EXPONENTIAL SUMS WITH AUTOMATIC SEQUENCES

S. DRAPPEAU AND C. MULLNER

ABSTRACT. We show that automatic sequences are asymptotically orthogonal to periodic
exponentials of type eq(f(n)), where f is a rational fraction, in the Pdlya-Vinogradov range.
This applies to Kloosterman sums, and may be used to study solubility of congruence equations
over automatic sequences. We obtain this as consequence of a general result, stating that sums
over automatic sequences can be bounded effectively in terms of two-point correlation sums
over intervals.

1. INTRODUCTION

A complex-valued sequence (a,) is called automatic, if there is a finite deterministic au-
tomaton such that for each n, the value a, is given by a function of the final state of the
automaton, when the automaton is given as input the digital representation of n. There has
been strong interest recently on understanding correlation of automatic sequences with other
types of arithmetical functions. Much of this interest has stemmed from the Sarnak conjec-
ture: it was recently shown by the second author [Mill7] that all automatic sequences are
asymptotically orthogonal to the Mobius function p(n), in the sense that Y, ., anp(n) = o(z)
as r — 00. B

In the present paper, we are interested in asymptotic orthogonality of automatic sequences
with oscillating functions given by periodic exponentials of rational fractions. The prototype
of correlations we wish to study are the incomplete Kloosterman sums

(1.1) Z ane(ﬁ), (e(z) = e*™*, nm =1 (mod q))
nel q
(n,q)=1
for an interval Z of integers. Our goal is to find conditions on ¢ and on the size of the interval |Z|
which ensure that we have asymptotic orthogonality of (a,) with (e(72/q)), in the sense that
the sum in is o(|Z|) as |Z| — oc.

When (ay,) is constant, a classical result of Weil [Weid8] shows that the condition |Z| >
q'/?*¢ suffices: we will refer to this condition as the Pdlya-Vinogradov range (in reference
to the Pdlya-Vinogradov bound for sums of Dirichlet characters). This may be improved in
specific circumstances [Kor00k Irv15], however, the range obtained by the Weil bound remains
unsurpassed in general.

Our main result, which we will describe shortly, shows that asymptotic orthogonality for
holds in the Pdlya-Vinogradov range for all automatic sequences.

Statement of results. Let us now describe the precise setting of our study. Given k£ > 2
a base, ¥ = {0,...,k— 1}, A = (Q,%,0,q0,7) a deterministic finite automaton with output
function 7 : @Q — C, we define the associated automatic sequence (an)n>0 = (7(6(qo, (7)x)))n>0,
where (n);, denotes the representation of n in base k without leading zeros. When we refer
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2 S. DRAPPEAU AND C. MULLNER

to an automatic sequence in what follows, it will always be one given by such a construction.
In particular, we assume without loss of generality that 0(qp,0) = go. For a more detailed
treatment of automatic sequences see for example [AS03|.

Given a rational fraction f = P(X)/Q(X) € Q(X), n € Z and ¢q € N5, we define e,(f(n))
following the definition of section 4A of [CFH™14]; we describe this in detail below (Section
and simply note for now that whenever (Q(n),q) = 1, we have

ca( () = (DAY,

Definition 1. Let f € Q(X), which we write in reduced form f = P/Q with P,@ € Z[X] and
coprime. Let also an integer ¢ > 1 be given.

(i) We let (¢, Q) denote the greatest common divisor of ¢ and @ in Z[X].
(ii) We will say that f is well-defined (mod q) if (¢,Q) = 1.
(iii) We define a subset of the primes by

Q¢ ={p: f reduces to a quadratic polynomial modulo p}.
(iv) We will say that f has degree d if max{deg P,deg @} = d.
Our main result is the following bound.

Theorem 1. Let (a,) be an automatic sequence, f € Q[X] be a rational function of total
degree d > 1, and q¢ > 1 such that f is well-defined (mod q). Let q1 be the largest squarefree
divisor of q, coprime with k and having no prime factor in Qj:

a1 = H p.

pllg:

pZQy,ptk
Then there exists ¢ > 0, depending at most on d and the underlying automaton A, such that
1 @ ¢
1.2 aneq(f(n)) <caa |27 (— + ;
- 72 el 7 () e [ <91 Q1\I|2)

for any interval of integers T #+ .
If f(X) is a polynomial of degree exactly 2 and leading coefficient u/v with (v,q) = 1, then

1 g \¢
(1.3) Z aneq(f(n)) < Auw ‘I’H_‘E(f i ﬁ) 7
nel q |Z|
where the implied constant may now also depend on u and v.

