SIGN CHANGES OF KLOOSTERMAN SUMS AND EXCEPTIONAL
CHARACTERS

SARY DRAPPEAU AND JAMES MAYNARD

ABSTRACT. We prove that the existence of exceptional real zeroes of Dirichlet L-functions would lead
to cancellations in the sum ZP<I Kl(1, p) of Kloosterman sums over primes, and also to sign changes

of K1(1,n), where n runs over integers with exactly two prime factors. Our arguments involve a variant
of Bombieri’s sieve, bounds for twisted sums of Kloosterman sums, and work of Fouvry and Michel on
sums of |KI(1, n)|.

1. INTRODUCTION
Kloosterman sums. For n € N5 and a residue class a (mod n), define the normalized Kloosterman

sum as ) B
v+ av
Kl(CL, n) = % Z e( n )a

v (mod n)
(v,n)=1

where we write e(z) = e?™* and vv = 1 (mod n). These sums have a long history [Poilll Klo27],
at the intersection of algebraic geometry and automorphic forms. The Weil bound [Wei48|, Mat11]
yields [Kl(a,n)| < 2« if 32 { n and |Kl(a,n)| < 2°(M+1/2 in general, where w(n) is the number of
distinct prime factors of n. In particular, for a prime p

KI(1,p)| < 2.

Let 6,5, € [0, 7] be such that Kl(a, p) = 2cos(8,,p). The “vertical” Sato-Tate law, due to Katz [Kat8&8],
asserts that the numbers

{0ap|1<a<p}
2

become equidistributed, as p — oo, with respect to the Sato-Tate measure = sin(#)2df. The “horizontal”
Sato-Tate conjecture is the claim that the numbers

{01p|p<a}
become equidistributed with respect to the same measure, as © — co. This would of course imply that
SKI(Lp) =o(n(@) (2 o).
p<z

Unfortunately the horizontal Sato-Tato conjecture is still open, and very little is known about this
sum. Fouvry and Michel [FMOQ7] have obtained significant partial progress on replacing primes by
almost-primes: they show that

> (KI(1,n)| £ KI(1,n)) >

n<x 10g v
p\nép>x1/23’9

In particular, it follows that there are infinitely many sign changes in the set {KI(1,n),w(n) < 23}.
After further work by many authors [FMO03al [SE07, [SF09, Mat11l [Xil5al, the best know current result is
due to Xi [Xil5b] and shows that there are infinitely many sign changes in the set {K1(1,n),w(n) < 7}.
We refer to the recent preprint [Xil8] for more references and related questions.

Date: March 14, 2018.

2010 Mathematics Subject Classification. 11L05, 11N36 (Primary); 11N75, 11L20, 11M20 (Secondary).

We thank E. Fouvry for helpful remarks concerning this work, and an anonymous referee for comments which helped
improve the manuscript. Part of this work was done during a visit of JM to Aix-Marseille university, supported by the
French-Austrian joint project MuDeRa (FWF I-1751-N26, ANR-14-CE34-0009).

1



2 SARY DRAPPEAU AND JAMES MAYNARD

Landau-Siegel zeroes. In this work we study the implications of the existence of Landau-Siegel zeroes
on this question. For D > 3 an integer and x (mod D) a real primitive character, define the value

Ny = L(1, x)log D.
It would follow from GRH that 7, > (log D)/loglog D and so 1, — oo as D — oco. Unconditionally,
however, Siegel’s non-effective lower-bound [Sie35] 7, >. D~° remains unsurpassed. It is as yet not
even known if 7, is bounded away from 0; this is equivalent to the non-existence of real zeroes of L(s, x)
close to 1. On the other hand, if there were a sequence of characters x; (mod Dy), x2 (mod Ds),...
such that 7,, — 0, then many desirable consequences would follow: the existence of twin primes [HB83],
equidistribution of primes in arithmetic progressions to large moduli [FI03], primes in very short inter-
vals [FI04], or prime values of discriminants of elliptic curves [FI05] [FT13], for example.
We are interested in obtaining cancellations in the sum

> KI(1,p)

p<z

which go beyond the bound 27(z) implied by the Weil bound should such exceptional characters exist.

