ p|q1). Note that

then q1|q′1 and (q′1, q′2) = 1. Let

ψ : (Z/q′1Z)× (Z/q′2Z) −→ (Z/WZ)

denote the canonical ring isomorphism (so ψ−1 is the projection map). Note that

b2 7→ χ2(ψ(1, b2))

defines a character (mod q′2) of conductor at most R. Finally, we have

1
W
≡ q′1
q′2

+ q′2
q′1

(mod 1).

The sum over b in (5.19) is in absolute values at most∑
b1 (mod q′1)×

b1≡a1a2n1 (mod q1)

∣∣∣ ∑
b2 (mod q′2)×

χ2(ψ(1, b2))e
(b2hq′1

q′2

)∣∣∣ (5.20)
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since ψ(b1, b2) ≡ b1 (mod q1), and by factoring

χ2(ψ(b1, b2)) = χ2(ψ(b1, 1))χ2(ψ(1, b2)).

The sum over b2 in (5.20) is a Gauss sum; by [IK04, Lemma 3.2],∣∣∣ ∑
b2 (mod q′2)×

χ2(ψ(1, b2))e
(b2hq′1

q′2

)∣∣∣ ≤ R1/2
∑

d|(h,q′2)

d. (5.21)

Note that ∑
b1 (mod q′1)×

b1≡a1a2n1 (mod q1)

1 = ϕ(q′1)
ϕ(q1) = (q2, q

∞
1 ) (5.22)

which is a shorthand for
∏
pν ||q2, p|q1

pν . Multiplying (5.21) with (5.22) and summing
over h, we obtain

R2 �ε W
ετ(q2)(q2, q

∞
1 )R1/2.

Inserting this estimate into (5.18) then (5.17), the error term contributes

�ε R
3/2N2W ε

∑
q1,q2�Q

τ(q2)(q2, q
∞
1 )

q2
� x3δ/2+εN2Q.

In the last inequality we used standard facts about the kernel function k(n) =
∏
p|n p, for

which we refer to [dB62]. The error term above is acceptable, since

x3δ/2Q ≤ x1/2+3δ ≤ x2/3−2δ ≤MR−2x−δ

if δ is small enough. We therefore have

S2 = α̂(0)X2 +O(MN2R−2)

with (having changed b into ba1a2)

X2 =
∑

(q1q2,a1a2)=1

γ(q1)γ(q2)
[q1, q2]ϕ(q2)

∑
n1,n2

(nj ,qja2)=1

βn1βn2

∑
χ2∈Xq2 (R)

χ2(n2)
∑

b (mod W )×
b≡n1 (mod q1)

χ2(b).

Fix χ2 ∈ Xq2(R) and let χ̃2 (mod q̃2) be the primitive character inducing χ2. If S denotes
the sum over b above, then S = χ2(c)S for any c (mod W )×, c ≡ 1 (mod q1). Thus S = 0
if χ2 is not q1-periodic, that is, if q̃2 - (q1, q2). If on the contrary q̃2|(q1, q2), then S =
χ̃2(n1)ϕ(W )/ϕ(q1) = χ̃2(n1)ϕ(q2)/ϕ((q1, q2)). We therefore find∑

b (mod W )×
b≡n1 (mod q1)

χ2(b) = ϕ(q2)
ϕ((q1, q2))1

q̃2|(q1,q2)χ̃2(n1).

Summing over χ2 ∈ Xq2(R) and since (n1n2, (q1, q2)) = 1, we obtain∑
χ2∈Xq2 (R)

χ2(n2)
∑

b (mod W )×
b≡n1 (mod q1)

χ2(b) = ϕ(q2)
ϕ((q1, q2))

∑
χ0∈X(q1,q2)(R)

χ0(n1n2),

and so X2 = X3.
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5.4. Second reduction

We now wish to evaluate

S1 :=
∑

(q1q2,a1a2)=1

γ(q1)γ(q2)
∑
n1,n2

(nj ,qja2)=1
n1≡n2 (mod (q1,q2))

βn1βn2

∑
m≡a1a2n1 (mod q1)
m≡a1a2n2 (mod q2)

α(m).

The expected main term is α̂(0)X1, where

X1 :=
∑

(q1q2,a1a2)=1

γ(q1)γ(q2)
[q1, q2]

∑
n1,n2

(nj ,qja2)=1
n1≡n2 (mod (q1,q2))

βn1βn2 . (5.23)

For all integers q0, n0 with (n0, q0) = 1, let S1(q0, n0) denote the contribution to S1 of
those integers satisfying (q1, q2) = q0 and (n1, n2) = n0. Then we have

|S1(q0, n0)| �ε x
ε

∑
q1,q2�Q/q0

(q0q2,a2n0)=1

∑
n1,n2�N/n0

n1≡n2 (mod q0)
(n2,q0q2)=1

∑
a2n0n2m≡a1 (mod q0q2)

q1|ma2n0n1−a1

α(m)

�ε x
ε

∑
q2�Q/n0

(q0q2,a2n0)=1

∑
n1,n2�N/n0

n1≡n2 (mod q0)
(n2,q0q2)=1

∑
ma2n0n2≡a1 (mod q0q2)

α(m)τ(|ma2n0n1 − a1|)

�ε x
ε
{MN2

n2
0q

2
0

+ MN

n0q0

}
where we used our hypotheses on M and |a1| to justify that m|a1 cannot be satisfied.
Therefore, for some δ > 0 and all 1 ≤ K ≤ xδ, we have∑

(q0,n0)=1
max{q0,n0}>K

|S1(q0, n0)| �ε x
εMN2K−1.

Similarly, if X1(q0, n0) denotes the contribution to X1 of indices with (q1, q2) = q0
and (n1, n2) = n0, we have∑

(q0,n0)=1
max{q0,n0}>K

|X1(q0, n0)| �ε x
ε

∑
(q0,n0)=1

max{q0,n0}>K

N

q0n0

( N

q0n0
+ 1
)
�ε x

εN2K−1.

By choosing K appropriately, it will therefore suffice to show that

S1(q0, n0) = α̂(0)X1(q0, n0) +O(MN2x−δ) (q0, n0 ≤ xδ).