Remarks.

1- When g = pis prime, and f does not reduce to a linear function (mod p), the estimates (|1.2))
and (T.3) are non-trivial in the range |Z| > ¢/?*¢. Actually, E. Fouvry has remarked to the
authors that in the case when ¢ prime, we can apply a recent result of Fouvry, Kowalski,
Michel, Raju, Rivat and Soundararajan [FKM™17|, and obtain the improvement

(1.4) Y anep(f(n) = oas(@),
y<n<y+z

whenever z,q — 0o, z < ¢°1) and z/¢'/? — oo (see the remark after Lemma [1{ below).
As an example, if sg(n) denotes the sum of digits of n in base 2, and given a func-
tion ¥(q) — 0o as ¢ — oo, we have

Z e(g) = o(x) (y>0,z>1)

y<n<ly+z
s2(n) is even

for ¢ prime, ¢ — oo and ¢'/?1(q) < x < ¢°W).
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2- Note that the bound is trivial when f is a linear or constant polynomial, as ¢; = 1
in this case. It is clear that for f constant, or f(X) = X, there is no cancellation in the
left-hand side of in the range Z = [0, ¢/2] N Z when a,, = 1 for all n.

3- As mentioned, we will prove a general statement (Proposition (1| below) showing that for a
bounded sequence of coefficients (K (n)),>1, we obtain a non-trivial bound for }~, .7 a, K (n)
as soon as we have non-trivial bounds on two-point correlations sums of the kind

Z K(n+r)K(n)
nel
n=a (mod q)
with some mild uniformity in ¢ and r. For instance, this offers the possibility to take K (n)
to be a more general algebraic trace function [FKMI4l [FKM15], or Fourier coefficients of a
G L9 holomorphic cusp form [Blo04].

4- The case when the automatic sequence is sparse, in the sense that Y, .7 |an| = o(|Z])
as |Z| — oo, is more delicate as, then, the “trivial bound” obtained from the triangle
inequality is possibly smaller than the right-hand sides of our bounds and . Our
bounds yield a non-trivial saving as long as Y,,c7 |an| > |Z|'~" and 7 > 0 is small enough,
in the range |Z|9 < ¢ < |Z|>~9). For instance, our results apply for numbers with one
missing digit in a large enough base k > kg. Obtaining a good estimate for the smallest
such kg is a challenging question, which we do not address here; see [May16|] for recent
progress on the corresponding question for primes.

Bounds of the type of Theorem |l can be used to answer additive problems, see [FM98§], and
the argument on page 30 of [OS12a]. We illustrate this by the following statement, concerning
solutions to congruence equations.

Theorem 2. Let S C N be a set of integers with the property that (a,) = (lpes) is an
automatic sequence; such a set is called automatic set. There exists & > 0, depending only
on the automaton A underlying (ay), such that the following holds. For all rational frac-
tions f1, fo, f3 none of which is a linear or constant polynomial, all m € Z and all prime q,
the number Ns((f;),q) of solutions to the congruence equation

fi(n1) + fa(nz2) + f3(ns) =m (mod q)
with each nj € SN1,q|, is asymptotically

(1) Ns((fa) = SOLAC 0 ooy

The implied constant may depend on fi, fa, f3 and S.

Remark. As we have already remarked, constant sequences are automatic, so the above does
not hold in general when considering a single congruence f(n1) =m (mod d).

Context and overview. There has been many works on correlations of automatic sequences
with other arithmetic objects. Some of this interest has stemmed from questions of diophantine
approximations and normality of numbers constructed from automatic sequences. For instance,
Mauduit [Mau86] obtains non trivial bounds on sums of the kind

(1.6) Z ane(an)

n<x

for irrationnal a. See the references in [Mau86| for more on the history of this questionﬂ
We also mention the papers [OS12b, BCS02], in which the authors study exponential and
character sums over specific sequences, related to digit expansions. In particular, the sum
Tyq(r, f) of [BCS02] is closely related to (L.1J).