Theorem 1.1. Let ¢ > 0. Then there are constants A, B > 0, depending only on e, such that for
D >3, x > D? and any primitive real character x (mod D), we have

‘ Z Kl(l,p)‘ < w(x) (5 + BL(1, x) log x)
p<x
This statement is unconditional, but is only non-trivial if the value 7, is suitably small. We note that
if there is a sequence of characters with 7,, — 0, then Theorem ﬂ;fl shows that for a suitable sequence
of values of =z,
> KI(1,p) = o(n(x)),
p<x
as predicted by the horizontal Sato-Tate conjecture.
Unfortunately we do not know unconditionally the expected lower bound

(1.1) > KL, p)| > w(x).

In particular, even if there was a sequence of characters with n,, — 0, we would not be able to conclude
from Theorem that there are even infinitely many sign changes in the sequence KI(1, p). If instead
of considering primes we consider products of exactly two primes, then the equivalent lower bound
to is known thanks to work of Fouvry-Kowalski-Michel [FKM14]. For technical reasons, when
working with products of two primes we consider the variant

pq

Sa)= Y cb(;) log(pg)(log p)(log ¢) K1(1, pq)
p,q prime

where ¢ : R, — C is a smooth function compactly supported inside R* . We note that the Weil bound

implies unconditionally that S(z) < xlog? x, whilst a variant of the horizontal Sato-Tate conjecture
would suggest that we should have S(x) = og4(zlog® z).

Theorem 1.2. Lete > 0. Then there exist A, B > 0, depending at most on &, such that for any D > 3,
x > D4 and any primitive real character x (mod D), we have

(1.2) |S(z)| <4 z(logz)*{e + BL(1, x)log z}.
The implied constant depends only on the function ¢.

As with Theorem[I.1] this is unconditional but non-trivial only if a sequence of exceptional characters
exist. Thus, in the presence of Siegel zeros, we are able to establish infinitely many sign changes
of KI(1, pq).

Corollary 1.3. For some absolute constants A,c > 0, if n, < c, then every interval [z,2z] C
[DA, D14 contains two numbers (ny,ng) with w(ni) = w(ng) = 2, and K1(1,n,) K1(1,n) < 0.

Proof. Choose ¢ to be real-valued with ¢ > 1(; o), and consider the unsigned sum

A@)= > (logpqg)(logp)(log q) [KI(1,pq)| .

p,q
r<pq<2x
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We have the following lower bound, due to Fouvry-Kowalski-Michel [FKM14, Proposition 5.1]:
(1.3) A(z) > z(logz)? (x > 2).
Comparing (1.2]) and ([1.3)) yields the claimed statement. O

Notations. We denote by P~(n) (resp. PT(n)) the smallest (resp. largest) prime factor of n, with
the conventions P~ (1) = oo and PT(1) = 1. The letter p denotes a prime.

2. OUTLINE

If there is a character x (mod D) such that L(1, ) is very small, then ‘most’ primes p € [D4, D1004]

have x(p) = —1 = u(p), for some suitable constant A. By multiplicativity, this means that the
(poorly understood) Moebius function p can be well-approximated by the character x (which is periodic
(mod D), and so better understood) on integers n < D'%%4 with no small prime factors. In particular,
for n < D104

(2.1) A(n) = (p+log)(n) ~ (x *log)(n),
and so we can approximate A by the convolution of two simpler sequences. By applying the hyperbola
method, this would allow us to estimate a sum »____ A(n)a,, provided we could suitably estimate

n<x
(2.2) Z x(d) Z an log g, and Z log d Z anx(%>
d<vi rz”gm d<Ys e

for some choice of Y;,Y, with Y1V, = 2 = D04, Often one can suitably estimate such sums for
Y: = Y, = 2!/27¢, which just falls short of this requirement. Much of the work on the distribution
of primes under the assumption of a Siegel-Landau zero followed this strategy, and the key technical
challenge is then to obtain a suitable estimate for one of the sums in with Y7 or Y5 slightly beyond
z/2,

