CENTRAL VALUES OF ADDITIVE TWISTS OF MAASS FORMS L-FUNCTIONS

SARY DRAPPEAU AND ASBJORN CHRISTIAN NORDENTOFT

ABSTRACT. In the present paper we study the central values of additive twists of Maafl forms L-series. In
the case of the modular group, we show that the additive twists (when averaged over denominators) are
asymptotically normally distributed. This supplements the recent work of Petridis—Risager which settled an
averaged version of a conjecture of Mazur—Rubin concerning modular symbols. The methods of the present
paper combine dynamical input due to Bettin and the first named author with the new fact that the additive
twists define quantum modular forms in the sense of Zagier. This latter property is shown for a general
discrete, co-finite group with cusps. Our results also has a number of arithmetic applications; in the case of
Hecke congruence groups the quantum modularity implies certain reciprocity relations for twisted moments of
twisted GLg2-automorphic L-functions, extending results of Conrey and the second named author. In the case
of cuspidal Maafl forms for the modular group, we also obtain a calculation of certain wide moments of twists
of the L-function of the Maafl form.

1. INTRODUCTION

1.1. Central values. Let I' C SL(2,R) be a discrete, co-finite group with cusps, and ¢ : H — C be a Maaf}
form for I'. To ¢ we associate the sequence (a(n))nzo of its Fourier coefficients, by means of which we form

the L-function

= a(n)

L(¢,s) == Z =172

n=1
initially convergent on same half-plane, and analytically continued. The normalization here is such that
when T' = T4(NNV) is a Hecke congruence subgroup, the Ramanujan-Peterson conjecture [30, p. 95] pre-
dicts |a(n)| < Con=/?*¢ for ¢ cuspidal, all ¢ > 0 and some C. > 0. This L-function satisfies a functional
equation relating s to 1—s |18]. When I is a Hecke congruence subgroup, and ¢ is a Hecke newform, then L(¢, )
has additionally an Euler product factorization |30, chapter 5.11]. It is an instance of a rank 2 L-function in
the Selberg class, and it is conjectured that all L functions in the Selberg class of rank 2 over QQ can be obtained
in this way [46]. This statement for Artin L-functions of degree 2 representations is a particular case of the
Langlands conjectures.

To simplify the exposition we assume here that I' = T'o(IV) is a Hecke congruence subgroup. The present

work concerns the analytic properties of the twisted L-value

L(p,s,x) := Z %e

n=1

2minw

as a function of x € R. The sum converges uniformly on compacts inside {Re(s) > 1}. At the edge Re(s) =1
of this half-plane, the regularity with respect to x of L(¢, s, z) is an old theme, see for instance [56], and the
references in [3].

When z € Q, the map s — L(¢, s, ) has an analytic continuation to C minus a possible simple pole at s = 1.
This meromorphic continuation has a functional equation relating (s, a/q) to (1—s,—a/q) for N | g and aa = 1
(mod ¢q) [37, egs. (A.10)-(A.13)] (a more complicated relation holds in cases when N t ¢). We note that one
important special case is s = % =+ s4, where sy is the Laplace eigenvalue associated with ¢. It was shown by
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Lewis and Zagier that the map x — L(¢, % + s4,x) extends to R and enjoys distinctive analytic properties,
which generalize in a way those of the Eichler-Shimura map, see [12/13}/39]. In general, for Re(s) > 1/2, it
seems possible to extend L(¢, s, z) to a continuous function of € R outside a set of zero Lebesgue measure
by arguments similar to the case Re(s) =1 (see [7]), but this breaks down at Re(s) = 1/2.

We are interested in the central values

Ly(z) == L(¢,1/2,2) (x € Q).