1We emphasize that in these works, the case when Y n<a lan| = o(x) is particularly important. As we have

already remarked, we do not focus on sparse sequences in this work.
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The method presented here, however, is related to partial progress on Sarnak’s conjec-
ture [Sarl2]. For automatic sequences of the kind of (—1)%2(") (where we recall that sy(n) is
the sum of base-2 digits of n), Mauduit and Rivat [MR10] point out a certain property (which
was later called “carry property”), and show how it can be exploited in conjunction with the
differencing method of Weyl and van der Corput together with strong estimates for the L'
norm of the discrete Fourier transform of this sequence, to obtain Sarnak’s conjecture for this
case; they also apply this method to show orthogonality to A(n) which gives a prime number
theorem. Their approach was further formalized and generalized in [MR15] (see also [Hanl7]),
but the estimates on the L! norm were replaced by a so called “Fourier property” (L°°-bounds
on the discrete Fourier transform). Finally, the second author recently showed Sarnak’s con-
jecture for automatic sequences [Miill7], generalizing in particular results for synchronizing
automatic sequences [DDM15] and invertible automatic sequences [Drm14) [FKPLMI6].

The present work shows that both Mauduit-Rivat’s “carry property”, and the second au-
thor’s structure theorems for automatic sequences, can be successfully combined with van der
Corput differencing when handling algebraic exponential sums. At the heart of the bounds
and lies Weil’s bounds on exponential sums [Weid§].

In Section [2], we state the precise version of Weil’s bounds which we will use, and in Section [3]
we quote auxiliary results on automata, mainly from [DDMI5, DM12, Mull7]. In Section
we prove a general statement (Proposition [1)) linking generic sums over automatic sequence to
differentiated sums over intervals. In Section [p, we prove Theorem [I]in a particular case, and
in Section [6] we deduce the general case.

2. WEIL BOUNDS

We begin by recalling from [CFH™14] the convention regarding e,(f(n)). Write in reduced
form f(X) = P(X)/Q(X), with P,Q € Z[X]. Given a prime power p” with @ # 0 (mod p”),
reduce P/Q = P;/Q1 (mod p”). For n € Z, we define a function of the pair (f,n) by

o( PR (@4 (n),p) = 1
0 otherwise.

epr(fim) = {

We will denote this by the slight abuse of notation ey (f(n)). We extend this definition to
arbitrary moduli ¢ > 1 with (¢, @) = 1 by the Chinese remainder theorem,

(2.1) eq(f(n)) == H epu(f(n)>.

14
¥ lq a/p

The purpose of this section is to justify the following bound on particular exponential sums.

Lemma 1. Let x,8 > 1,y >0, ¢ > 2, (a,7) € Z?, and f € Q[X] of degree at most d, which
is well-defined (mod q). Then we have
x
(5 +a):

(2.2) S elfn+r) = f(n) <cad’( II »)
y<n<ytz pllg,pirs
n=a (mod s) pEQy

If f(X) = %XQ with (ugq,v) =1, then

N[

(x 2uvrs | —1
(2.3) y<£+m eq(f(n+1)—f(n)) <<m1n{g—|—1,’ p HR/Z}'
n=a (mod s)

The bound claimed in corresponds to square-root cancellation in the part of the mod-
ulus which is squarefree, has no factor in Q; and is coprime with rs. We have assumed
squarefreeness because it usually suffices in applications, and greatly simplifies the argument;
the contribution of higher powers of primes could be studied in specific cases by elementary
arguments (see lemmas 12.2 and 12.3 of [IK04)).
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Remark. When ¢ is prime, Theorem 1.1 of [FKM™17| may be used to obtain a bound o(z)
whenever z/q¢"/? — cc.

The proof of Lemma [l]is based on the following Weil bound, which is a slightly weaker form
of [CFH™14, Proposition 4.6].

Lemma 2 (Weil [Wei48], Proposition 4.6 of [CFH™14]). Let ¢ > 1 be squarefree, and f € Q(X)
of degree < d, which is well-defined (mod q). Then

S eg(f(n) <eq a/* o (q, )Y

n (mod q)
To deal with the factor (g, f’), we will use the following lemma.

Lemma 3. Let f € Q(X), which is not a polynomial of degree < 2. Let q > 2 be squarefree
and such that for all plq, p & Qf, we have Q # 0 (mod p). Then

(@ fX+r) =X+ <(er) [[ » (rnte).

pla,ptr

pEQy
Proof. Write f = P/Q in reduced form, with P, Q € Z[X]. It will suffice to prove that (p, f'(X+
r) — f'(X) 4+ ¢) =1 when p is large enough in terms of the degree of P and Q, p & Qy, p 1 2r.
Suppose this is not the case. Then by Lemma 4.5(i) of [CFH™14], we have (p, f(X+7)— f(X)+
(X — ¢) = p for some class ¢ (mod p). Adding to f an appropriate quadratic polynomial, we
may suppose (p, f(X +7) — f(X)) = p. Write P/Q = P;/Q1 (mod p) with P;, Q1 coprime.
Then we deduce

Pi(a)Qi(a+7) = Qi(a)Pi(a+r) (mod p).