5.5. Evaluation of S1(q0, n0)

Let the integers q0, n0 be coprime, at most xδ, such that (q0, a1a2) = (n0, a2) = 1. Let
us rename q1 into q0q1 and q2 into q0q2, and similarly for n1 and n2. We wish to evaluate

S1(q0, n0) =
∑
q1,q2

(q1q2,a1a2)=(q1,q2)=1

γ(q0q1)γ(q0q2)
∑
n1,n2

(n0nj ,q0qja2)=1
(n1,n2)=1

n1≡n2 (mod q0)

βn0n1βn0n2

∑
m≡a1a2n0nj (mod q0qj)

α(m).

Using Poisson summation, we have

S1(q0, n0) = α̂(0)X1(q0, n0) +R1 +Oε(xεR2)
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where, having put W = q0q1q2 and H := W 1+εM−1,

R1 =
∑
q1,q2

(q1q2,a1a2)=(q1,q2)=1

∑
n1,n2

(n0nj ,q0qja2)=1
(n1,n2)=1

n1≡n2 (mod q0)

γ(q0q1)γ(q0q2)βn0n1βn0n2

∑
0<|h|≤H

1
W
α̂
( h
W

)
e
(hµ
W

)
,

R2 =
∑

q1,q2�Q/q0

∑
n1,n2�N/n0

1
W
� QεN2,

and the residue class µ (mod W ) satisfies

µ ≡ a1a2n0nj (mod q0qj) (j ∈ {1, 2}).

We seek an error term O(MN2x−δ). The contribution of R2 is acceptable.
We now focus on R1. Recall that βn is non-zero only when n is squarefree (so

that (n0, n1) = 1). We have the equality modulo 1
µ

q0q1q2
≡ a1

q0q1q2a2n0n1
+ a1

n1 − n2

q0

q1a2n0n2

n1q2
− a1

q0q1q2n1

a2n0
(mod 1). (5.24)

This is found following the steps in [FI83, p.208], but can also be more easily
verified by multiplying each side by q0q1q2a2n0n1, and checking the resulting congru-
ence modulo a2n0, n1q0, q0q1 and q0q2 respectively. Taking the exponential, we may
approximate

e
( ha1

q0q1q2a2n0n1

)
= 1 +O

( |ha1|
q0q1q2|a2|n0n1

)
.

Inserting in R1, the error term contributes a quantity

� |a1|q0H

|a2|n0Q2N

Q2

q2
0

N2

n0
� xε|a1|NQ2M−1

which is clearly acceptable. We therefore evaluate

R′1 :=
∑

q1,q2,n1,n2

γ(q0q1)γ(q0q1)
q0q1q2

βn0n1βn0n2 α̂
( h

q0q1q2

)
e
(
a1h

n1 − n2

q0

q1a2n0n2

n1q2
− a1h

q0q1q2n1

a2n0

)
.

Now we insert the definition of α̂ as

α̂
( h

q0q1q2

)
= q0q1q2

∫
R
α(q0q1q2ξ)e(−hξ)dξ,

we detect the condition (a1, q1q2) = 1 by Möbius inversion, and we split the sums over q1,
q2 into congruence classes modulo n0a2. We obtain

|R′1| �ε x
ε(n0|a2|)2Mq0

Q2 sup
ξ�Mq0/Q2

sup
δ1,δ2|a1

(δ1,δ2)=1
(δ1δ2,n0a2)=1

sup
λ1,λ2 (mod n0a2)×

R′′1 (5.25)

where

R′′1 :=
∑
q1,q2

(δ1q1,δ2q2)=1
qj≡λjδj (mod n0a2)

γ(q0δ1q1)γ(q0δ2q2)
∑
n1,n2

(n0nj ,q0δjqja2)=1
(n1,n2)=1

n1≡n2 (mod q0)

βn0n1βn0n2×

×
∑

0<|h|≤H

α(ξq0δ1δ2q1q2)e
(
−ξh− a1h

q0λ1λ2n1

a2n0

)
e
(
a1h

n1 − n2

q0

a2n0n2δ1q1

n1δ2q2

)
.
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We write R′′1 in the form (2.3), with

c← q2, d← q1, n← a1h
n1 − n2

q0
, r← a2n0n2δ1, s← n1δ2, q← n0a2, (5.26)

C← Q

q0δ2
, D← Q

q0δ1
, N← |a1|HN

q0n0
R ← a2δ1N, S← Nδ2

n0
.

Here bold letters denote the “new” summation variables in (2.3). The analogue of the
sequence bn,r,s is defined through

bn,r,s =
∑
n1

∑
n2

(n0nj ,q0δja2)=1
(n1,n2)=1

n1≡n2 (mod q0)
r=a2n0n2δ1

s=n1δ2

βn0n1βn0n2

∑
0<|h|≤H

q0n=a1h(n1−n2)

e
(
−ξh− a1h

q0λ1λ2n1

a2n0

)
.

Note that this has at most one term since the case n1 = n2 is prohibited by the
conditions (n1, n2) = 1 and N ≥ xη. Note also that it is void unless (r, s) = 1 (here we use
the fact that β is supported on squarefree integers). The quantity g(c,d,n, r, s) in (2.3)
is

γ(q0δ1d)γ(q0δ2c)α(ξq0δ1δ2cd).

The derivative conditions (2.2) are satisfied with ε0 = Bδ, by virtue of our hypothesis
on γ. Note that the congruence and coprimality conditions on q1 and q2 translate exactly
into

c ≡ λ2δ2 (mod q), d ≡ λ1δ1 (mod q), (d, cs) = (c, r) = 1.

At this point, we are in a situation analogous to [BFI86, formula (13.2)]. Applying
Theorem 2.1 and estimating the resulting expression as in [BFI86, page 241], we obtain

R′′1 � xO(δ)A1/2B1/2,

where A � HN2 is the contribution coming from ‖bN,R,S‖22 in (2.3), and

B � Q2N2N(H +N) +Q3N2√H +N +Q2HN � (QN)2{N(H +N) +Q
√
H +N}.