In the situation when ¢ is associated to a holomorphic cusp form f of weight k, meaning that ¢(z) = y*/2f(2),
then there is a constant cf such that

(1.1) —cf/ f(= z)*/ 21 4z

In particular, for k = 2, the value Lg(x) is essentially the modular symbol (x)s associated to f. On the other
hand, by orthogonality relations, the central L-value of the multiplicative twist

(1.2) L(f®x,s Z - 1/2

by a primitive Dirichlet character x (mod ¢) can be expressed in terms of a weighted average of (a/q); with a
varying over classes mod ¢ (see Proposition . In turn, when f is of weight 2 and is associated to an elliptic
curve, then it is expected that the value L(f ® x, 1/2) encodes geometric information on the underlying elliptic
curve, in particular its rank, see |41, Proposition 2.2]. Motivated by conjectures about elliptic curves, Mazur
and Rubin [41] were led to conjecture, among other phenomena, that the multisets

Ly(a/q)
1.3 Dylq) = { 724 a e (z/qz)* |
(1.3) »(q) Togq)i/? - (Z/qZ)
become distributed as ¢ — oo according to a centered normal law, when ¢ is a weight 2 form associated to an
elliptic curve |41, Conjecture 4.3]. We believe that this holds in general for any Maaf} form.

Conjecture 1.1 (Additive twists conjecture). Let ¢ be a Hecke-Maafi cusp form for To(N). Then the multi-
sets Dg(q) become asymptotically normally distributed as ¢ — oo.

Note that this would be in contrast to the expected log-normal behaviour of central values of families of
L-functions having an Euler product as in Selberg’s Central Limit Theorem, see for instance [33}50}/53].

Regarding this conjecture, the furthest achievement so far is a power-saving estimate for the second mo-
ment [9], which lies at the edge of current known techniques in analytic number theory. On average over g,
however, the corresponding statement is now known for forms ¢ which are associated with a holomorphic form,
by Petridis and Risager [48] and the second named author [43].

Theorem 1.2 (Additive twists on average for holomorphic forms, [43|). Let f be a holomorphic Hecke cusp
form of integer weight k for T' discrete co-finite with cusps, and ¢(z) = (Im 2)¥/2 f(2). Then the multi-sets

Lo(a/a) .
g @< @ras e}

become asymptotically normally distributed as ¢ — oc.

The proofs rely on certain twisted Eisenstein series introduced by Goldfeld [23], [24] whose analytic properties
(poles, growth on vertical lines, ete.) are studied using analytic properties of automorphic resolvent operators (a
technique pionnered by Petridis-Risager [47]). The holomorphicity seems to be crucial in the key automorphic
completion-step, which enables one to express the non-automorphic Eisenstein series of Goldfeld in terms of
automorphic Poincaré series (we refer |43 Section 2] for more details on the method of proofs). More precisely,
one does a contour shift in the integral representation using crucially that the integrand is holomorphic.
In return the methods apply to general Fuchsian groups of the first kind.

In the two special cases k = 2 and N = 1, another proof of Theorem was obtained respectively by Lee-
Sun [38] and by Bettin and the first named author [6]. Both proofs ultimately rely on the “quantum modularity”
property of Ly in these two cases, in the sense of Zagier [60], by which we mean that for any v € I'o(N), the
map

(1.4) hy @ Lg(ya) = x(7)Lg ()
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extends to a map on R\ {7 'oo} which is constant when k& = 2 |38, Section 1.3], and Hélder-continuous with
a uniform exponent for N = 1 [6, Lemma 9.3]. It was also shown in [4] that this property holds when ¢ is a
certain non-holomorphic Eisenstein series of level 1, for which Ly (x) is the Estermann function. This raises
the question of the regularity of h, in general.

1.2. Statement of results: regularity and growth of h, in general. In the present paper we study the
analytic properties of the maps h, in the general context of a Maafl form on a Fuchsian group of the first kind.