By coprimality, for all @ (mod p), Q1(a) = 0 implies Q1(a +r) = 0. Iterating yields Q1(a) =0
for all a (mod p). If p is large enough in terms of deg(@, we would obtain ¢ = 0 which
is a contradiction. We deduce Qi(a) # 0 (mod p) for all a, so that P;(X)/Q1(X) takes a
constant value and has no poles. If p is large enough in terms of deg P and deg (), we conclude
that P;/Q1 is a constant polynomial, which again contradicts the hypothesis p & Q. O

Proof of Lemma[1. The bound (2.3)) is the simple bound for a geometric sum, therefore, we
focus on proving (2.2)). Changing indices, the LHS is

) eq(fla+ms+71)— f(a+ms)).
(y—a)/s<m<(y+x—a)/s

We cover the summation interval by at most 1+ x/sq intervals of length ¢, and detect the size
conditions on m by additive characters. We obtain

> eUfarmstn - ferms) < s+ > Bl

(y—a)/s<m<(y+z—a)/s 1<|e<q/2

where

Se(q) = Z eq(fla+ms+1)— fla+ms)+tm).

m (mod q)
Let g1 be the largest divisor of ¢ which is squarefree, coprime with rs and ¢/q;, and has no
prime factor in Qy:
q1 = H p.

pllg, pirs
péfo
By the Chinese remainder theorem, we may write Sy(q) = T1T%, where
T = Z ‘3111((61/f11)_1(f(a—i—ms—1—7“)—f(a_|_m5)_|_gm>)7

m (mod q1)
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and

T = Yo ey (fla+ms+1) — fla+ms)+ lm)).
m (mod q/q1)

On T, we use the trivial bound |T5| < ¢/q;. Concerning 77, by Lemma [2| applied with f(X)
replaced by f(a+ sX +71) — f(a+ sX)+ (X, we get

1
Ty <. q12+E(Q1,€ +sf'(a+sX +7r)—sf'(a+ sX))%.
Let v € Z be such that sv = 1 (mod ¢). We apply Lemmal[3|with 7 <— rv and f(X) < f(a+sX).
1
We obtain (q1,¢+ sf'(a+ sX +r) — sf'(a+ sX)) = O(1), therefore |T1| = O(qf+5), and so

_1
1Se(q)| < " teqy 2.

This leads to the desired conclusion. OJ

3. AUXILIARY RESULTS ON AUTOMATA

We quote in this section a few results from the literature which we will use in our proof of
Theorem [1l

From now on, we let (a,) denote a fixed automatic sequence corresponding to a strongly
connected automaton A = (Q', %, ¢, q, Qo), where §'(¢),0) = ¢j. We follow the arguments
and notations of [Miill7] and consider a naturally induced transducer T4 = (Q, %, d, go, A, \),
where Q C (Q')™,m1(q0) = ¢(, ¢ a transition function which is synchronizingﬂ and an output
function A : Q x ¥ — A C S, which “attaches” to each transition in the naturally induced
transducer a permutation.

A transducer can be viewed as a mean to define functions: on input w = wjws ... w, the
transducer enters states g9 = d(qo, €),d(go, w1), - .., (g0, w1w2 . .. w,) and produces the outputs

Aqo, w1), A(0(qo, wi), wa), - .., A(0(qo, wiwg . .. wr—1), wy).

The function T'(w) is then defined as

r—1

T(w) = H A(6(qo, wrwy . .. wj), wjt1).
=0

We also define the slightly more general form,
r—1
T(g,w) := [ A6(g, wiws ... wj), wjs1).
§=0

Proposition 2.5 of [Mill7] shows how the original automaton and the naturally induced
transducer are related, namely

(3.1) an = 7(8'(qo; (n)1)) = 7(71(T (g0, (n)k) - (o, (n)x)))-

The following theorem highlights an important closure property of naturally induced trans-
ducers.

Theorem 3 (Theorem 2.7 of [Mill7]). Let A be a strongly connected automaton. There exists
a minimal d € N, mg € N, a naturally induced transducer T4 and a subgroup G of A such that
the following two conditions hold.

e Forallqe Q,w € (29)* we have T(q,w) € G.
e Forallge G,q,q € Q and n > myq it holds that

{T(q,w): we X 6(q,w) =7} =G.
The integers d = d(A) and mo = my(A) only depend on A, but not on its initial state g.