We have H � xO(δ)N , so that B � Q2N2xO(δ)(N2 +Q
√
N) (compare with [BFI86,

formula (13.4)]). Inserting in (5.25), we obtain

R′1 � xO(δ)MN2(Q−1N3/2 +Q−1/2N3/4)� x−η/2+O(δ)MN2

by the hypothesis N ≤ Q2/3−η. Taking δ sufficiently small in terms of η, we have the
required bound O(MN2x−δ).

5.6. The main terms

The main terms X1 and X3 defined in (5.23) and (5.16) are real numbers. They combine
to form

X1 −X3 =
∑

(q1q2,a1a2)=1

γ(q1)γ(q2)
[q1, q2]

∑
n1,n2

(nj ,qja2)=1

βn1βn2uR(n1n2; (q1, q2)).

Notice the summands are zero unless (q1, q2) > R. We use Möbius inversion

1(nj ,qj)=1 =
∑

dj |(qj ,nj)

µ(dj)
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to detect the conditions (nj , qj) = 1, in order to separate the sums over n1, n2 from those
over q1, q2. We insert the definition of uR in the form

uR(n1n2; (q1, q2)) = 1
ϕ((q1, q2))

∑
χ primitive
cond(χ)>R

cond(χ)|(q1,q2)

χ(n1)χ(n2).

We can assume (dj , cond(χ)) = 1 because of the factors χ(nj). Quoting from [Ten95,
Theorem I.5.4] the bound ϕ(q)� q/ log log q, we obtain

X1 −X3 � (log log x)
∑

R<r≤Q

∑
d1,d2

dj�Q/r

( ∑
q1,q2
qj�Q
rdj |qj

1
q1q2

) ∑
χ primitive
χ (mod r)

2∏
j=1

∣∣∣ ∑
(n,a2)=1

βdjnχ(n)
∣∣∣.

The sum over q1, q2 is O(1/(r2d1d2)). By Cauchy–Schwarz, and the symmetry between n1
and n2, we obtain

X1 −X3 � (log x)2
∑
d�N

1
d

∑
R<r≤Q

1
r2

∑
χ primitive
χ (mod r)

∣∣∣ ∑
(n,a2)=1

βdnχ(n)
∣∣∣2.

For all t > R, the multiplicative large sieve inequality (Lemma 3.3) and our hypothe-
sis (5.4) yields

G(t) :=
∑

R<r≤t

∑
χ primitive
χ (mod r)

∣∣∣ ∑
(n,a2)=1

βdnχ(n)
∣∣∣2 � (log x)O(1)τ(d)2A(t2 +N)N

after ignoring denominators d. We obtain by partial summation

X1 −X3 � (log x)2
∑
d�N

1
d

(G(Q)
Q2 +

∫Q
R

G(t)
t3

dt
)
� (log x)O(1)(N +N2R−2).

By hypothesis R ≤ xδ, so we have the desired bound X1 −X3 � N2R−2(log x)O(1).
Given α̂(0)�M , our claimed estimate (5.14) is proved, and therefore Proposition 5.3
as well.

6. Application to the Titchmarsh divisor problem

The aim of this section is to justify Theorems 1.1 and 1.2. Recall the definition

T (x) :=
∑

1<n≤x
Λ(n)τ(n− 1).

We let

ψ(x; q, a) :=
∑
n≤x

n≡a (mod q)

Λ(n), ψq(x) :=
∑
n≤x

(n,q)=1

Λ(n), ψ(x, χ) :=
∑
n≤x

Λ(n)χ(n).

Let us recall the following classical theorem of Page [IK04, Theorems 5.26, 5.28].

Lemma 6.1. There is an absolute constant b such that for all Q,T ≥ 2, the following
holds. The function s 7→

∏
q≤Q

∏
χ (mod q) L(s, χ) has at most one zero s = β satisfy-

ing Re(s) > 1− b/ log(QT ) and | Im(s)| ≤ T . If it exists, the zero β is real and it is the
zero of a unique function L(s, χ̃) for some primitive real character χ̃.
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Given a large x, we shall say that χ̃ is x-exceptional if the above conditions are met
with Q = T = e

√
log x. For all q ≥ 1 for which q̃|q, we let χ̃q denote the character (mod q)

induced by χ̃.

6.1. Primes in arithmetic progressions

We deduce from the previous sections the following result about equidistribution of
primes in arithmetic progressions.

Theorem 6.2. Assume the GRH. For some δ > 0, all x ≥ 1, Q ≤ x1/2+δ and all
integers 0 < |a1|, |a2| ≤ xδ,∑

q≤Q
(q,a1a2)=1

(
ψ(x; q, a1a2)− 1

ϕ(q)ψq(x)
)
� x1−δ.

Unconditionally, under the same assumptions,∑
q≤Q

(q,a1a2)=1

(
ψ(x; q, a1a2)−

ψq(x) + 1
q̃|qχ̃(a2a1)ψ(x, χ̃q)
ϕ(q)

)
� xe−δ

√
log x,

where the term ψ(x; χ̃q) is to be taken into account only if the x-exceptional character χ̃
exists.

Using the Dirichlet hyperbola method (see in particular section VII of [Fou85]), it
follows that the same estimate holds on the condition q ≤ x1−ε for any fixed ε > 0 (the
implicit constants and δ may then depend on ε). Note however that the symmetry point is
at q ≈ (x|a2|)1/2, rather than x1/2 (so the flexibility of taking Q somewhat larger than x1/2

is not superfluous). We refer to [Fio12b] for more explanations on what happens when Q
is very close to x.

As mentioned in the introduction, the uniformity in a1 and a2 is an interesting question.
At the present state of knowledge, bounds coming from the theory of automorphic
forms are typically badly behaved in that aspect. By using a more refined form of the
combinatorial decomposition (6.4), Friedlander and Granville [FG92] prove that |a1| ≤
x1/4−ε is admissible for all ε > 0 (in the case a2 = 1), with a somewhat larger error term.
For the application to the Titchmarsh divisor problem, the following slightly weaker

statement suffices.

