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Abstract. We prove that the existence of exceptional real zeroes of Dirichlet L-functions would lead
to cancellations in the sum

∑
p≤x

Kl(1, p) of Kloosterman sums over primes, and also to sign changes
of Kl(1, n), where n runs over integers with exactly two prime factors. Our arguments involve a variant
of Bombieri’s sieve, bounds for twisted sums of Kloosterman sums, and work of Fouvry and Michel on
sums of |Kl(1, n)|.

1. Introduction

Kloosterman sums. For n ∈ N>0 and a residue class a (mod n), define the normalized Kloosterman
sum as

Kl(a, n) = 1√
n

∑
ν (mod n)

(ν,n)=1

e
(ν + aν̄

n

)
,

where we write e(z) = e2πiz and ν̄ν ≡ 1 (mod n). These sums have a long history [Poi11, Klo27],
at the intersection of algebraic geometry and automorphic forms. The Weil bound [Wei48, Mat11]
yields |Kl(a, n)| ≤ 2ω(n) if 32 - n and |Kl(a, n)| ≤ 2ω(n)+1/2 in general, where ω(n) is the number of
distinct prime factors of n. In particular, for a prime p

|Kl(1, p)| ≤ 2.

Let θa,p ∈ [0, π] be such that Kl(a, p) = 2 cos(θa,p). The “vertical” Sato-Tate law, due to Katz [Kat88],
asserts that the numbers

{θa,p | 1 ≤ a < p}
become equidistributed, as p→∞, with respect to the Sato-Tate measure 2

π sin(θ)2dθ. The “horizontal”
Sato-Tate conjecture is the claim that the numbers

{θ1,p | p ≤ x}

become equidistributed with respect to the same measure, as x→∞. This would of course imply that∑
p≤x

Kl(1, p) = o(π(x)) (x→∞).

Unfortunately the horizontal Sato-Tato conjecture is still open, and very little is known about this
sum. Fouvry and Michel [FM07] have obtained significant partial progress on replacing primes by
almost-primes: they show that ∑

n<x
p|n⇒p>x1/23.9

(|Kl(1, n)| ±Kl(1, n))� x

log x.

In particular, it follows that there are infinitely many sign changes in the set {Kl(1, n), ω(n) ≤ 23}.
After further work by many authors [FM03a, SF07, SF09, Mat11, Xi15a], the best know current result is
due to Xi [Xi15b] and shows that there are infinitely many sign changes in the set {Kl(1, n), ω(n) ≤ 7}.
We refer to the recent preprint [Xi18] for more references and related questions.
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Landau-Siegel zeroes. In this work we study the implications of the existence of Landau-Siegel zeroes
on this question. For D ≥ 3 an integer and χ (mod D) a real primitive character, define the value

ηχ := L(1, χ) logD.
It would follow from GRH that ηχ � (logD)/ log logD and so ηχ → ∞ as D → ∞. Unconditionally,
however, Siegel’s non-effective lower-bound [Sie35] ηχ �ε D

−ε remains unsurpassed. It is as yet not
even known if ηχ is bounded away from 0; this is equivalent to the non-existence of real zeroes of L(s, χ)
close to 1. On the other hand, if there were a sequence of characters χ1 (mod D1), χ2 (mod D2), . . .
such that ηχi → 0, then many desirable consequences would follow: the existence of twin primes [HB83],
equidistribution of primes in arithmetic progressions to large moduli [FI03], primes in very short inter-
vals [FI04], or prime values of discriminants of elliptic curves [FI05, FI13], for example.

We are interested in obtaining cancellations in the sum∑
p≤x

Kl(1, p)

which go beyond the bound 2π(x) implied by the Weil bound should such exceptional characters exist.

Theorem 1.1. Let ε > 0. Then there are constants A,B > 0, depending only on ε, such that for
D ≥ 3, x ≥ DA and any primitive real character χ (mod D), we have∣∣∣∑

p<x

Kl(1, p)
∣∣∣ ≤ π(x)

(
ε+BL(1, χ) log x

)
.

This statement is unconditional, but is only non-trivial if the value ηχ is suitably small. We note that
if there is a sequence of characters with ηχi

→ 0, then Theorem 1.1 shows that for a suitable sequence
of values of x, ∑

p<x

Kl(1, p) = o(π(x)),

as predicted by the horizontal Sato-Tate conjecture.
Unfortunately we do not know unconditionally the expected lower bound

(1.1)
∑
p<x

|Kl(1, p)| � π(x).