In our situation, a, = Kl(1,n), and estimates for the two sums in with V] = Yy = 21/27¢ are
obtained in essentially the same way as Fouvry and Michel [FM07]. Unfortunately we do not know
how to extend this work beyond z'/2, and so this strategy fails. However, in the convolution identity
A(n) = 3_4), 1(d)log(n/d) it is only terms with d € [1/27¢ 21/2+¢] which we are unable to handle. We

)

The presence of the term log(y/n/d) means we expect that terms with d ~ y/n to contribute less, and so
we might hope that these central values would be negligible. This is a variant of the idea that Bombieri
introduced in his asymptotic sieve [Bom76|, where terms in Az (n) = 3_,,, u(d) log?(n/d) from d < n'~¢

175,71,]

could be handled by assumptions on equidistribution of congruence sums, and terms with d € [n
could be bounded by virtue of the fact that log®(n/d) was small in this range.

Unfortunately, as in Bombieri’s work, this strategy fails if we wish to count primes. To maintain the
feature that the support is essentially restricted to numbers with no small prime factors one multiplies
by a short sieve weight, which loses a factor €2 from the two variables d and n/d. This precisely cancels
out the gains of a factor €2 coming from the range of d and from the size of log(y/n/d). Whilst this issue
might appear to be a technicality, at least in Bombieri’s work this is an expression of the fundamental
parity problem of sieve methods. If instead we counted with a weight involving a higher power of
log(y/n/d) (thereby counting products of a bounded number of primes), then this strategy can succeed.

In our case, we are interested in a, = Kl(1,n). Although in general we expect the Weil bound
IK1(1,n)| < 2 to be essentially sharp, for most integers n we expect |[KI(1,n)| is actually much
smaller than this. Indeed, the horizontal Sato-Tate conjecture would predict that for any fixed a, the
average size of [Kl(a,p)| is 2 [ 2| cos(t)|sin?(t)dt = 8/3m < 1. By multiplicativity, we might then
expect |KI(1,n)| =~ (8/37r)‘“(”) on average over n. Fouvry and Michel [FMO03bl [FM06] combined an
argument of Hooley [Hoo64] based on the identity K1(1,ab) = Kl(a2, b) K1(b2, a) (for coprime a, b), with
the wvertical Sato-Tate law, to show unconditionally that the factor 2(") can be indeed improved to
(8/3m)“(™) when considering suitable averages. Since 8/37 < 1, numbers with a larger number of prime
factors contribute less to the problematic sums, and so there is less of a loss from being restricted to a
short sieve weight. This ultimately allows us to win an additional factor of (¢'78/37)2 for these sums
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involving middle sized d, which is enough to conclude that such terms make a negligible contribution,
and so we are able to bound > _ Kl(1,p).

3. PREPARATORY LEMMAS

3.1. Level of distribution for twisted Kloosterman sums. Here we make precise the claim that
the sums in (2.2) can be estimated with Y; = Y5 = 2'/2~¢ by a variation of the work of Fouvry-Michel
[EMO7].

Proposition 3.1. Let ¢ > 0 be fized. There exists n = n(e) > 0, such that for any real x > 2, positive
integer D < x", all characters x (mod D), and any smooth function ¢ : R% — C compactly supported
inside R’ , we have

(3.1) 3 ‘ 3 gb(g)x(n)Kl(l,n) Cep .

q<z'/?~= n=0 (mod q)

Remark. Note that the case D = 1 of the previous statement is a weaker form of Proposition 2.1
of [FMO07].