Let I' C SL(2,R) be a Fuchsian group of the first kind with cusps, and let ¢ be a Maaf} form of weight k € Z>¢
and multiplier x for T'. The precise definition will be presented in Section [2| below. Let C(T") C RU {oo} be
the set of cusps of I'. For any v € I', we consider the map h., : C(I') \ {o0,7 oo} — C given by

hy(x) := Lo (vx) — x(7) sgn(z — v~ '00)" Ly ().

Theorem 1.3 (Regularity of h,). The map h~ extends to a (1/2 — ¢€)-Holder continuous function of x in R\
{r7 oo}
Theorem 1.4 (Growth of hy). If Ay denotes the eigenvalue of ¢ and sg(l — sy) = Ay, then there ewist
constants Ay, A_,By,B_ and C € C such that, as |x| — oo with sgn(z) = £1, there holds

ha(x) = X(7)(Ax |2 = 77 00| ™ + By |z — 7~ +O) 4 Opey(l2I7175), (Np # 1/4).

1OO|1—S¢
If Ay = 1/4, this estimate holds with the term involving By replaced by By |x - 'y_loo|1/2 log ’a: — 7_1oo|. We
have Ay = By =0 if ¢ is cuspidal.

Before the present work, Theorems |1.3| and were known in essentially two cases:

— For forms of weight 2, the map h, is constant. This is a well-known property of modular symbol,
see [41, Lemma 1.2.(iii)].

— When ¢ is associated to a holomorphic form of even weight, this was proved in |6, Lemma 9.3] in the
special case I' = SL(2,Z) and in |42, Theorem 4.4] in full generality. In these cases, the maps h. are
bounded.

— When ¢ is the central Eisenstein series of level 1, this was proved in [4, Lemma 10] using a functional
equation for the associated Dirichlet series.

In all other cases, Theorems [1.3] and are new. Compared with these earlier works, the main point of
Theorem [1.3]is that it does not require holomorphicity, nor does it use the functional equation for the associated
L-function. In particular it does not require the presence of Hecke involutions.

1.3. Normal distribution for SL(2,Z). For reasons that will be clarified below, we restrict to I' = SL(2, Z)
in this section. In this precise case, it was shown in [6] using dynamical methods that a statement of the kind
given by Theorem |1.3|yields the limiting distribution for the multisets Dy(g) on average over g. We will deduce
the following, which proves the averaged version of Conjecture for T' = SL(2,2).

Theorem 1.5 (Additive twists on average for SL(2,Z)). Let ¢ be a Maaf$ cusp form for T' = SL(2,Z). Then
the multisets Lo(a/a)
o\2/9q) . x }
— 7/qZ <
{9 € @/ a<Q
become distributed, as QQ — 0o, to a centered normal law.

The cuspidality hypothesis is not essential to the method, however the non-cuspidal Maaf forms for SL(2, Z)
are essentially spanned by an Eisenstein series, and for this series we can reduce to the case of the Estermann
function treated in [6, section 9.2].

Given a finite orthogonal family (¢;) of Hecke-Maafl cusp forms for SL(2,Z), we obtain more generally the
joint convergence to independent normal distributions of the values (Lg,(a/q));, see Corollary below.

On the other hand, we believe the restriction to I' = SL(2,Z) to be artificial. More precisely, we conjecture
the following.

Conjecture 1.6. The statement of Theorem [I.5 holds when T is replaced by an arbitrary Fuchsian group of
the first kind with cusps, and ¢ is a Maaf cusp form for T' of integer weight.