2This means that there exists a synchronizing word wy, i.e., §(qo, wo) = 0(gq, wo) for all g € Q.
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Finally, [Mill7, Corollary 2.26] shows that there exists A = (Q', %, ¢, 0’, ) generating (a,)
such that d(A) = 1 and we consider a naturally induced transducer which fulfills Theorem 3]

One crucial idea in [Mill7] was that the functions T and § corresponding to a naturally in-
duced transducer behave “independently” of each other. Thus, we start by giving an important
property of synchronizing automata.

Lemma 4. Let A be a synchronizing DFAO with synchronizing word w € ™0, There exists
1 > 0 depending only on mo and k such that the number of integers n € (y,y + x] such that

5(qa (n)k) 75 5(qa (”)2)

is bounded by O(zk~") uniformly for A\ < |logi(z)| and y > 0. Here, (n); denotes the digital
representation of n truncated at the k-th digit, in other word (n); = (m) where m € [0, k*)NN
and m =n (mod k).

Proof. See Lemma 2.2 of [DDM15]. O
The next result is the carry property for automatic sequences, or more precisely 7.

Definition 2. A function f : N — Uy has the carry property if there exists > 0 such that
uniformly for A, a, p € N with p < X, the number of integers 0 < ¢ < k* such that there exists
(77,1, ng) € {O, N 1}2 with

(3.2) FOEY +ny 4+ n2) T F(ORY 4+ n1) # Fasrp(Ck* + 11 4+ n2) T for p (6 +n1)
is at most O(k*~"°) where the implied constant may depend only on k and f.

Lemma 5 (Lemma 4.9 of [Miill7]). Definition[q holds — uniformly in r — for f(n) = D(T(n+
r)) where D is a unitary and irreducible representation of G, n is given by [DDMI15, Lemma
2.2] and the implied constant does not depend on .

To use the carry property efficiently, we need the following lemma which is a generalization
of Van-der-Corput’s inequality.

Lemma 6. Lety >0, x > 1 and Z(n) € C™*"™ be given for alln € (y,y + x]. Then we have
for any real number R > 1 and any integer k > 1 the estimate

(3.3) 2

>, Z(n)
F

y<n<ytw [r|<R y<n,n+kr<y+z

where tr(Z) denotes the trace of Z, and ||Z||r the Frobenius norm of Z.
Proof. See Lemma 5 of [DM12]. O

We now quote results from representation theory. Consider a finite groupe G. A repre-
sentation D is a continuous homomorphism D : G — U,,, where U,, denotes the group of
unitary m x m matrices over C. A representation D is called irreducible if there exists no
non-trivial subspace V' C U, such that D(g)V C V holds for all g € G. It is well-known that
there only exist finitely many equivalence classes of unitary and irreducible representations of
G (see for example [Ser77, Part I, Section 2.5]). The Peter-Weyl Theorem (see for example
[KN74, Chapter 4, Theorem 1.2]) states that the entry functions of irreducible representations
(suitable renormalized) form a orthonormal basis of L?(G). Thus we can express any function
f G — C by these My entry functions:

Lemma 7. Let G be a finite group. There exists My € N and My irreducible unitary repre-
sentations (D)ocpens, of G, not necessarily distinct and written as matrices DY) = (d@)m,

Z?]
such that for any f: G — C there exist coefficients (c¢) and indices (i¢), (jo) with
l
o)=Y ad) (9
0<l< My
for all g € G and Y- |eg| < || f]l1-
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4. VAN DER CORPUT DIFFERENTIATION

The following proposition reduces the study of automatic sequences with strongly connected
underlying automaton to bounds on correlations sums.

Proposition 1. Let g : Nyg — C be a function with |g(n)| <1, z > 1, y > 0 be real numbers,
and (ay) be an automatic sequence in base k, with strongly connected underlying automaton A.
We let

(4.1) Ulz,y;h;q,a) := > g(n)g(n+h).

y<n<y+x
n=a (mod q)

Then for somen > 0 depending on A, all \;, Ao € N with M := k™M | R := k*? satisfying RM? <
x/10, we have

Z ang(n)‘<<:cM_’7+ Z (RM Z Z \U(x,y;rM;RMZ,m/)Dl/Q.

y<n<y+x 0o<m<M 0<r<R O<m <RM?
m/=m (mod M)

Remark. It was proved by Sarnak that his Mobius randomness conjecture for all deterministic
flows would follow from the Chowla conjecture (see [Sarl2l Taol2]) concerning correlations
of the Mobius function. Proposition [1| could be interpreted as a quantified version of this
phenomenon for automatic sequences; we see that in this case, binary correlations provide
sufficient information. Note however that the moduli ¢ = RM? of the arithmetic progressions
involved in our statement are rather large compared with the shifts h = rM.