In particular, even if there was a sequence of characters with ηχi → 0, we would not be able to conclude
from Theorem 1.1 that there are even infinitely many sign changes in the sequence Kl(1, p). If instead
of considering primes we consider products of exactly two primes, then the equivalent lower bound
to (1.1) is known thanks to work of Fouvry-Kowalski-Michel [FKM14]. For technical reasons, when
working with products of two primes we consider the variant

S(x) =
∑

p,q prime
φ
(pq
x

)
log(pq)(log p)(log q) Kl(1, pq)

where φ : R+ → C is a smooth function compactly supported inside R∗+. We note that the Weil bound
implies unconditionally that S(x) � x log2 x, whilst a variant of the horizontal Sato-Tate conjecture
would suggest that we should have S(x) = oφ(x log2 x).

Theorem 1.2. Let ε > 0. Then there exist A,B > 0, depending at most on ε, such that for any D ≥ 3,
x ≥ DA and any primitive real character χ (mod D), we have
(1.2) |S(x)| �φ x(log x)2{ε+BL(1, χ) log x

}
.

The implied constant depends only on the function φ.

As with Theorem 1.1, this is unconditional but non-trivial only if a sequence of exceptional characters
exist. Thus, in the presence of Siegel zeros, we are able to establish infinitely many sign changes
of Kl(1, pq).

Corollary 1.3. For some absolute constants A, c > 0, if ηχ ≤ c, then every interval [x, 2x] ⊂
[DA, D100A] contains two numbers (n1, n2) with ω(n1) = ω(n2) = 2, and Kl(1, n1) Kl(1, n2) < 0.

Proof. Choose φ to be real-valued with φ ≥ 1[1,2], and consider the unsigned sum

A(x) =
∑
p,q

x<pq≤2x

(log pq)(log p)(log q) |Kl(1, pq)| .
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We have the following lower bound, due to Fouvry-Kowalski-Michel [FKM14, Proposition 5.1]:

(1.3) A(x)� x(log x)2 (x ≥ 2).

Comparing (1.2) and (1.3) yields the claimed statement. �

Notations. We denote by P−(n) (resp. P+(n)) the smallest (resp. largest) prime factor of n, with
the conventions P−(1) =∞ and P+(1) = 1. The letter p denotes a prime.

2. Outline

If there is a character χ (mod D) such that L(1, χ) is very small, then ‘most’ primes p ∈ [DA, D100A]
have χ(p) = −1 = µ(p), for some suitable constant A. By multiplicativity, this means that the
(poorly understood) Moebius function µ can be well-approximated by the character χ (which is periodic
(mod D), and so better understood) on integers n < D100A with no small prime factors. In particular,
for n ≤ D100A

(2.1) Λ(n) = (µ ∗ log)(n) ≈ (χ ∗ log)(n),

and so we can approximate Λ by the convolution of two simpler sequences. By applying the hyperbola
method, this would allow us to estimate a sum

∑
n<x Λ(n)an provided we could suitably estimate

(2.2)
∑
d≤Y1

χ(d)
∑
n≤x
d|n

an log n
d
, and

∑
d≤Y2

log d
∑
n<x
d|n

anχ
(n
d

)

for some choice of Y1, Y2 with Y1Y2 = x = D100A. Often one can suitably estimate such sums for
Y1 = Y2 = x1/2−ε, which just falls short of this requirement. Much of the work on the distribution
of primes under the assumption of a Siegel-Landau zero followed this strategy, and the key technical
challenge is then to obtain a suitable estimate for one of the sums in (2.2) with Y1 or Y2 slightly beyond
x1/2.

In our situation, an = Kl(1, n), and estimates for the two sums in (2.2) with Y1 = Y2 = x1/2−ε are
obtained in essentially the same way as Fouvry and Michel [FM07]. Unfortunately we do not know
how to extend this work beyond x1/2, and so this strategy fails. However, in the convolution identity
Λ(n) =

∑
d|n µ(d) log(n/d) it is only terms with d ∈ [x1/2−ε, x1/2+ε] which we are unable to handle. We

note the alternative identity

Λ(n) =
∑
d|n

µ(d)
(

log
√
n

d

)
.

The presence of the term log(
√
n/d) means we expect that terms with d ≈

√
n to contribute less, and so

we might hope that these central values would be negligible. This is a variant of the idea that Bombieri
introduced in his asymptotic sieve [Bom76], where terms in Λ2(n) =

∑
d|n µ(d) log2(n/d) from d < n1−ε

could be handled by assumptions on equidistribution of congruence sums, and terms with d ∈ [n1−ε, n]
could be bounded by virtue of the fact that log2(n/d) was small in this range.