Proof. We may plainly assume that the sums are restricted to (¢, D) = (n, D) = 1. The bound we claim
is a variant of Proposition 2.1 of [FMO07], which is based on the Kuznetsov formula [Kuz80| [DI83], the
Weil bound for Kloosterman sums, and a uniform bound 6 < 1/4 — ¢ towards Ramanujan-Petersson,
which was first due to Luo-Rudnick-Sarnak [LRS95].

The difference in our case is the presence of the character. Recently, Blomer and Mili¢evi¢ [BMI15]
have succeeded in analysing such sums in the context of modular forms with non-trivial nebentypus;
another argument was used in [Dral7], which is simpler for our purpose here. We will rely on work of
Topacogullari [Topl5] to estimate the spectral sums.

In our case, we will use the notations and normalization described in section 4.1.2 of [Dral7]. Our aim
is to apply the Kuznetsov formula [Dral7, Lemma 4.5] for the group I'g(¢D), nebentypus y (mod D),
with cusps oo and 1/¢, and parameters m < D, n < 1. For each ¢ in the left-hand side of ,
Lemma 4.3 of [Dral7], with the choice of scaling matrices (depending only on ¢ and D) given there,
yields

X(n) K1(1, ) = x(¢)e(=7/D)Swc1/¢(D, 1,0V D).
Let k € {0,1} be such that x(—1) = (—1)®. The Kuznetsov formula with test function (t) =

o(4m/(tx))\/ A/ (tx) yields
X@e@D) > o(2)xm K1) = Va{H + €+ M),

n=0 (mod q)

where

H= Z Z ¢(k)r(k)pf700(D)pf,l/q(l)v

k> fe€Br(aD,x)

k=r (mod 2)
L[> ) ——
e=S — [ Y D Lo,
c%g 4m v/—oc COSh(ﬂ't) Pe, ( )pc,l/q( )

M= > w(tf))Pf,oo(DWf,l/q(l)-

_cosh(mty
feB(gD,x)

Split M = My 4+ My where M, is the contribution of those f with ¢y € R, and My is the remainder
contribution, which consists of f with t; € [—i/4,i/4]. Consider first Ms. Using the bound [¢(tf)| <
2211 we obtain by the Cauchy-Schwarz inequality

1/2
Mo (D0 @®llopaaD)F) (X (1))
feB(aD,x) feB(gD,x)

We have gv/D < z1/27e+1 < 21/2 5o that Lemma 2.9 of [Top15] may be applied to both sums, which
yields, as x — oo,

1/2

(3.2) My < oW (\/ZiD)M{l + \/qﬁ} < 2 (z/q*)%.
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The contribution of £, H and M; is handled by similar standard arguments |[DI83| page 267], using
instead Lemma 2.8 of [Topl5]. We obtain

(3.3) H+E+ My < 2°VDDYV2 < g
as ¢ — 00. Grouping our bounds (3.3 and (3.2)), we find
Z ’ Z ¢(g)x(n) KI(1, n)‘ Loy wlHNE g (1/2-20),

g<z'/?2—= n=0 (mod q)

By work of Kim-Sarnak [Kim03], we are ensured that § < 7/64 < 1/4, and therefore our claimed bound
follows if Q < /27 and 0 < 1 < 3¢/16. O

From Proposition and the convolution p?(n) = Zdzm w(d), we deduce the analogous bound
with n restricted to square-free numbers.

Corollary 3.2. In the setting and notations of Proposition[3.1, we have

(3.4 S X w0 K| <o ot

g<z1/2-¢ n=0 (mod q)
for a possibly smaller value of n > 0, but depending on € at most.