As we have mentioned already, this conjecture is known when ¢ is associated with a holomorphic form. At
the present time we lack a proper analogue of the methods of [6,[38] which would allow to handle the general
case. This is the subject of work in progress of Bettin, Lee and the first named author.
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1.4. Arithmetic applications. In the special case where ¢ is a Hecke-Maafl form and ' = Tx(V) is a
congruence group, the additive twists Ly(x) are connected to the central values of the twisted L-functions
L(¢,x,1/2) using orthogonality of characters (known as the Birch—Stevens formula) alluded to above. Here

Ag(n)x(n)

nS

L(¢,x,8) = )

n>1

, (Res > 1),

and elsewhere by meromorphic continuation, where x is a Dirichlet character and A\g(n) = a(n)\/n denotes the
n-th Hecke eigenvalue of qﬂ Using this connection we get a number of applications to twisted L-functions of
Theorems [[3] and

1.4.1. Reciprocity formule. In an unpublished preprint [15], Conrey proved a certain “reciprocity relation” for
twisted second moments of Dirichlet L-functions relating the following two quantities;

(1.5) Yo ILOGL/2PX(O ~ Y LG 1/2)Px(-p),

x mod p x mod ¢

where L(x,s) = >, >, x(n)n~° for Res > 1 and elsewhere by analytic continuation. The results were later
extended by Young [58] and Bettin [4]. This can be seen as the GLg x GL;-case (with the GLa-form being
an Eisenstein series) of the phenomena of spectral reciprocity investigated in [1], [10], [11]. The quantum
modularity results we obtain resolve completely the GLa x GL; (over Q) case and we obtain a relation of the

type

Y TOLG X 1/2x(0) ~ Y T(X)LS X, 1/2)x(-p),

x mod p x mod N/

where ¢ is a (GLy) Hecke—Maafl newform of level N. We refer to Theorem [8.3| (cuspidal case) and Theorem
m (Eisenstein case) for the exact statements. In the special case of ¢ being cuspidal of level 1, we get the
following result.

Corollary 1.7. Let ¢ be a Hecke-Maaf cuspidal newform for T' = SL(2,7Z) whose Fourier coefficients satisfy
ag(—n) = €pay(n) with ey € {£1}. Then for any pair of primes 0 < p < { and any choice of sign n € {1},
we have

(1.6) = YL X 1/2)x(0)

B nﬁ Z*,n T(Y)L(Qﬁ, X5 1/2)X(p) = M¢ﬂ7 + qu,s((p/e)lie +p971+5)’
x mod £

where

_€¢L(¢71/2)7 77:+1a
Mgy = {O o
) n= 717

and 0 = é 1s the best bound towards the Ramanujan—Petersson conjecture for Maafl forms due to Kim and
Sarnak [34)]. Here the decorations on the sums means that we restrict to primitive characters with x(—=1) = n,
and L(¢, s) denotes the (standard) L-function of ¢.

Remark 1.8. When ¢ is not cuspidal, a similar statement holds with an altered right-hand side. Choosing ¢ to
be the Eisenstein series E7 ; (2, 1) defined in Section ﬂ below, we find that a(n) = d(n), the divisor function,
for n > 0, and therefore, for all x (mod p) primitive,

T(OL(¢, X, 1/2) = T(X)L(x, 1/2)* = i*/p|L(x, 1/2)|*

where a € {0,1} depends on x(—1). In this way we can deduce a form of Conrey’s reciprocity formula [15]

alluded to above (|1.5)).

IWe reserve the notation As(n) to cases when ¢ is a Hecke eigenform.
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1.4.2. Wide moments of Dirichlet twists. In the case of ¢ a Hecke-Maafl cuspform of level 1, we not only
obtain the normal distribution result for the additive twists in Theorem but furthermore a convergence of
moments (see Proposition. Using the Birch—Stevens relations this implies certain new moment calculations
for the twisted L-functions L(¢, x, 1/2) which have not been obtained by the standard “approximate functional
equation”-approach. This fits into the framework of wide moments of families of GL1-twists of automorphic
L-functions as in [44], [45], [5], |43} Corollary 1.9] (see also Section [§ below for more background). We state
here the moment calculation in the simplest version and refer to Corollary for the most general statement
which is a rare example of a moment calculation with a huge amount of cancellation.