We prove Proposition [I] in the remainder of this section.

4.1. Naturally induced transducer. We use the concept of naturally induced transducer
to rewrite the sequence apn. We (still) consider a naturally induced transducer which fulfills
Theorem (3| By (3.1), we can rewrite a,, = 7(71(T(qo, (n)x) - (qo, (n)x))). Therefore,

an =2 > (M0 1) Lz(ao,(m))=o] Lioao.(m))=al -
qeQ oG
Let
I=7n(y,y+z]
with y € N> and € N5. The above allows us to rewrite
(4.2) So(Z) := Z anf(n Z Z T(m(o - q))S1(Z;0,q)
y<n<y+x qeQ oG
where
SUTioq) = Y Armi=o Lstaomw)=a F(7)-
y<ny+z
This implies

1S0(D)| <a D Y 151(Z;0,9)]

qeQ oG

4.2. Van der Corput differencing and the carry property. Let 1 < M < z, M = kM
be a power of k, to be determined later. We use the fact that it is usually sufficient to read
the last few digits of (n); to determine (g, (n)x), see Lemma 4l This allows us to rewrite

S1Ti0,0) = Y (g, (mw)=ol Lipao,(m)n)=q 9(7)
y<n<yt+z

= > Lo imp)=q S2(Zim, o) + O(@M ™),
0<m<M

(4.3)
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where 1 > 0 only depends on the length of the synchronizing word of the naturally induced
transducer T4, wg, and

So(T;m,0) == D Lip(gen))=o] 9(1)-

y<n<y+z
n=m mod M

We use ideas of representation theory to deal with 17(4 (n),)=0]- By Lemma EI, we can write

(o)) =o] = D CEdEZf)(T(qo,(n)k)),
0<l< My

for some unitary and irreducible representations D). This gives

> lrgemo-a9m = > @ Y dl (T (a0, (m)K)g(n)

y<n<ytzx 0<t<Mop  y<n<y+z
n=m mod M n=m mod M
and
> A T )| < | X DT (a0, (m))g(n)|
y<n<y+z y<n<y+z F
n=m mod M n=m mod M
where we let ||.|| denote the Frobenius norm.
Thus, we find
Se(Timo) < 7 el [Sa(@im, D)|
0<l< My
where
Ss(T;m, D)= >, D(T(qo, ()r))g(n)-
y<n<y+z
n=m mod M
This gives in total
(4.4) |S0(Z)| <a max Z |S3(Z;m, D)||p + O(xM ™).
0<m<M
We use Lemma [6] for the sequence Z(n) = D(T(qo, (nM + m)y))g(nM + m):
sM '+ MR-1)+1 r
1S5(Z; m. D)% < CUEDARS'S (1— ||) tr (Sa(Jpim, D, 7))
R R
[r|<R
where J, :={n:y <n,n+rM < y+z} and
SuT,m D)= Y (D(T(qo, (n+ M) D(T(go, (n)1)))
nzn??n%d M
g(n)g(n +rM).

We choose R = k*? and Ay € N subject to RM? < x/10, which gives
x

] 2

> 184(Z;m, D,r)|| g + O(Rx/M),
0<r<R

where the error term is due to the replacement of 7, by Z.
Letting temporarily a = y + 1, we rewrite n = niRM + noM 4+ m + a to find

D(T (qo, (n +rM);))" D(T(qo, (n)))
= D(T(qo, (niRM + (noM + m + a) + rM))) 2 D(T(qo, (N1 RM + (noM +m + a))i)).
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We apply Lemma [5| with o = A1 4+ A2, p = A1 and £ = ny. This gives

D(T(qo; (n + rM)))" D(T(qo, (n)1))
= D(Tox, 40, (g0, (M1 RM 4 (naM +m + a) 4+ rM)))T D(Tax, 11, (00, (N1 RM + (naM 4+ m + a))i))
= D(Tor, 42, (90, (n 4 M) D(Tor, 4, (a0, (n)i)),

for all but O(xR~1M~177) values of ny € [0,2/RM) and, therefore, for all but O(xM~177)
values of n € Z (for fixed m).