3.2. Sieve weights. To control the terms around the central point d € [x'/27¢, 2/2+¢] we will intro-
duce a short sieve weight to maintain the feature that our sums are essentially supported on integers
free of small prime factors. This is also crucial for carrying out the approximation as effectively
as possible. We recall the construction of the S-sieve from [FI10], and a few of its relevant properties

for our application. Let
0(n)=> &

d|n

be an upper-bound S-sieve of level y and dimension xk > 0, for the primes less than z. The parameters vy,

z and k will be chosen later to be small powers of x with the condition that 22 < y. (We will ultimately

choose z = 25/(°8)* and y = 2°.) In particular, we have & = 1 and |¢4] < 1; (&) is supported on

integers up to y free of prime factor > z, and we have 6(n) > 0 for all n > 1. Moreover, for any
multiplicative function f with f(p) € [0, k], we have

§af(d) fp)\ 7t
(3.5) gu«}g(up) .

For some technical simplifications, we will work with the smoothed version
1S ny n
o' (n) := ngd log (3) - dz|: 9(8)A(d).

Note that 6'(n) =logn if P~ (n) > z.
The key property we use of 8’ is the following estimate on averages of multiplicative functions weighted
by the sieve weight.

Lemma 3.3. Let the multiplicative function f be supported on squarefree numbers, with 0 < f(p) < k.
Then

(3.6) Y 0wt <z ] (1 + f;p)).

n<x z<p<lz

Proof. Denote S the sum on the left-hand side of (3.6). By definition of 6’, we have

$=35" fmo(2)logp < 3 f)0(n) Y f(p)logp
n<z pln p n<x p<z/n
by positivity of the summand. Therefore,
S« Z 70(707;]0(”) <z Z 79(n)nf(n)

n<x Pt(n)<z
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Opening the convolution in 6(n), we arrive at

S<ez Y. Lj;(d) > @

Pt (d)<z Pt(n)<z
(3.7) (m, d)_
—1
:xH( f(P) Z <1+f(P)) .
p<a P piase pld b
By (3.5)), the sum over d above is <, [[,, (1 + fp )) , and our claimed bound follows. O

4. ARGUMENT FOR THE UPPER BOUND

In what follows, we let € > 0 be fixed, and 1 > 0 be a small parameter, to be chosen in terms of €.
We assume that D < z".

4.1. Initial setup. For a positive integer r, define the arithmetic functions Ar(n) by
1 )
NI

We note that Ay(n) = A(n) and Ay(n) = Ag(n) — A(n)logn. On squarefree n, Ay is supported on
primes, and Ay is supported on products of exactly two primes.

Let ¢ be smooth bounded compactly supported function approximating the characteristic func-
tion 1o 4] of the interval [0, 1] from below, such that ¢ and 1y ;; differ only on [0, 6] and [1 — ¢,1], for
some small constant § > 0. If we can show that for any € > 0

(4.1) ‘ZN ( ) (log n)A(n) KI(1,n)| <4 exlogz + O-(zL(1, y) log? z),

then, using the Weil bound to control the contribution from n < dz or n > (1 —§)z, we see from partial
summation that

‘Z KI(1, p)‘ < §7(x) + Os(em(x)) + O5.-(L(L, x) log ).
p<z
Thus, by choosing ¢ small and then e sufficiently small in terms of d, we see it suffices to show (4.1]) for
any fixed € > 0.
Since p?(n)A(n) is only supported on primes, we have

n ~
) () togmAmKILn) = 30wt (mo(Z)0 AMKIL ) +0. (=)
(n,D)=1
For products of two primes, we note that for all z > 2,

(4.2) Yoo () <,

n<x
n#pq for all p#gq,
p,q prime

with the main contribution arising from pairs n = pg? (p, ¢ primes), while
(4.3) Z Ay (n) < zloglogx

n<x
(n,D)>1

for 2 < D < z. Thus
Z ¢( ?) (10g pa) (10g p) (log 4) K1(1, pa)

P,q prlme

= Y o(*)0(pa)(10gp)(log @) KI(1, pg) + Ofa(log ) (10g 2))

(4.4) :% 3 pz(n)(b(g)@'(n)]\g(n)Kl(l,n)+O(x(logx)(logz)).