Unfortunately, as in Bombieri’s work, this strategy fails if we wish to count primes. To maintain the
feature that the support is essentially restricted to numbers with no small prime factors one multiplies
by a short sieve weight, which loses a factor ε2 from the two variables d and n/d. This precisely cancels
out the gains of a factor ε2 coming from the range of d and from the size of log(

√
n/d). Whilst this issue

might appear to be a technicality, at least in Bombieri’s work this is an expression of the fundamental
parity problem of sieve methods. If instead we counted with a weight involving a higher power of
log(
√
n/d) (thereby counting products of a bounded number of primes), then this strategy can succeed.

In our case, we are interested in an = Kl(1, n). Although in general we expect the Weil bound
|Kl(1, n)| ≤ 2ω(n) to be essentially sharp, for most integers n we expect |Kl(1, n)| is actually much
smaller than this. Indeed, the horizontal Sato-Tate conjecture would predict that for any fixed a, the
average size of |Kl(a, p)| is 2

π

´ π
0 2| cos(t)| sin2(t)dt = 8/3π < 1. By multiplicativity, we might then

expect |Kl(1, n)| ≈ (8/3π)ω(n) on average over n. Fouvry and Michel [FM03b, FM06] combined an
argument of Hooley [Hoo64] based on the identity Kl(1, ab) = Kl(a2, b) Kl(b2, a) (for coprime a, b), with
the vertical Sato-Tate law, to show unconditionally that the factor 2ω(n) can be indeed improved to
(8/3π)ω(n) when considering suitable averages. Since 8/3π < 1, numbers with a larger number of prime
factors contribute less to the problematic sums, and so there is less of a loss from being restricted to a
short sieve weight. This ultimately allows us to win an additional factor of (ε1−8/3π)2 for these sums
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involving middle sized d, which is enough to conclude that such terms make a negligible contribution,
and so we are able to bound

∑
p<x Kl(1, p).

3. Preparatory Lemmas

3.1. Level of distribution for twisted Kloosterman sums. Here we make precise the claim that
the sums in (2.2) can be estimated with Y1 = Y2 = x1/2−ε by a variation of the work of Fouvry-Michel
[FM07].

Proposition 3.1. Let ε > 0 be fixed. There exists η = η(ε) > 0, such that for any real x ≥ 2, positive
integer D ≤ xη, all characters χ (mod D), and any smooth function φ : R∗+ → C compactly supported
inside R∗+, we have

(3.1)
∑

q≤x1/2−ε

∣∣∣ ∑
n≡0 (mod q)

φ
(n
x

)
χ(n) Kl(1, n)

∣∣∣�ε,φ x
1−η.

Remark. Note that the case D = 1 of the previous statement is a weaker form of Proposition 2.1
of [FM07].

Proof. We may plainly assume that the sums are restricted to (q,D) = (n,D) = 1. The bound we claim
is a variant of Proposition 2.1 of [FM07], which is based on the Kuznetsov formula [Kuz80, DI83], the
Weil bound for Kloosterman sums, and a uniform bound θ ≤ 1/4 − ε towards Ramanujan-Petersson,
which was first due to Luo-Rudnick-Sarnak [LRS95].

The difference in our case is the presence of the character. Recently, Blomer and Milićević [BM15]
have succeeded in analysing such sums in the context of modular forms with non-trivial nebentypus;
another argument was used in [Dra17], which is simpler for our purpose here. We will rely on work of
Topacogullari [Top15] to estimate the spectral sums.

In our case, we will use the notations and normalization described in section 4.1.2 of [Dra17]. Our aim
is to apply the Kuznetsov formula [Dra17, Lemma 4.5] for the group Γ0(qD), nebentypus χ̄ (mod D),
with cusps ∞ and 1/q, and parameters m ← D, n ← 1. For each q in the left-hand side of (3.1),
Lemma 4.3 of [Dra17], with the choice of scaling matrices (depending only on q and D) given there,
yields

χ(n) Kl(1, n) = χ(q)e(−q̄/D)S∞,1/q(D, 1;n
√
D).