Proposition 6.3. For some δ > 0, all x ≥ 2 and 0 < |a| ≤ xδ, assuming the GRH,
we have ∑

q≤
√
x

(q,a)=1

(
ψ(x; q, a)− ψ(q2; q, a)− ψq(x)− ψq(q2)

ϕ(q)
)
� x1−δ. (6.1)

Unconditionally,∑
q≤
√
x

(q,a)=1

(
ψ(x; q, a)− ψ(q2; q, a)− ψq(x)− ψq(q2)

ϕ(q) − 1
q̃|qχ(a)ψ(x; χ̃q)− ψ(q2; χ̃q)

ϕ(q)
)

� xe−δ
√

log x.

(6.2)
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We will focus here on proving Proposition 6.3 only, because the presentation is slightly
simpler and addresses all the essential issues.

Proof of Proposition 6.3. Let 1 ≤ R ≤ x1/10 be a parameter. Let

S1 :=
∑
q≤
√
x

(q,a)=1

∑
q2<n≤x

n≡a (mod q)

Λ(n).

By orthogonality of characters,

S1 =
∑
q≤
√
x

(q,a)=1

1
ϕ(q)

∑
χ (mod q)

∑
q2<n≤x

χ(na)Λ(n) (6.3)

We decompose S1 = S−1 + S+
1 where S−1 is the contribution of those characters χ of

conductor at most R, and

S+
1 =

∑
q≤
√
x

(q,a)=1

∑
q2<n≤x

Λ(n)uR(na; q).

We first focus of S+
1 . By the Heath-Brown identity [BFI86, lemma 5] and a dichotomy

argument similar to [FT85, Section 2.(a)], the problem is reduced to showing∑
Q<q≤2Q
(q,a)=1

∑
· · ·
∑

(1−∆)Mi<mi≤min{Mi,x
1/4}

(1−∆)Ni<ni≤Ni
1≤i≤j

µ(m1) · · ·µ(mj)(logn1)uR(n1m1 · · ·njmja; q)

� x(log x)O(1)R−1

(6.4)

where j ∈ {1, 2, 3, 4}, x−1/10 < ∆ ≤ 1/2, and Q,Mi, Ni ≥ 1 (1 ≤ i ≤ j) are real numbers
such that

Q2 ≤
∏
i

MiNi ≤ x, Mi ≤ 2x1/4.

Let us justify briefly this step. The Heath-Brown identity states that S+
1 is a linear

combination of the expression on the left-hand side of (6.4) for various values of j, with the
conditions q ≤

√
x, mi ≤ x1/4 and q2 < m1n1 · · ·mjnj ≤ x. We then localize q in dyadic

intervals, and each ni,mi in intervals [(1−∆)X,X] (X = Ni orMi). Having done this, the
subset of (Mi, Ni) for which the condition q2 <

∏
imini ≤ x is relevant will only concern

those indices with
∏
imini ∈ [(1−∆)8x, (1−∆)−8x] or [(1−∆)8q2, (1−∆)−8q2]. For

those Mi, Ni, we apply Lemma 3.2 or a trivial bound (if q is very small); for the others,
the bound (6.4) will apply. We deduce respectively

S+
1 � x∆(log x)O(1) + x∆−8(log x)O(1)R−1 (6.5)

and optimizing ∆ yields S+
1 � x(log x)O(1)R−1/9.

Let η > 0 be small. The contribution of tuples such that
∏
iMiNi ≤ x1−η is trivially

bounded by Oε(x1−η+ε) using Lemma 3.2. Suppose then
∏
iMiNi > x1−η. For conve-

nience we rename x =
∏
iMiNi. Our objective bound for (6.4) is O(x1−δ) and we now

have Mi ≤ x1/4+η if η is small enough.
Fix η ∈ (0, 1/100]. At least one of the three following cases must hold:

(a) there exists an index k such that Nk > x1−(2j−1)η,
(b) we have min{Nk, Nk′} > x1/3−η for two indices k 6= k′,
(c) there exists an index k such that Mk or Nk lies in the interval [xη, x1/3−η].



Page 38 of 48 SARY DRAPPEAU

In case (a), our sum (6.4) is at most

Sa := xε
∑

Q<q≤2Q
(q,a)=1

∑
M/2<m≤M

∣∣∣ ∑
(1−∆)N<n≤N

βnuR(mna; q)
∣∣∣ (6.6)

with β = 1 or log, MN = x and N ≥ x1−7η. Choose η < 1/30, for the sum over n, we
express uR as (5.3). Using∑

n≤z
n≡a (mod q)

1 = z

q
+O(1) (z ≥ 1, (a, q) ∈ N2) (6.7)

and partial summation in case β = log, we get that the sum over n above is∑
(1−∆)N<n≤N

βnuR(mna; q)� log x+ 1
ϕ(q)

∑
χ (mod q)

1<cond(χ)≤R

∣∣ ∑
(1−∆)N<n≤N

βnχ(n)
∣∣.

For each χ in the above, the sum over n is estimated using Lemma 3.4 as∑
(1−∆)N<n≤N

βnχ(n)� R1/2(log x)2τ(q).

Dropping the condition cond(χ) ≤ R, we obtain for (6.6) a crude bound

Sa �ε x
εMQR1/2 � QR1/2x8η � x11/20+8η+δ

which is acceptable.
Consider case (b). Then the sum on the LHS of (6.4) is of the form

Sb :=
∑

Q<q≤2Q
(q,a)=1

∑∑∑
(1−∆)N<n≤N

(1−∆)M<m≤M
(1−∆)2j−2L<`≤L

α(m)β(n)γ`uR(mn`a; q) (6.8)

where M,N > x1/3−η, MNL = x, α and β are either 1 or log, and γ` satisfies

|γ`| ≤ τ2j−2(`) log `

By partial summation and upon rewriting the size restrictions on m,n, `, q as differences
of one-sided inequalities, it suffices to establish the bound

S ′b :=
∑
`≤L

∣∣∣∣∣ ∑
q≤Q

(q,a`)=1

∑
m≤M

∑
n≤N

uR(mn`a; q)

∣∣∣∣∣� x1−δ

whenever M,N > x1/3−2η and Q ≤ 2
√
x. Writing uR as in (5.3), we have by the triangle

inequality
S ′b � S ′b1 + S ′b2,

where

S ′b1 =
∑
`≤L

∣∣∣∣∣ ∑
q≤Q

(q,a`)=1

∑
m≤M

∑
n≤N

u1(mn`a; q)

∣∣∣∣∣,
S ′b2 =

∑
`≤L

∑
q≤Q

1
ϕ(q)

∑
χ (mod q)

1<cond(χ)≤R

∣∣∣ ∑
m≤M

χ(m)
∣∣∣∣∣∣ ∑
n≤N

χ(n)
∣∣∣.