(n,D)=1
We have used both (4.2)) and (4.3)) in the last line.
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Thus, we see that to establish Theorem [I.I] and Theorem [I.2]it is sufficient to show for every ¢ > 0,
every smooth compactly supported ¢ and each r € {1,2} that

(15) S) =5 = Y wmo()0 A () KILn) <4 erlog” o+ 0.(xL(1, ) log ™ ),
(n,D)=1

where D and x satisfy the hypotheses of Theorem and x is any real primitive character (mod D).
Let

v(n) = (uxpx)(n) = > p(u)u()x(v).

We write
- 1 ab\"
(4.6) A = 57 3 vibie) (108%) .
so that for r € {1,2},
1 9 abey , ab\"

(4.7) S@=— > u (abc)¢(7)9 (abc)y(b)x(a)(log ?) KI(1, abe).

(a,b,c)EN?®

(abe,D)=1

We split the sum over (a,b,c) into b > 1 or b = 1 and min{a,c} < 2'/2/y%, or b = 1 and min{a,c} >
x'/2 /4%, This gives

(4.8) r2"S(z) = Sp(z) + Sy(x) + Se(z),
with
_ s aero( ) abyr
(4.9) Si@)= > u (abc)¢( . )9 (abc)u(b)x(a)(log c) KI(1, abe),
(a,b,c)EN?
b>1
(abe,D)=1
_ 2 % / Q "
(4.10) Sv(@)= S u (ac)(b(x)ﬂ(ac)x(a)(logc) KI(1, ac),
(a,c)EN?
min{a,c} <z /y?
(ac,D)=1
— 2 % / g "
(4.11) Sc(z) = Z 1] (ac)¢( - )0 (ac)x(a)(log c) Kl(1, ac).
(a,c)EN?
min{a,c}>vz/y*
(ac,D)=1

We can control Sz (z) by L(1,), since u?v is supported on integers with all prime factors satisfying
x(p) = 1 and @’ is concentrated on integers free of small prime factors. Thus if L(1,y) is small, we
expect the support to be a lacunary sequence and so the sum S, (z) to be small.

We can control Sy (x) by the level of distribution estimates of Section since the sum over one of
a or ¢ is a long sum.

Finally, S¢ is the contribution near the central point, and we will show this is small since | log(a/c)| <
6logy + Ok(1), which is small compared with logz, a is resticted to a short range on the logarithmic
scale, and Kl(1, n) is typically small on numbers with many prime factors.

4.2. Bounding the lacunary sum S;,. We begin by bounding Sy (z) in terms of L(1, x).
Lemma 4.1. For all small enough € > 0, and D® < 2= <z< yl/(logE)Q, we have
Sp(z) <4 z(logz)” (67E72L(1, x) logx + s),

Proof. We note that for squarefree n, we have |v(n)| = (1xx)(n), and we recall that §'(n) = (A*8)(n).
Thus, bounding the summand of Sy (z) and letting d = ac, and then expanding the definition of 6, we
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find

Sp(x) < (logz)™ > (1xx)(b)0 (bd)7(bd)* p(bd)?
db<lx
b>1

= (loga)” Y (1xx)(D)8(be) A(f)7(bef)*ulbef)*.
bebf><§m

When f > z is prime we see 0(be) = 0(bef). Thus the contribution from f > z can be bounded by
(4.12) (log )™ > (1% x)(b)0(bg)* (bg)T(bg)*.

bgkLx
b>1

The contribution from f < z can be bounded by

(4.13) (loga)” STA(S) ST (1% ) (B)6(be)ya® (be)r(be)?.
<z belf<>1i/f

These are precisely sums of the type considered in Section 24.7 of [FI10]. Indeed, there it is established
[FT10, equation (24.58)] that if D® < z <y < Y/® and p is a completely multiplicative function with
0 < p(p) < K/6 then

Y
S (1% ) (8)6(ab)plab) < —
logY
ab<yY
b>1
where t = logy/log z. Since p?(n)7(n)k < 2™ (k = 2,4), we may apply this to the bounds (4.12)
and ([4.13]) above, and find that provided D% < z <y < z'/9 and k > 6 x 2%, we have

)

log Y ) K/241

(L(l, X)logY + e_t) ( Tog 2

B logw Kk/2+1

r+1 4 " !