Let κ ∈ {0, 1} be such that χ(−1) = (−1)κ. The Kuznetsov formula with test function ψ(t) =
φ(4π/(tx))

√
4π/(tx) yields

χ(q)e(q̄/D)
∑

n≡0 (mod q)

φ
(n
x

)
χ(n) Kl(1, n) =

√
x
{
H+ E +M

}
,

where
H =

∑
k>κ

k≡κ (mod 2)

∑
f∈Bk(qD,χ̄)

ψ̇(k)Γ(k)ρf,∞(D)ρf,1/q(1),

E =
∑

c sing.

1
4π

ˆ ∞
−∞

ψ̃(t)
cosh(πt)ρc,∞(D, t)ρc,1/q(1, t)dt,

M =
∑

f∈B(qD,χ̄)

ψ̃(tf )
cosh(πtf )ρf,∞(D)ρf,1/q(1).

Split M =M1 +M2 where M1 is the contribution of those f with tf ∈ R, and M2 is the remainder
contribution, which consists of f with tf ∈ [−i/4, i/4]. Consider first M2. Using the bound |ψ̃(tf )| �
x2|tf |, we obtain by the Cauchy-Schwarz inequality

M2 �
( ∑
f∈B(qD,χ̄)

x2|tf ||ρf,∞(D)|2
)1/2( ∑

f∈B(qD,χ̄)

x2|tf ||ρf,1/q(1)|2
)1/2

.

We have q
√
D ≤ x1/2−ε+η ≤ x1/2, so that Lemma 2.9 of [Top15] may be applied to both sums, which

yields, as x→∞,

(3.2) M2 � xo(1)
(√xD

q

)4θ{
1 +
√
D

q

}
� x2η(x/q2)2θ.
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The contribution of E , H and M1 is handled by similar standard arguments [DI83, page 267], using
instead Lemma 2.8 of [Top15]. We obtain

(3.3) H+ E +M1 � xo(1)D1/2 � xη

as x→∞. Grouping our bounds (3.3) and (3.2), we find∑
q≤x1/2−ε

∣∣∣ ∑
n≡0 (mod q)

φ
(n
x

)
χ(n) Kl(1, n)

∣∣∣�ε,φ x
1+η−ε + x1+2η−(1/2−2θ)ε.

By work of Kim-Sarnak [Kim03], we are ensured that θ ≤ 7/64 < 1/4, and therefore our claimed bound
follows if Q ≤ x1/2−ε and 0 < η ≤ 3ε/16. �

From Proposition 3.1 and the convolution µ2(n) =
∑
d2|n µ(d), we deduce the analogous bound

with n restricted to square-free numbers.

Corollary 3.2. In the setting and notations of Proposition 3.1, we have

(3.4)
∑

q≤x1/2−ε

∣∣∣ ∑
n≡0 (mod q)

µ2(n)φ
(n
x

)
χ(n) Kl(1, n)

∣∣∣�ε,φ x
1−η

for a possibly smaller value of η > 0, but depending on ε at most.

3.2. Sieve weights. To control the terms around the central point d ∈ [x1/2−ε, x1/2+ε] we will intro-
duce a short sieve weight to maintain the feature that our sums are essentially supported on integers
free of small prime factors. This is also crucial for carrying out the approximation (2.1) as effectively
as possible. We recall the construction of the β-sieve from [FI10], and a few of its relevant properties
for our application. Let

θ(n) =
∑
d|n

ξd

be an upper-bound β-sieve of level y and dimension κ ≥ 0, for the primes less than z. The parameters y,
z and κ will be chosen later to be small powers of x with the condition that z2 ≤ y. (We will ultimately
choose z = xε/(log ε)2 and y = xε.) In particular, we have ξ1 = 1 and |ξd| ≤ 1; (ξd) is supported on
integers up to y free of prime factor > z, and we have θ(n) ≥ 0 for all n ≥ 1. Moreover, for any
multiplicative function f with f(p) ∈ [0, κ], we have

(3.5)
∑
d

ξdf(d)
d

�
∏
p≤z

(
1 + f(p)

p

)−1
.

For some technical simplifications, we will work with the smoothed version

θ′(n) :=
∑
d|n

ξd log
(n
d

)
=
∑
d|n

θ
(n
d

)
Λ(d).

Note that θ′(n) = logn if P−(n) > z.
The key property we use of θ′ is the following estimate on averages of multiplicative functions weighted

by the sieve weight.

Lemma 3.3. Let the multiplicative function f be supported on squarefree numbers, with 0 ≤ f(p) ≤ κ.
Then

(3.6)
∑
n≤x

θ′(n)f(n)� x
∏

z<p≤x

(
1 + f(p)

p

)
.