Theorem 7 of [BFI86] yields the acceptable bound S ′b1 � x1−δ as long as η < 1/30. In S ′b2,
by Lemma 3.4, the sums over m and n are majorized by O(τ(q)R1/2+ε). Dropping the
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condition cond(χ) ≤ R, we obtain for (6.8) a bound

S ′b2 �ε x
εLRQ�ε x

14/15+5η

which is also acceptable.
In case (c), we write our sum as

Sc :=
∑

Q<q≤2Q
(q,a)=1

∑∑
(1−∆)2j−1M<m≤M

(1−∆)N<n≤N

αmβnuR(mna; q) (6.9)

where xη ≤ N ≤ x1/3−η, so M ≥ x2/3. We may assume that R ≤ xη/2. If Q ≤ x1/2−η/2,
then Lemma 5.2 is applicable. If on the contrary x1/2−η/2 < Q ≤

√
x, then Theorem 5.1 is

applicable with η ← η/2 (assuming |a| ≤ xδ/2 as we may). In both cases, we obtain that
the quantity (6.9) is majorized by

Sc � x(log x)O(1)R−1.

Summarizing the above and in view of (6.5), we have obtained

S+
1 � x(log x)O(1)R−1/9.

We consider now S−1 , which we recall is

S−1 =
∑
q≤
√
x

(q,a)=1

1
ϕ(q)

∑
χ (mod q)
cond(χ)≤R

∑
q2<n≤x

Λ(n)χ(na). (6.10)

First let us assume the GRH. Isolating the contribution of the principal character, we
write

S−1 =
∑
q≤
√
x

(q,a)=1

ψq(x)− ψq(q2)
ϕ(q) + S[1,

say. For any non-trivial character χ (mod q) with q ≤ x, the GRH [MV07, for-
mula (13.19)] yields ∑

q2<n≤x

χ(n)Λ(n)� x1/2(log x)2.

We therefore have

S[1 � x1/2(log x)2
∑
q≤
√
x

1
ϕ(q)

∑
χ (mod q)
cond(χ)≤R

1� Rx1/2(log x)3

which is acceptable. The choice R = xδ for small enough δ concludes the proof of (6.1).
Unconditionally, for any q ≤ e

√
log x and any non-principal, non x-exceptional charac-

ter χ (mod q), we have by a straightforward adaptation of [MV07, Theorem 11.16] the
estimate ∑

q2<n≤x

χ(n)Λ(n)� xe−c
√

log x

for some absolute constant c > 0. Choose R = ec
√

log x/2. We extract from S−1 the
contribution from the principal character and the possible x-exceptional characters, and
write accordingly

S−1 =
∑
q≤
√
x

(q,a)=1

ψq(x)− ψq(q2) + 1
q̃|qχ(a)(ψ(x; χ̃q)− ψ(q2; χ̃q))
ϕ(q) + S[[1 +O(xe−c

√
log x/2)
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the error term being there to cover the trivial case when either χ̃ was inexistant, or q̃ > R.
By the same computation as above,

S[[1 � Rx(log x)e−c
√

log x � xe−c
√

log x/3.

This concludes the proof of (6.2) hence of Proposition 6.3.

6.2. Proof of Theorems 1.1 and 1.2

It is now straightforward to deduce Theorems 1.1 and 1.2. By the Dirichlet hyperbola
method [FT85, page 45], we have

T (x) = 2
∑
q≤
√
x

(
ψ(x; q, 1)− ψ(q2; q, 1)

)
+O(

√
x log x).

Assume first the GRH. Then Proposition 6.3 yields

T (x) = 2
∑
q≤
√
x

ψq(x)− ψq(q2)
ϕ(q) +O(x1−δ)

The GRH [MV07, formula (13.19)] allows us to deduce

T (x) = 2
∑
q≤
√
x

x− q2

ϕ(q) +O(x1−δ).

The main term is computed using [Fou82, Lemme 6], which yields the claimed estimate.

Unconditionally, from Proposition 6.3, we merely have to add to our estimate for T (x)
the additional contribution of the x-exceptional character (if it exists), which takes the
form

2
∑
q≤
√
x

q̃|q

ψ(x; χ̃q)− ψ(q2; χ̃q)
ϕ(q) (6.11)

We have from [MV07, Theorem 11.16]

ψ(x; χ̃q) = −x
β

β
+O(xe−δ

√
log x)

and similarly

ψ(q2; χ̃q) = −q
2β

β
+O(xe−δ

√
log x)

at the possible cost of changing the numerical value of δ. We obtain that (6.11) equals

− 2
β

∑
q≤
√
x

q̃|q

xβ − q2β

ϕ(q) +O(xe−δ
√

log x).

The sums over q are computed using [Fou82, Lemme 6] (and partial summation in the
form xβ − q2β = β

∫x
q2 t

β−1dt), which yields Theorem 1.2. Corollary 1.3 is straightforward.
There remains to justify Corollary 1.4. Note that C2(q̃) is absolutely bounded, while q̃ ≤

e
√

log x by definition. Therefore xβ →∞, and β li(xβ)/xβ ∼ (log x)−1. We deduce
log q̃ + C2(q̃)− γ
xβ/(β li(xβ)) −→

x→∞
0

in an effective way. For x large enough, it is less than 1/3 and Corollary 1.4 follows.
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Remark. If we were to consider τ(n− a) instead of τ(n− 1), for some a which is
not a perfect square, then the Siegel zero contribution (if it existed) would have a twist
by χ(a), which is a priori of unpredictable sign.

7. Application to correlation of divisor functions

In this section, we justify Theorem 1.5. The proof has the same structure as that of
Theorems 1.1 and 1.2, replacing the function Λ(n) by τk(n).