Corollary 1.9. Let ¢ be a Hecke-Maaf cusp form for I' = SL(2,Z) and n € 2N>q. Then we have as Q — 00

(1.7) > # > T vetxi)L(4,xi,1/2) = P(log Q)Q* + 04.(Q%°),
0<ec<@Q <p( ) xi mod ¢, i=1
1<i<n:
X1 Xn=1

for some § > 0, where P is a degree n/2 polynomial with leading coefficient
2"/2(n/2)|L(sym? ¢,1)"/2,

Here 1 denotes the principal character (of the relevant modulus suppressed in the notation), and the factors
vy(x) are certain local weights essentially of size c'/? for x mod c.

We refer to Corollary and equation (8.4) for precise expressions of v4(x). When x (mod ¢) is primitive,
then we simply have v4(x) = 7(%).

Remark 1.10. Assuming the Lindel6f bound L(¢, x,1/2) <4 ¢© for x mod ¢, together with the Ramanujan—
Petersson conjecture As(n) <4 n° one gets the “trivial” bound Oy (Q"T11¢) for the left-hand side of
(using also the bound vg(x) <. ¢/ coming from which is essentially sharp). Thus we see that for
n > 1, there is massive cancellation in the sum. In particular, it appears to be very hard to obtain such a
result using an “approximate functional equation”-approach (as in e.g. [9]).

1.5. Structure of the paper. In Section [2] we set the background and main definitions of the automorphic
forms we will deal with. In Section [3| we establish the quantum modularity for the discrepancy function h.
associated with Eichler integrals. In Section E|, we investigate the behaviour at infinity of h. for the Eichler
integrals. In Section we transfer the quantum modularity and behaviour at infinity, from the Eichler
integrals, to the actual central L-values, which will prove Theorems and In Section [6} we apply our
main results to a few examples in congruence groups: Hecke-Maafl cusp forms, and real-analytic Eisenstein
series. In Section [7] we deduce the convergence in law in Theorem In Section [8] we deduce the arithmetic
applications to reciprocity formulae (Corollary and wide moments (Corollary . Appendix [A| contains
two lemmas about hypergeometric functions which are used in Section

1.6. Notation. We use indistinctively the symbols X = O(Y) and X <« Y to indicate the existence of a
constant C' > 0 such that |X| < CY. The value of C' may depend at most on variables which are either
indicated in subscript, as in e.g. X <. Y, or mentioned in the immediate context. The symbol X < Y
means X < Y and Y <« X. The letter € denotes an arbitrarily small quantity, which may differ between
occurences.

2. BACKGROUND

2.1. Maa#f3 forms. For a detailed account of the following material we refer to |29, Chapter 2], |18] Section 4]
as well as the classical sources [52], [54], [32]. Fix I" C SL(2,R) a discrete, co-finite subgroup with a cusp at oo,
a character x : I' — C trivial on all parabolic elements of I' and an integer k € Z>o. Denote by C(T') C P}(R)
the cusps of T, and for z € C(T) let ', be the stabiliser of x. For x € C(T'), a scaling matrix o, for z is any
matrix which satisfies o 'z, = {(1 7)}. We assume o, = id (this can always be ensured by conjugating I
by a diagonal element).

Let k € Z>o. We denote by A(T', x, k) the vector space of all weight k automorphic forms of T' with
nebentypus x, i.e. smooth maps ¢ : H — C satisfying:

(Hy) Forall v € T and z € H, ¢(v2z) = uy(2)9(2), where

Jjv,z)  cz+d
iz ez +d|

(2.1) Uy (2) = jw(z)kx(’y), J(2) = |
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Notice that if —id € T’ then we must have the compatibility condition x(—1) = (=1)* for A(T, x, k) to be
non-trivial. We borrow the analytic notations from [18]. Let

k 0 k 0
(2.2) Rk=§+(2—2)£7 Ak—§+(z—z)a,

be respectively the weight k level raising and level lowering operator, as defined in |18, eqs. (4.3)-(4.4)]. These
define maps