Proof. Denote S the sum on the left-hand side of (3.6). By definition of θ′, we have

S =
∑
n≤x

∑
p|n

f(n)θ
(n
p

)
log p ≤

∑
n≤x

f(n)θ(n)
∑
p≤x/n

f(p) log p

by positivity of the summand. Therefore,

S �κ x
∑
n≤x

θ(n)f(n)
n

≤ x
∑

P+(n)≤x

θ(n)f(n)
n

.
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Opening the convolution in θ(n), we arrive at

(3.7)

S �κ x
∑

P+(d)≤x

ξdf(d)
d

∑
P+(n)≤x
(n,d)=1

f(n)
n

= x
∏
p≤x

(
1 + f(p)

p

) ∑
P+(d)≤x

ξdf(d)
d

∏
p|d

(
1 + f(p)

p

)−1
.

By (3.5), the sum over d above is �κ

∏
p≤z(1 + f(p)

p )−1, and our claimed bound follows. �

4. Argument for the upper bound

In what follows, we let ε > 0 be fixed, and η > 0 be a small parameter, to be chosen in terms of ε.
We assume that D ≤ xη.

4.1. Initial setup. For a positive integer r, define the arithmetic functions Λ̃r(n) by

Λ̃r(n) =
∑
d|n

µ(d)
(

log
√
n

d

)r
.

We note that Λ̃1(n) = Λ(n) and Λ̃2(n) = Λ2(n) − Λ(n) logn. On squarefree n, Λ̃1 is supported on
primes, and Λ̃2 is supported on products of exactly two primes.

Let φ be smooth bounded compactly supported function approximating the characteristic func-
tion 1[0,1] of the interval [0, 1] from below, such that φ and 1[0,1] differ only on [0, δ] and [1 − δ, 1], for
some small constant δ > 0. If we can show that for any ε > 0

(4.1)
∣∣∣∑
n

µ2(n)φ
(n
x

)
(logn)Λ̃(n) Kl(1, n)

∣∣∣�φ εx log x+Oε(xL(1, χ) log2 x),

then, using the Weil bound to control the contribution from n < δx or n > (1− δ)x, we see from partial
summation that ∣∣∣∑

p≤x

Kl(1, p)
∣∣∣� δπ(x) +Oδ(επ(x)) +Oδ,ε(L(1, χ) log x).

Thus, by choosing δ small and then ε sufficiently small in terms of δ, we see it suffices to show (4.1) for
any fixed ε > 0.

Since µ2(n)Λ̃(n) is only supported on primes, we have∑
n

µ2(n)φ
(n
x

)
(logn)Λ̃(n) Kl(1, n) =

∑
(n,D)=1

µ2(n)φ
(n
x

)
θ′(n)Λ̃(n) Kl(1, n) +Oε(xε).

For products of two primes, we note that for all x ≥ 2,

(4.2)
∑
n≤x

n 6=pq for all p 6=q,
p,q prime

Λ̃2(n)� x,

with the main contribution arising from pairs n = pq2 (p, q primes), while

(4.3)
∑
n≤x

(n,D)>1

Λ̃2(n)� x log log x

for 2 ≤ D ≤ x. Thus∑
p,q

p,q prime

φ
(pq
x

)
(log pq)(log p)(log q) Kl(1, pq)

=
∑
p,q

p,q prime

φ
(pq
x

)
θ′(pq)(log p)(log q) Kl(1, pq) +O(x(log x)(log z))

= 1
2

∑
(n,D)=1

µ2(n)φ
(n
x

)
θ′(n)Λ̃2(n) Kl(1, n) +O(x(log x)(log z)).(4.4)

We have used both (4.2) and (4.3) in the last line.
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Thus, we see that to establish Theorem 1.1 and Theorem 1.2 it is sufficient to show for every ε > 0,
every smooth compactly supported φ and each r ∈ {1, 2} that

(4.5) S(x) = S(x, r) =
∑

(n,D)=1

µ2(n)φ
(n
x

)
θ′(n)Λ̃r(n) Kl(1, n)�φ εx logr x+Oε(xL(1, χ) logr+1 x),

where D and x satisfy the hypotheses of Theorem 1.1 and χ is any real primitive character (mod D).
Let

ν(n) = (µ ∗ µχ)(n) =
∑
n=uv

µ(u)µ(v)χ(v).