Thus, we find
S4(I;TTL,D,’I") — Z D(T2A1+)\2(QO7m/ +TM))HD(T2)\1+)\2 (QOam/))S5(Iv m',r)
0<m’/<RM?
(46) m’_Emfnod M
+O(zM~),
where
(4.7) S5(Z;m/ 1) = Z g(n)g(n+rM).
y<n<y+z

n=m’ mod RM?

Note that the trivial estimate S5 = O(x/(RM?)) gives back the trivial estimate Sy < x, so a
non-trivial bound on S5 gives a non-trivial bound on Sjy.

Combining (4.5) and (4.6) gives

T
(48) ST D)E < o 3 SuZim, D,y + Ola)

0<r<R
(4.9) <A RLM Z Z |S5(Z;m/, r)| + O(z> M=),

0<r<R 0<m/<RM?
m’=m mod M

This together with the definition (4.1)) finishes the proof of Proposition

5. PROOF OF THEOREM [I] IN THE STRONGLY CONNECTED CASE
From Proposition [I], we will deduce Theorem [1] in the following special case.

Proposition 2. Theorem holds for sequences (a,) whose underlying automata are strongly
connected.

The proof is split in two cases, according to whether or not the rational fraction f is a
quadratic polynomial.

5.1. The non-quadratic case. We assume first that f is not a quadratic polynomial. Let R =

M =k, and
a1 = H b.

plig.ptk
PEQy
_1
We assume also that x > gq; > without loss of generality, since otherwise the right-hand side
of (1.2) is larger than the trivial bound O(z) for the left-hand side. Recall the definition (4.1)).
We use Lemma (1| with g(n) = e4(f(n)) and our choice of R and M, to find the following

estimate

Y |UeurMiRM )| < Y R (;fww)( II p1/2>
0<r<k*  0<m’<k3* 0<r<k> pla,pirk
m’=m mod k* PeT;

T _
< k* <k‘3/\ + Q> a1 1/2(]6( Z (7, Q)1/2>-

0<r<kX
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Thus, we find by Proposition [I] that for some 1 > 0 depending on A,

k)\ qk4)\ 1/2 5 /2
Z aneq(f(n))| Kaex <1/2 + 1/2> % + O(zk™ n/ )
ne’l a1 rdy

1
uniformly in A such that k3* < 2/10. We choose A such that k* = min((¢2 ¢~ z)"/8, (q1)"/*).
This gives

. 1/8, 1/2 . 1/8\ 7
q q

(5.1) 150(Z)] <Aked UCqE( 1/4 +< 1/2 > > "Hf( 1/4 +< 12 ) ) ’
a4 4 4y a4

and implies our claimed bound (L.2)) for ¢ = min(n/16,1/32).

5.2. The quadratic case. Here again we assume that g(n) = e,(f(n)). If f is quadratic, then
for the purpose of bounding (4.1) we may assume f(X) = “X? with v # 0 and (qu,v) = 1.
Let s = RM?, where R and M are powers of k satisfying 1 < RM < x/10. By Lemma , we
have

T 2uvr RM? ‘—1
RM?’ q ’ )

Assume now that (RM)? < ¢/(4u), which does not contradict the hypotheses R, M > 1 if we
let ¢ be large enough in terms of u. Then

2uTrRM? _ 2ur RM? B 2ugrRM?

U (z,y;rM; RM? m')| < min(

= dl).
q qu v (mod 1)
By our hypothesis (RM)? < q/(4|ul), as soon as v { 2r RM?, we obtain
2uvr RM? 2ur RM?
i Eh R e ES et

If, on the other hand, v | 2r RM?, we obtain
HQUUTRM2 H B ‘2UTRM2‘ - 2|ulr RM?
q qlv|

since the latter is less than 1/2, again by our hypothesis (RM)? < q/(4|u|). In any case, we
obtain

. . 2 . T q
|U($,y,TM7RM ,m )‘ < min (m, W)’

and therefore ¢
. . 2
Z |U(x,y;7M; RM~,m’)| < min (M M)
0<m/ <RM?
m/=m mod M
We sum the previous bound over r < R. We obtain

Z Z ’U(x,y;rM;RM2, " ( + Z )
r<R 0<m'<RM? 1&en ™
m/=m mod M

x4+ qlogR
K i .
We now pick R =j min{xz/M?, V/4/M?}, and find by Proposition
M2
> aneq(f

)| <akea (@) (2@ +q) (=
nel

q
If z < q, we pick M =, (x/\/a)l/u*z”), and if z > ¢, we pick M =, ¢*/+t4) We find in any

case
1 q\¢
Z aneq(f(n))| < xHE(f + 7)
q =
nezl

4 q?{z))m LM,
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with ¢ = /(2 + 4n), and our claimed bound follows.