7.1. An equidistribution estimate

The analogue of Theorem 6.2 is the following:

Theorem 7.1. There exists η > 0 such that under the conditions k ≥ 4, 0 < |a| ≤ xη
and Q ≤ x1/2+η, ∑

q≤Q
(q,a)=1

( ∑
n≤x

n≡a (mod q)

τk(n)− 1
ϕ(q)

∑
n≤x

(n,q)=1

τk(n)
)
� x1−η/k. (7.1)

If the Lindelöf hypothesis is true for all Dirichlet L-functions, then the right-hand side
can be replaced by x1−η.

In order to simplify the presentation, we put

E =
{
x if the generalized Lindelöf hypothesis is assumed,
x1/k unconditionally.

To handle the small conductor case, we require the following.

Lemma 7.2. For some δ > 0 and any non-principal character χ (mod q) with q ≤ x,
of conductor r ≤ Eδ we have ∑

n≤x

τk(n)χ(n)�k xE−δ.

Proof. Starting from the representation∑
n≤x

τk(n)χ(n) = 1
2πi

∫1+1/(log x)+i∞

1+1/(log x)−i∞
L(s, χ)k x

sds
s

(x 6∈ N),

one may truncate the contour at T = xδ/k, and shift it to the abscissa Re(s) = 1− δ/k.
The convexity bound |L(1− δ/k + it, χ)| � qε(r(|t|+ 1))cδ/k+ε (for some c > 0) yields
the desired estimate if E = x1/k. If the Lindelöf hypothesis L( 1

2 + it, χ)� (q(|t|+ 1))ε
is true, then one chooses T = xδ and shifts the contour to Re(s) = 1− δ, where the
bound L(1− δ + it, χ)� (q(|t|+ 1))ε holds by convexity.

7.1.1. Small conductors Let S0 denote the quantity in the left-hand side of (7.1), and
let R ≤ Eδ. The contribution of those characters χ having conductors at most R is∑

1<r≤R

∑
χ (mod r)
χ primitive

χ(a)
∑
q≤Q

(q,a)=1
r|q

1
ϕ(q)

∑
n≤x

(n,q)=1

τk(n)χ(n).
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By Lemma 7.2 applied to the character (mod q) induced by χ, we have a bound

xE−δ
∑
r≤R

∑
χ (mod r)
χ primitive

∑
q≤Q
r|q

1
ϕ(q) � xE−δR(log x)2.

Letting R = Eδ/2, this is an acceptable error term. There remains to bound

S1 :=
∑
q≤Q

(q,a)=1

∑
n≤x

τk(n)uR(na; q).

7.1.2. Dyadic decomposition We dyadically decompose in S1 the sums over q and n
in (7.1), yielding an upper bound

S1 � (log x)2 sup
Q′≤x1/2+η

N≤x

∣∣∣ ∑
Q′<q≤2Q′

(q,a)=1

∑
N<n≤2N

τk(n)uR(na; q)
∣∣∣. (7.2)

Let η > 0 and assume throughout that δ is small with respect to η. When N ≤ x1−η,
by the triangle inequality, our trivial bound (5.2) and Lemma 3.2, the sum over q
and n above is Ok(x1−η/2), so we may add the restriction N > x1−η in the supremum
with an acceptable error. Then we relax the condition Q′ ≤ x1/2+η into Q′ ≤ N1/2+2η.
Renaming N into x, and expanding out τk(n), we obtain that it will suffice to prove

S2 :=
∑

Q<q≤2Q
(q,a)=1

∑
x<n1···nk≤2x

uR(n1 · · ·nka; q)� xE−η (7.3)

under the constraints |a| ≤ x2η and Q ≤ x1/2+2η. We decompose the sums over n1, . . . , nk
dyadically to obtain an upper bound

S2 � S3 := (log x)k sup
N1,...,Nk≥1/2

∣∣∣ ∑
Q<q≤2Q
(q,a)=1

∑
x<n1···nk≤2x
Nj<nj≤2Nj

uR(n1 · · ·nka; q)
∣∣∣. (7.4)

7.1.3. Splitting cases Let the parameter 0 < δ1 < 1/100 be fixed. We separate into
two cases according to whether there is a subset J ⊂ {1, . . . , k} such that∏

j∈J
Nj ∈ (xδ1 , x1/3−δ1 ],

or not. Suppose there is no such subset, and let

K := {j : 1 ≤ j ≤ k, Nj > x1/3−δ1}.

Necessarily card K ≤ 3. Since Nj ≤ xδ1 for each j 6∈ K, and by assumption there is no
subset L ⊂ {1, . . . , k}rK such that

∏
j∈LNj ∈ (xδ1 , x1/3−δ1 ], it is necessarily the case

that ∏
j 6∈K

Nj ≤ xδ1 .

This implies card K ≥ 1. Define

W := {(un) ∈ CN : |un| ≤ τ(n)k (n ≥ 1)}.

Summarizing the above, we have

S3 �k,ε x
ε(A+ B3 + B2 + B1), (7.5)
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where
A = sup

xδ1<N≤x1/3−δ1

MN=x
(αm),(βn)∈W

∣∣∣ ∑
Q<q≤2Q
(q,a)=1

∑
N<n≤2kN

M2−k<m<2M
x<mn≤2x

αmβnuR(nma; q)
∣∣∣,

B3 = sup
N1,N2,N3>x

1/3−δ1

MN1N2N3=x
(αm)∈W

∣∣∣ ∑
Q<q≤2Q
(q,a)=1

∑
Nj<nj≤2Nj
M/8<m≤2M

x<mn1n2n3<2x

αmuR(n1n2n3ma; q)
∣∣∣,

B2 = sup
N1,N2>x

1/3−δ1

N1N2>x
1−δ1

MN1N2=x
(αm)∈W

∣∣∣ ∑
Q<q≤2Q
(q,a)=1

∑
Nj<nj≤2Nj
M/8<m≤2M
x<mn1n2<2x

αmuR(n1n2ma; q)
∣∣∣,

B1 = sup
N>x1−δ1
MN=x

(αm)∈W

∣∣∣ ∑
Q<q≤2Q
(q,a)=1

∑
N<n≤2

M/8<m≤2M
x<mn<2x

αmuR(nma; q)
∣∣∣.