Rk : A(F7X7 k) — A(F7X7 k + 2)7 Ak : A(Fv)(a k) — A(F7Xa k — 2)
The weight k Laplacian is defined by

k k k k 2 o )
= Ry ohp—o(1-5) = A Tliel AN B Py
A = B2l 2( 2) ’“+2R’“+2( +2) (6x2+5‘ 2) Y o

For k € Z>( and s € C, we define an operator
(23) Qs,k’ : A(Fa X k) — A(Fv X5 k)7

as in |18, eq. (4.65)] by
(Qui)e) = o g Aksz - Ac2Aed)(-2)

where we put Qs = 0 if s € k/2 4+ Z<(. Notice that for k = 0 we have (Qs,0¢)(z) = ¢(—%) which is the
usual reflection operator. The operator @), i preserves the eigenspace of Ay with eigenvalue s(1 —s), and is an
involution for s & k/2 + Z<(. Similarly, we define @, ; for negative k using the raising operators.
We say that ¢ € A(T, x, k) is a Maaf form if it satisfies
(Hz) For all z € O(T), ¢(0,2) = 0(e*>™) as y = Im z — oo.
(Hs) ¢ is an eigenfunction of Ay with eigenvalue Ay = s4(1 — s4) = 1/4 + té with Res, > 1/2 and
Sp = 1/2 + it¢.
(Hy) ¢ is an eigenfunction of the operator Q,, » with eigenvalue €, € {1, O}H If k£ = 0 then €4 is the sign
of the Maa$} form [14} p. 106], and if ¢ comes from a holomorphic form then €, = 0. Note that when k
is odd, €4 depends on the choice of sign of ¢, in the definition of Qs -

The above conditions imply [18,29] that at any cusp « € C(I") we have the Fourier expansion
(2.4) $(022) = dp(Im 2) + Z ag(n)e(nRe 2)W gon ) 41, (4|0 | Im 2),
n#0
where W, 5 : Ry — C is the weight a-Whittaker function with parameter 3, i.e. the unique solution W' to

d*W 1 o 1/4-p2
oS TP Yw=0
7 +< 1T, ) :

satisfying W (y) ~ y®e™%/? as y — oo (with a, 3 fixed). In particular we have Wy i (4my) = 2y'/2 K, (2my)
where K(y) denotes the K-Bessel function. The constant term ¢, (y) (with y = Im 2z above) is given by

Apy®® 4+ Boy' ™%, 54 #1/2
¢1(y) = { ¢ 7& /

2.5
(2:5) Ay'? + Boy?logy, sy =1/2.

We will say that ¢ is cuspidal at the cusp x meaning that ¢, (y) = 0. Finally we say that ¢ is a Maafl cuspform
if it is cuspidal at all cusps x € C(T").
From [18, Corollary 4.4] we know that Maaf forms arise in two ways :
— If Re(sy) < 1 and s4 # %, then ¢ is obtained from repeated applications of level-raising or lowering
operators from a weight 0 or 1 Maaf} form, depending on the parity of k,
— Otherwise sy = £/2 with £ = k (mod 2), and ¢ is then associated, through level-raising or lowering
operators, to a form 1 of weight ¢ for which z — y~*/24(z) is holomorphic. In this case, we necessarily

have B, = 0 in (2.5).

2This letter €y will always be written with a subscript indicating the corresponding form, to avoid confusion with the notation e
for an arbitrary small number.
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We will abbreviate throughout
a(n) = aso(n).

Moreover, we have by [18] eq. (4.70)]
I(sy+ &
Dlso +5) i)a(n)
L(sg —3)
For sy = ¢/2 with £ = k (mod 2), this says that a(—n) = 0 for n > 0.

We will assume the following bound.