(log z) bqgw(l *X)(0)0(bg)7(bg)" < z(log ) (L(l’ X)logz +e ) (logz) ’
b>1

bﬁ>n/2+1 A(f)

og2)” 30 Ala) 3 (1+x)(B0e)r(be)? < (logr) ! (L(1 1) loga +*) (1o N

<z bekLa/f
b>1

gz

< z(logz)" (L(l, X) logx + e*t) (Eﬁi) R/Q.

Putting this together, we find

log z\ /2+1
Sr(z) < z(logz)" (L(l, x)logz + e_t) (]oiz) ’

If 25" < 2 < y1/(08)* then this gives
(4.14) Sp(z) < z(logz)” (s*“*QL(l, x) logx + 6),
as required. O
4.3. Bounding the non-central sum Sy.
Lemma 4.2. Let y > 2. Then there is a constant n > 0 depending only on € such that
Sy (z) <. '™

Proof. Denote by xo(n) the principal character (mod D). Opening the summation in 6’(ac), we obtain
2

Sx@=> Y | Y (2 ) (log (L)) (tog 5 ) K1, m)
d<y a</z/y3 n=0 (mod [a,d])

w33 X #me()xm)(loe (%))T(log YK, m)|

d<y c<y/z/y? n=0 (mod [c,d])

(415) < s sup D rlgoga) | Y pEme( % )xa(n)(log(n/2)) Ki(1m)|.

x1 (mod D) 0<j<r+1 4<vz/y n=0 (mod q)
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Recalling that we assume y > ¢ and applying Corollary we obtain

(4.16) Sy (z) <zt

for some 71 depending at most on ¢. O
4.4. Bounding the central point sum S¢.

Lemma 4.3. Let 25 <z< yl/(log5)2 and y < z¢. Then we have

1ogy)2

Se(z) < ez(log ) + 32 (logz)" (log .

Proof. Recall that the sum S¢(z) is defined in (4.11)). By construction, for all (a,¢) in the summation
range, we have |log(a/c)| < logy.
Therefore, by the triangle inequality and the support condition on ¢, our task is to bound

(logy) 3 pP(ac)(ac)[KI(1,ac)].
z/y’<a<ay®

Following an idea of Hooley [Hoo64], we let a parameter u € [y, /4] be given, and decompose accord-
ingly
a=aias, Pt (ay) <u, P~ (az2) > u,
and similarly let ¢ = cico. Notice that
0’ (ac) = 0(ayc1) log(agez) + 6’ (arc1) < O(aicr)logx + 6 (arcr)

since P~ (agcz) > u > z. We write

(4.17) Z uQ(alagclcg)G'(alagclcg) IK1(1, a1azc1c0)| = S1 + Sa,
ajasc)cokLkx
xl/z/y3<a1a2<<9c1/2y3
Pt(aic1)<u<P~ (azea)

1/10 1/10

where S is the contribution of a1c1 < , and Sy is the contribution of aic; > =

Concerning S, we have

Si< Y praren){0(arer)loga + 60 (a1c1)}T (a1, 1),

arcy <z/10
Pt(aic1)<u
with
2
T(ay,c1) = E u?(aze2) |KI(1, ayagerca)| .
azcoLx/aicy
P~ (azc2)>u
V2 4B <aras<<zt/?y?