We write

(4.6) Λ̃r(n) = 1
2r

∑
n=abc

ν(b)χ(a)
(

log ab
c

)r
,

so that for r ∈ {1, 2},

(4.7) S(x) = 1
r2r

∑
(a,b,c)∈N3

(abc,D)=1

µ2(abc)φ
(abc
x

)
θ′(abc)ν(b)χ(a)

(
log ab

c

)r
Kl(1, abc).

We split the sum over (a, b, c) into b > 1 or b = 1 and min{a, c} ≤ x1/2/y3, or b = 1 and min{a, c} >
x1/2/y3. This gives

(4.8) r2rS(x) = SL(x) + SN (x) + SC(x),

with

(4.9) SL(x) =
∑

(a,b,c)∈N3

b>1
(abc,D)=1

µ2(abc)φ
(abc
x

)
θ′(abc)ν(b)χ(a)

(
log ab

c

)r
Kl(1, abc),

(4.10) SN (x) =
∑

(a,c)∈N2

min{a,c}≤
√
x/y3

(ac,D)=1

µ2(ac)φ
(ac
x

)
θ′(ac)χ(a)

(
log a

c

)r
Kl(1, ac),

(4.11) SC(x) =
∑

(a,c)∈N2

min{a,c}>
√
x/y3

(ac,D)=1

µ2(ac)φ
(ac
x

)
θ′(ac)χ(a)

(
log a

c

)r
Kl(1, ac).

We can control SL(x) by L(1, χ), since µ2ν is supported on integers with all prime factors satisfying
χ(p) = 1 and θ′ is concentrated on integers free of small prime factors. Thus if L(1, χ) is small, we
expect the support to be a lacunary sequence and so the sum SL(x) to be small.

We can control SN (x) by the level of distribution estimates of Section 3.1, since the sum over one of
a or c is a long sum.

Finally, SC is the contribution near the central point, and we will show this is small since | log(a/c)| ≤
6 log y + Oφ(1), which is small compared with log x, a is resticted to a short range on the logarithmic
scale, and Kl(1, n) is typically small on numbers with many prime factors.

4.2. Bounding the lacunary sum SL. We begin by bounding SL(x) in terms of L(1, χ).

Lemma 4.1. For all small enough ε > 0, and D8 ≤ xε2 ≤ z ≤ y1/(log ε)2 , we have

SL(x)�φ x(log x)r
(
ε−κ−2L(1, χ) log x+ ε

)
,

Proof. We note that for squarefree n, we have |ν(n)| = (1 ∗χ)(n), and we recall that θ′(n) = (Λ ∗ θ)(n).
Thus, bounding the summand of SL(x) and letting d = ac, and then expanding the definition of θ, we
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find
SL(x)� (log x)r

∑
db�x
b>1

(1 ∗ χ)(b)θ′(bd)τ(bd)2µ(bd)2

= (log x)r
∑
bef�x
b>1

(1 ∗ χ)(b)θ(be)Λ(f)τ(bef)2µ(bef)2.

When f > z is prime we see θ(be) = θ(bef). Thus the contribution from f > z can be bounded by

(4.12) (log x)r+1
∑
bg�x
b>1

(1 ∗ χ)(b)θ(bg)µ2(bg)τ(bg)4.

The contribution from f ≤ z can be bounded by

(4.13) (log x)r
∑
f�z

Λ(f)
∑

be�x/f
b>1

(1 ∗ χ)(b)θ(be)µ2(be)τ(be)2.

These are precisely sums of the type considered in Section 24.7 of [FI10]. Indeed, there it is established
[FI10, equation (24.58)] that if D8 ≤ z ≤ y ≤ Y 1/8 and ρ is a completely multiplicative function with
0 ≤ ρ(p) ≤ κ/6 then∑

ab<Y
b>1

(1 ∗ χ)(b)θ(ab)ρ(ab)� Y

log Y

(
L(1, χ) log Y + e−t

)( log Y
log z

)κ/2+1
,

where t = log y/ log z. Since µ2(n)τ(n)k ≤ 2kΩ(n) (k = 2, 4), we may apply this to the bounds (4.12)
and (4.13) above, and find that provided D8 ≤ z ≤ y ≤ x1/9 and κ > 6× 24, we have

(log x)r+1
∑
bg�x
b>1

(1 ∗ χ)(b)θ(bg)τ(bg)4 � x(log x)r
(
L(1, χ) log x+ e−t

)( log x
log z

)κ/2+1
,

(log x)r
∑
f�z

Λ(a)
∑

be�x/f
b>1

(1 ∗ χ)(b)θ(be)τ(be)2 � (log x)r−1
(
L(1, χ) log x+ e−t

)( log x
log z

)κ/2+1 ∑
f�z

Λ(f)
f

� x(log x)r
(
L(1, χ) log x+ e−t

)( log x
log z

)κ/2
.