6. PROOF FOR NON-STRONGLY CONNECTED AUTOMATA
We will deduce the full generality of Theorem [1| from Proposition [2] and the following fact.

Proposition 3. Let g : N — C be a function with |g(n)| < 1, and assume that for every strongly
connected automatic sequence b = (by,), there is a non-decreasing function E(b,-) : Ry — Ry
such that

(6.1) ’ Z bng(n+r)’ < E(b,x) (reZ,y>0,z>1).
y<n<y+z
Then for any automatic sequence (ay), not necessarily strongly connected, we may associate

a finite set {bU) = (bg))}}]:l of strongly connected automatic sequences, and a positive num-
ber § > 0 such that for ally >0, x > 1 and o € N with K := k° € [1,z], we have

(6.2) ‘ Z ang(n ’ < {2 K 2K~ maxE(b() K)}.

y<n<ytw
Remark. Tt is important to note the requirement that the hypothesized upper-bound (6.1)) is
uniform with respect to r.

Proof of Proposition[3 Let A= (Q,%,4,qo,7) be the automaton underlying (a,), and define
R :={r € N:0d(q, (r)r) belongs to a final component of A for any g € Q}.
Then we have the uniform bound

(6.3) (g y+2] NNNR| <20 (y>0,2>1)

for some 6 > 0 depending on A. We let {(137(1J )) 3-]:1 be the finite set of all automatic sequences
associated with final components of A (as described in Proposition 2.25 of [Miill7]), with the
same output function 7.

We consider some fixed y > 0 and = > 1. For the purpose of proving the bound , we
may assume that x is large enough in terms of A. Let 0 € N with 1 < K := k% < z. We split
the sum on the left-hand side of | in congruence classes (mod K), getting

Z ang(n Z Z ri4ng(rK 4+ n).

y<n<ytw >0 0<n<K
y<rK+n<y+zx

Note that the sum over n is void unless r € (y/K—1, (y+x)/K). From this fact, the bound (6.3])
and our hypothesis ||g||cc < 1, we obtain

Z Z arg4ng(rK +n) Z Z ark4ng(rK +n) + Oz O K°).

r>0 0<n<K r>0 0<n<K
y<rK+n<y+zx reR y<rK+n<y+z

For r € R, our automaton reads numbers from left to right, so that a,x+n = £{ ) for some 7
(depending on r); we recall that there are only finitely many possibilities for j. Therefore,

Z Z arg+ng(rK +mn)| < Z max Z bDg(rk + n)|.

r>0  0<n<K 3 _jopeute 0<n<K
reRy<rK+n<y+z K K y<rK+n<y+x

In the inner sum, the size conditions on n describe an interval of length K, for all but at most
two values of r. Gathering the above and using our hypothesis (6.1)), we find

> ang(n)

y<n<y+w

< > maxEbY K)+2' 0K

Y y+zx
®OIST<Te

< 2K 'max E(bY) K) + ' OK?°
J
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as claimed. O

Proof of Theorem [1 We consider the case of (1.2)); the argument (1.3) is similar and slightly
simpler. Proposition[2shows that the estimate (1.2) holds when the sequence (a,,) is associated

with a strongly connected automaton. Note that the upper-bound ([1.2)) only depends on the
degree of f (while (1.3) only depends on the leading coefficient of f). Moreover, if r € 7Z
and f(X):= f(X +r), then Qf: Q. We deduce that the bounds (1.2)) also holds, with the

same implied constant, for the quantity

> aneq(f(n+1))

nel

uniformly in r € Z, when the automaton underlying (a,,) is strongly connected. The hypothe-
sis (6.1)) is therefore satisfied with

2

1 q° \¢
Bl(an). ) = Baca™ (2 + 15"

where ¢ > 0 depends on A and B4, depends at most on 4 and ¢.

Assume now that (a,,) is not associated with a strongly connected automaton. For all K €
[1, 2] which is a power of x, we obtain by Proposition [3| the bound

1 2 \a
1-6 76 € q
K+zK(—+ —
< v (QI QIK2>

Y. ane(f(n))

y<n<y+z

for some ¢; > 0 depending on A. We optimize by letting K =<j min{zx, (mq2qf1)1/3}. The

claimed bound (|1.2)) follows with ¢ replaced by min{c;/3,46/3}. O
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