We will focus on A and B3, since the treatment of B1 and B2 is analogous to B3 and
actually simpler.

7.1.4. Separation of variables Fix another small parameter δ2 > 0. We smoothen the
cutoff using a smooth function φ : R → [0, 1] with φ(ξ) = 1 for ξ ∈ [1, 2], φ(ξ) = 0 for ξ 6∈
[1− E−δ2 , 2 + E−δ2 ], whose derivatives satisfy ‖φ(j)‖∞ �j Ejδ2 . The cost of replacing in A
and B3 the sharp cutoff condition x < nm ≤ 2x (resp. x < n1n2n3m ≤ 2x) by φ(nm/x)
(resp. φ(n1n2n3m/x)) is at most O(xE−δ2/2), by trivially bounding the contribution of
the transition ranges using Lemma 3.2.
Integration by parts shows that the Mellin transform φ̆(s) =

∫∞
0 φ(ξ)ξs−1dξ satisfies

φ̆(it)� E5δ2

1 + |t|5 (t ∈ R).

We use the inversion formula φ(ξ) = (2π)−1 ∫
R φ̆(it)ξ−itdt at ξ = nm/x (resp. ξ =

mn1n2n3/x) in the case of A (resp. B3), to obtain the upper bounds

A �k xE−δ2/2 + E5δ2 sup
xδ1<N≤x1/3−δ1 ,

MN=x
(αm),(βn)∈W

∣∣∣ ∑
Q<q≤2Q
(q,a)=1

∑
N<n≤2kN

M2−k<m≤2M

αmβnuR(mna; q)
∣∣∣, (7.6)

B3 �k xE−δ2/2 + E5δ2 sup
N1,N2,N3>x

1/3−η,
(αm)∈W, t∈R

1
1 + |t|3×

×
∣∣∣ ∑
Q<q≤2Q
(q,a)=1

∑
Nj<nj≤2Nj
M/8<m≤2M

αm(n1n2n3)ituR(n1n2n3ma; q)
∣∣∣. (7.7)

7.1.5. The case of A Let (αm), (βn) and N be given as in the supremum in (7.6).
We wish to bound

Sa :=
∑

Q<q≤2Q
(q,a)=1

∑
N<n≤2kN

M2−k<m<2M

αmβnuR(mna; q). (7.8)
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By dyadic decomposition, enlarging our bound by a factor of k2, we may assume the
conditions are N1 < n ≤ 2N1 and M1 < m ≤ 2M1 for M1N1 ∈ [x2−k, x2k+1]. Suppose
first Q ≥ x1/2−δ1/2. Then Theorem 5.1 with η ← min{δ1/2, 1/30} gives the existence
of δ3 > 0 depending on δ1 such that (7.8) is majorized by O(2kxE−δ3), on the condition
that |a| ≤ 2−kxδ3 andQ ≤ 2−kx1/2+δ3 , which are satisfied assuming η < δ3/4 and taking x
large enough in terms of k.
If on the contrary Q ≤ x1/2−δ1/2, we appeal to Lemma 5.2. We again obtain for (7.8) a

bound
Sa �j 2kxE−δ3

for some δ3 (depending on δ1).
Summarizing, we have obtained in any case

A �k xE−δ2/2 + xE5δ2−δ3 (7.9)

for δ3 > 0. Choosing δ2 appropriately, it is an acceptable error term once we can prove
that δ1 > 0 can be chosen independently of k.

7.1.6. The case of B3 Let (αm), N1, N2, N3 > x1/3−δ1 and t ∈ R be as in supremum
in (7.7). The quantity we wish to bound is at most

Sb := 1
1 + |t|3

∑
M/8≤m≤2M

∑
Q<q≤2Q
(q,am)=1

∣∣∣ ∑
n1,n2,n3

Nj≤nj≤2Nj

(n1n2n3)ituR(n1n2n3ma; q)
∣∣∣

where N1N2N3M = x and M < x3δ1 . Writing nitj = (2Nj)it − it
∫2Nj
nj

zit−1dz, the above
is bounded by

Sb �ε sup
N ′1,N

′
2,N
′
3

Nj<N
′
j≤2Nj

∑
M/8≤m≤M

∑
Q<q≤2Q
(q,am)=1

∣∣∣ ∑
n1,n2,n3
Nj≤nj≤N ′j

uR(n1n2n3ma; q)
∣∣∣ (7.10)

Fix N ′1, N ′2, N ′3 as in the supremum. Using (5.3) and the triangle inequality,

Sb ≤ S ′b + S ′′b ,

where
S ′b =

∑
M/8≤m≤M

∑
Q<q≤2Q
(q,am)=1

∣∣∣ ∑
n1,n2,n3
Nj≤nj≤N ′j

u1(n1n2n3ma)
∣∣∣, (7.11)

S ′′b =
∑

M/8<m≤M

∑
Q<q≤2Q

1
ϕ(q)

∑
χ (mod q)

1<cond(χ)≤R

3∏
j=1

∣∣∣ ∑
Nj<n≤N ′j

χ(n)
∣∣∣. (7.12)

To S ′b we apply [BFI87, Lemma 2] for each q individually (note that this is a very
deep result [FI85, HB86], relying on Deligne’s proof of the Weil conjectures [Del74]).
For some small, absolute δ4, on the condition that Q ≤ x1/2+δ4 (requiring η < δ4/2), the
quantity (7.11) is bounded by

S ′b �Mx1−δ4 ≤ x1−δ4+3δ1 . (7.13)

Consider then S ′′b . By Lemma 3.4, each sum over n is bounded by Oε(xεR1/2), and so we
obtain a bound

S ′′b �ε x
εR5/2M

which is absorbed in the term (7.13). Inserting in (7.7), we have obtained for B3 a bound

B3 � xE−δ2 + E5δ2x1−δ4+3δ1 . (7.14)
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The terms B2 and B1 are shown in the same way to satisfy the same bound with δ4 > 0
absolute and small enough. Choosing our parameters adequately, we can choose absolute
constants δ1, δ2, δ3 in such a way that both bounds (7.14) and (7.9) are true and O(xE−η).
Inserting back into (7.5) and (7.4), we obtain the claimed bound (7.3).