Putting this together, we find

SL(x)� x(log x)r
(
L(1, χ) log x+ e−t

)( log x
log z

)κ/2+1
.

If xε2 ≤ z ≤ y1/(log ε)2 , then this gives

(4.14) SL(x)� x(log x)r
(
ε−κ−2L(1, χ) log x+ ε

)
,

as required. �

4.3. Bounding the non-central sum SN .

Lemma 4.2. Let y ≥ xε. Then there is a constant η > 0 depending only on ε such that
SN (x)�ε x

1−η.

Proof. Denote by χ0(n) the principal character (mod D). Opening the summation in θ′(ac), we obtain

SN (x) ≤
∑
d≤y

∑
a<
√
x/y3

∣∣∣ ∑
n≡0 (mod [a,d])

µ2(n)φ
(n
x

)
χ0(n)

(
log
(a2

n

))r(
log n

d

)
Kl(1, n)

∣∣∣
+
∑
d≤y

∑
c<
√
x/y3

∣∣∣ ∑
n≡0 (mod [c,d])

µ2(n)φ
(n
x

)
χ(n)

(
log
(c2
n

))r(
log n

d

)
Kl(1, n)

∣∣∣
� sup

χ1 (mod D)
sup

0≤j≤r+1

∑
q≤
√
x/y

τ(q)(log x)r+1
∣∣∣ ∑
n≡0 (mod q)

µ2(n)φ
(n
x

)
χ1(n)(log(n/x))j Kl(1, n)

∣∣∣.(4.15)
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Recalling that we assume y ≥ xε and applying Corollary 3.2, we obtain
(4.16) SN (x)�ε x

1−η

for some η depending at most on ε. �

4.4. Bounding the central point sum SC .

Lemma 4.3. Let xε2 ≤ z ≤ y1/(log ε)2 and y ≤ x2ε. Then we have

SC(x)� ε10x(log x)r + ε3/10x(log x)r
( log y

log z

)2
.

Proof. Recall that the sum SC(x) is defined in (4.11). By construction, for all (a, c) in the summation
range, we have | log(a/c)| � log y.

Therefore, by the triangle inequality and the support condition on φ, our task is to bound

(log y)r
∑

x/y3≤a�xy3

ac�x

µ2(ac)θ′(ac) |Kl(1, ac)| .

Following an idea of Hooley [Hoo64], we let a parameter u ∈ [y, x1/4] be given, and decompose accord-
ingly

a = a1a2, P+(a1) ≤ u, P−(a2) > u,

and similarly let c = c1c2. Notice that
θ′(ac) = θ(a1c1) log(a2c2) + θ′(a1c1)� θ(a1c1) log x+ θ′(a1c1)

since P−(a2c2) > u > z. We write

(4.17)
∑

a1a2c1c2�x
x1/2/y3<a1a2�x1/2y3

P+(a1c1)≤u<P−(a2c2)

µ2(a1a2c1c2)θ′(a1a2c1c2) |Kl(1, a1a2c1c2)| = S1 + S2,

where S1 is the contribution of a1c1 ≤ x1/10, and S2 is the contribution of a1c1 > x1/10.
Concerning S1, we have

S1 �
∑

a1c1≤x1/10

P+(a1c1)≤u

µ2(a1c1){θ(a1c1) log x+ θ′(a1c1)}T (a1, c1),

with
T (a1, c1) =

∑
a2c2�x/a1c1
P−(a2c2)>u

x1/2/y3<a1a2�x1/2y3

µ2(a2c2) |Kl(1, a1a2c1c2)| .