By a reasoning identical to page 277 of [FEMO03b], for a;c; < 21/10 we have

T(al, Cl) S Z |K1(b2, (1101)’ Z ,LL2 (a262)2w(a2c2)
b (mod aici) azcaLx/arcy
(byarci)=1 22 fary® <as<z'?y? Ja;
P~ (azc2)>u

basca=1 (mod aici)
x 1 /logxz\2 2v(az)
< Z |K1(b27a101)’ arcrp(ac )loga:<lo§u) Z a
b (mod ajcy) ragiare 22 Ja1y® <ar<a'/?y® fax 2
(b,ar1cy)=1 P~ (a2)>u

T logy <logx)4 ,
KI1(b%, a1c
arcip(arcr) log? z \logu Z ‘ ( 1 1)|

b (mod aicy)
(b,arc1)=1

_xlogy (10g£>42“’(‘““1)ﬁ(a101)
B log? 2 \logu aicy
for a multiplicative function k. Fouvry and Michel [FMO03b] equation (3.4)] show that
4
r(p) = o~ + 0%,

" 3
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which they deduce from Katz’s Sato-Tate law for Kloosterman sums [Kat88]. We insert this back into
Sy, and we relax the summation conditions a;¢; < /9. Letting

F(n) = P ()4 k(n),

we obtain

(4.18) S, < xlo;gy <logx 4 Z (0(n)logx + 0’(n))f(n).
log® z \logu Pi<u n

Note that

16 -
fo)=2-+0™")  (p<u).
Taking Euler products, computations similar to (3.7)) yield

(4.19) Y i) (Hf;zv)) - (logU)w/(Sﬂ).

n log 2z
Pt(n)<u z<p<u

On the other hand,
ST SIRICIE Tl - o

n log
Pt+(n)<u q<u q Pt(n)<u &
q prime (n,q)=1

by dropping the condition (n,q) = 1 and using (4.19)). Inserting in (4.18]), we find

logy) <log:c)4(logu> 16/(3)
logz/ \logu/ \logz '

(4.20) Sy < x(

Consider now the contribution Sy to (#.17). Using the Weil bound |KI1(1,n)| < 2¢(™ we have
S < Z 0’ (n)go(n),

n<x
where

go(n) := {uQ(nMW(n) if len,pﬁup > m1/4,

0 otherwise.
By Rankin’s inequality, we have go(n) < z~1/(*1°8%) g, (n), where

gi(n) = ()4 I p'/'=n

pln,p<u
Note that the function g; is multiplicative with
gpt/logu  if p <y
9(p) = {4 if p> w.

In any case we have g(p) < 4e. Assuming k > 4e, we obtain

1 4/1 de 1
8o 505 3 ) ) (250 (952 e { - L8
= logu log = 4logu

We now choose u = z1/(8¢)°, Recalling that we have assumed 2 < z, we see that this gives
(4.21) Sy(z) < e'%2.

Similarly, we substitute u = 2/ (1082)* into ([@.20). Using the assumption z < y < 2% and noting that
2 —-16/3m > 3/10, we find

1\4 /logy\ 2-16/37 /log yy 16/37
(logy)$ < xlogm(log E) (logx) (logz)

bﬂf
logz/ °
Recalling that Sc(z) < (S1 + S2)(logy)”, that r € {1,2}, and inserting the bounds and (£.21)),
we obtain

(4.22) < /10y 1oga:(

logy ) 2
log =z
as required. O

Se(z) < ez (logz)” + &3/z(log x)r(
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4.5. Conclusion. We choose

y = x€7 5= xe/(log£)2.

With this choice, we see that y and z satisfy the assumptions of lemmas .1} [£:2|and [£:3] Thus, provided
2
D? < z° we may apply these Lemmas, giving

S(z) < Sp(z) + Sn(z) + Sc(x)
4
< e " 22L(1,x)(log z)™*! + ex(log )" + O (x27) + ¥/ P (log )" (log é)

for some quantity n > 0 depending only on £. Reinterpreting &, we obtain the claimed statement (4.5]),
which then gives Theorems [I.I] and Theorem [T.2}
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