7.2. Proof of Theorems 1.5 and 1.6

As a last step, we deduce from Theorem 7.1 the estimate∑
q≤
√
x

(q,a)=1

( ∑
n≤q2

n≡a (mod q)

τk(n)− 1
ϕ(q)

∑
n≤q2

(n,q)=1

τk(n)
)
�k xE−η (0 < |a| ≤ xη) (7.15)

where as before E = x if the generalized Lindelöf is true and E = x1/k otherwise. Let ∆ ∈
(0, 1/10) be fixed and decompose the sums over q and n into intervals ((1 + ∆)−1Q,Q]
and ((1 + ∆)−1N,N ]. Calling S ′1 the left-hand side of (7.15), we have

S ′1 �
∑

j0,j1≥0
Q=(1+∆)−j0

√
x

N=(1+∆)−j1x

∣∣∣ ∑
(1+∆)−1Q<q≤Q

∑
(1+∆)−1N<n≤N

n≤q2

τk(n)u1(na; q)
∣∣∣,

where we used the notation (5.7). The inner sums are void ifQ2 ≤ N and the condition n ≤
q2 is automatically satisfied if N ≤ Q2(1 + ∆)−2. The contribution of j0, j1 such that (1 +
∆)−2Q2 ≤ N ≤ Q2 is at most∑

q≤
√
x

(q,a)=1

∑
q2(1+∆)−3≤n≤q2(1+∆)2

τk(n)|u1(na; q)| � ∆x(log x)k

by virtue of Lemma 3.2. Therefore

S ′1 � ∆x(log x)k + (log x)2∆−2 sup
Q≤
√
x

N≤Q2

∣∣∣ ∑
(1+∆)−1Q<q≤Q

∑
(1+∆)−1N<n≤N

τk(n)u1(na; q)
∣∣∣.

Let Q, N be as in the supremum, and let η > 0 be the real number given by Theorem 7.1.
Lemma 3.2 gives the bound∣∣∣ ∑

(1+∆)−1Q<q≤Q

∑
(1+∆)−1N<n≤N

τk(n)u1(na; q)
∣∣∣�ε x

εN

which is acceptable if N ≤ x1−η/10. Suppose N ≥ x1−η/10, then Theorem 7.1 applies
with x← N and yields a bound O(xE−η/10) for |a| ≤ xη/10. Therefore,

S ′1 �ε,k x
1+ε∆ + ∆−2x1+εE−η/10.

Taking e.g. ∆ = E−η/30 and reinterpreting η, we have the claimed estimate (7.15).

From the Dirichlet hyperbola method, Theorem 7.1 and estimate (7.15), we deduce

Tk(x) = 2
∑
q≤
√
x

∑
q2<n≤x

n≡−1 (mod q)

τk(n) +Oε(x1/2+ε)

= 2
∑
q≤
√
x

1
ϕ(q)

∑
q2<n≤x
(n,q)=1

τk(n) +O(xE−δ)

The main terms are computed in [FT85, Théorème 2], with an error term O(x1−δ/k)
(unconditionally). If one assumes the generalized Lindelöf hypothesis, then the proof is



Page 46 of 48 SARY DRAPPEAU

adapted in the following way. Under the hypotheses and in the notations of [FT85,
Lemma 6], there holds |θ(pν)| ≤ Cp−δ

(
k
bk/2c

)
([FT85, first display page 52]). Therefore

the series Fk(s) in [FT85, Lemma 7] is bounded in terms of k only in the half-
plane Re(s) ≥ 1− δ/2. In the proof of [FT85, Lemma 7], one chooses T = xδ/2 and
shift the contour to Re(s) = 1− δ/2, where the Lindelöf hypothesis implies ζ(s)� tε by
convexity, to produce the conclusion∑

n≤x

Ψ(n)τk(n) = xQk−1(log x) +Oε,k(x1−δ/2+ε).

The rest of the argument in Corollaries 1-2 of Lemma 7, and Corollary of Lemma 8
of [FT85] are transposed verbatim to yield

2
∑
q≤
√
x

1
ϕ(q)

∑
q2<n≤x
(n,q)=1

τk(n) = xPk(log x) +Ok(x1−c)

for some c > 0, as claimed.

7.3. Remark on the uniformity in a

If we were to replace the shift τ(n+ 1) by τ(n+ a), 0 < |a| ≤ xδ, then the deduction of
an asymptotic formula analogous to (1.4) from Theorem 7.1 would go along similar lines.
We briefly indicate how one reduces to our previous setting. From Dirichlet’s hyperbola
method, the problem reduces to the evaluation of

Sk,a(x) = 2
∑
q≤
√
x

∑
q2≤n≤x

n≡−a (mod q)

τk(n).

Extracting the largest factor d1|a∞ from n, we rewrite this as

Sk,a(x) = 2
∑
d1|a∞

τk(d1)
∑
q≤
√
x

∑
q2/d1≤n≤x/d1

(n,a)=1
nd1≡−a (mod q)

τk(n).

Writing d2 := (q, d1), the congruence condition is equivalent to d2|a and

n ≡ −(a/d2)(d1/d2) (mod q/d2).

We therefore have

Sk,a(x) = 2
∑
d1|a∞

τk(d1)
∑

d2|(d1,a)

∑
q≤
√
x/d2

(q,d1/d2)=(q,a/d2)=1

∑
q2/d1≤n≤x/d1

(n,a)=1
n≡−(a/d2)(d1/d2) (mod q)

τk(n).

Summing for each dj individually, the contribution of d1 > xδ is bounded trivially using
Lemma 3.2. When d1 ≤ xδ, the sum over n and q is handled by an adequate generalization
of Theorem 7.1, involving a congruence of the type n ≡ b1b2 (mod q), as well as an
additional coprimality condition (n, b3) = 1, for integers |bj | ≤ xδ. Our arguments readily
adapt to account for both these modifications. Note however that it is now important that
the method is able to handle values of the modulus q up to x1/2+δ, with δ independent
of k (cf. the statement of Theorem 7.1).
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