By a reasoning identical to page 277 of [FM03b], for a1c1 ≤ x1/10, we have

T (a1, c1) ≤
∑

b (mod a1c1)
(b,a1c1)=1

∣∣Kl(b2, a1c1)
∣∣ ∑

a2c2�x/a1c1

x1/2/a1y
3<a2�x1/2y3/a1

P−(a2c2)>u
ba2c2≡1 (mod a1c1)

µ2(a2c2)2ω(a2c2)

�
∑

b (mod a1c1)
(b,a1c1)=1

∣∣Kl(b2, a1c1)
∣∣ x

a1c1ϕ(a1c1)
1

log x

( log x
log u

)2 ∑
x1/2/a1y

3<a2�x1/2y3/a1
P−(a2)>u

2ω(a2)

a2

� x

a1c1ϕ(a1c1)
log y
log2 x

( log x
log u

)4 ∑
b (mod a1c1)

(b,a1c1)=1

∣∣Kl(b2, a1c1)
∣∣

= x log y
log2 x

( log x
log u

)4 2ω(a1c1)κ(a1c1)
a1c1

for a multiplicative function κ. Fouvry and Michel [FM03b, equation (3.4)] show that

κ(p) = 4
3π +O(p−1/4),
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which they deduce from Katz’s Sato-Tate law for Kloosterman sums [Kat88]. We insert this back into
S1, and we relax the summation conditions a1c1 ≤ x1/10. Letting

f(n) := µ2(n)4ω(n)κ(n),
we obtain

(4.18) S1 �
x log y
log2 x

( log x
log u

)4 ∑
P+(n)≤u

(θ(n) log x+ θ′(n))f(n)
n

.

Note that
f(p) = 16

3π +O(p−1/4) (p ≤ u).

Taking Euler products, computations similar to (3.7) yield

(4.19)
∑

P+(n)≤u

θ(n)f(n)
n

�
∏

z<p≤u

(
1 + f(p)

p

)
�
( log u

log z

)16/(3π)
.

On the other hand,∑
P+(n)≤u

θ′(n)f(n)
n

=
∑
q≤u

q prime

f(q) log q
q

∑
P+(n)≤u
(n,q)=1

θ(n)f(n)
n

� (log u)
( log u

log z

)16/(3π)

by dropping the condition (n, q) = 1 and using (4.19). Inserting in (4.18), we find

(4.20) S1 � x
( log y

log x

)( log x
log u

)4( log u
log z

)16/(3π)
.

Consider now the contribution S2 to (4.17). Using the Weil bound |Kl(1, n)| ≤ 2ω(n), we have

S2 ≤
∑
n�x

θ′(n)g0(n),

where

g0(n) :=
{
µ2(n)4ω(n) if

∏
p|n,p≤u p > x1/4,

0 otherwise.
By Rankin’s inequality, we have g0(n) ≤ x−1/(4 logu)g1(n), where

g1(n) := µ2(n)4ω(n)
∏

p|n,p≤u

p1/ logu.

Note that the function g1 is multiplicative with

g(p) =
{

4p1/ logu if p ≤ u
4 if p > u.

In any case we have g(p) ≤ 4e. Assuming κ ≥ 4e, we obtain

S2 ≤ x−1/(4 logu)
∑
n�x

θ′(n)g1(n)� x
( log x

log u

)4( log u
log z

)4e
exp

{
− log x

4 log u

}
.

We now choose u = x1/(log ε)2 . Recalling that we have assumed xε
2 ≤ z, we see that this gives

(4.21) S2(x)� ε10x.

Similarly, we substitute u = x1/(log ε)2 into (4.20). Using the assumption z ≤ y ≤ x2ε and noting that
2− 16/3π > 3/10, we find

(log y)S1 � x log x
(

log 1
ε

)4( log y
log x

)2−16/3π( log y
log z

)16/3π

� ε3/10x log x
( log y

log z

)2
.(4.22)

Recalling that SC(x) � (S1 + S2)(log y)r, that r ∈ {1, 2}, and inserting the bounds (4.22) and (4.21),
we obtain

SC(x)� ε10x(log x)r + ε3/10x(log x)r
( log y

log z

)2
,

as required. �
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4.5. Conclusion. We choose

y = xε, z = xε/(log ε)2
.

With this choice, we see that y and z satisfy the assumptions of lemmas 4.1, 4.2 and 4.3. Thus, provided
D8 ≤ xε2 we may apply these Lemmas, giving

S(x)� SL(x) + SN (x) + SC(x)

� ε−κ−2xL(1, χ)(log x)r+1 + εx(log x)r +Oε(x1−η) + ε3/10x(log x)r
(

log 1
ε

)4

for some quantity η > 0 depending only on ε. Reinterpreting ε, we obtain the claimed statement (4.5),
which then gives Theorems 1.1 and Theorem 1.2.
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[FKM14] É. Fouvry, E. Kowalski, and P. Michel, Algebraic trace functions over the primes, Duke Math. J. 163 (2014),

no. 9, 1683–1736.
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