(Hs) The Fourier coefficients a(n) in (2.4]) at © = oo satisfy

(2.7) Z la(n)] <4 X1/2T.
1<n<X

(2.6) a(—n) = €4

This condition is automatic when ¢ is cuspidal at co. This is obtained by Cauchy—Schwarz combined with a
straightforward modification of |29, Theorem 3.2].
We will use the following rough but uniform bounds on ¢.

Lemma 2.1. For all z,2',n € R and 0 < y < 1, we have

(2.8) b +iy)| <y~ /277,

(2.9) |z +iy) — ¢la’ +iy)| <y~ min(1, 2221,

(2.10) \p(z + iy) — d(a’ +iy) — d(x +n+iy) + oz’ + 1 +iy)| <ec y~/*Fmin(1, %) min(1, %)

Proof. The bound ({2.8)) follows at once from the Fourier expansion (2.4) and the exponential decay of the Whit-
taker function. Similarly, the bound (2.9)) follows from (2.8)) if [x—2'| > y, and otherwise we bound |e(nx) — e(nz’)| <
|n(xz — 2)| in the Fourier expansion and conclude again by the Fourier decay of the Whittaker function. Finally,

the bound (2.10)) follows from (2.8)) and (2.9) if |z — 2’| > y or n > y, and otherwise we write
le(nz) — e(na’) — e(n(z +n)) + e(n(z’ +n)| = |(e(nz) — e(na’))(1 — e(nn))| < [n*n(z — )|

and use the same argument as above. O

2.2. The Eichler integral. For z € C(T') \ {00}, we define

(2.11) £(o,x,5) == /ODO(¢($ i) ¢m(y))y3_1/2%7

which converges absolutely for Res > 1 by the exponential decay of the Whittaker function in . This is
a generalization of the original Eichler integrals [20] which were associated to cuspidal holomorphic forms and
had s = (k — 1)/2. This kind of integrals originate from Riemann’s memoir [51]. The special case x = 0 was
considered by Hecke [26] to establish the functional equation of Hecke L-function of holomorphic cusp forms.
The idea of studying the analytic properties in the variable z is due to Eichler |20] and led to the development
of the Eichler-Shimura isomorphism; see [17] for references.

Here we will need to study the value at s = 1/2, whose existence we first deduce from analytic continuation.

Proposition 2.2. The FEichler integral £(¢, z, s) admits meromorphic continuation to the entire complex plane
with possible poles contained in {1/2 + s4,3/2 — sy }. If Re(sg) > 1, then the only possible pole is at 1/2 + s4.

Proof. By the Fourier expansion of ¢ at x, we know that

¢(z +iy) = dpo(Im(o, ' (z + 1Y) + g2 (i) = Ga(cey™) + 92(v),

for a certain constant c,, where g,(y) < y* for all A > 0 asy — 0. Let ¢ : (0,00) — R be smooth and
decreasing with ¢(y) =1 for y < 1 and ¥ (y) =0 for y > 2. Then

s / o + iy) — %(y)—w<y>¢w<cwy-1>>ys—”2%y

extends to an entire function due to the rapid decay of the integrand as y — 0. Finally we see that for
Res > 1/2+ Res,, we have by partial integration:

/w ol 2 = /w y)dy,
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where F}, is the antiderivative of 3 — ¢, (c,y~")y*~3/2, which is of the form

A s— s 5— s
s— 1/2 s¢y /2= + s— 3/2+9¢y Ko d) S¢ 7é 1/2
oy (s = Dlogy — 1) + Byt sp=1/2,

for certain constants A, B which may depend on x and ¢. This defines meromorphic continuation to the entire
complex plane with possible poles only at s € {1/2+ s4,3/2 — s4}. When Re(s4) > 1, then ¢ is associated
with a holomorphic form, and we have already noted in this case that necessarily B = 0, and therefore there
is no pole at 3/2 — s4. O

3. QUANTUM MODULARITY FOR THE EICHLER INTEGRAL

For all z € C(T"), define
Ep(x) == E(9,x,1/2).
Theorem 3.1. The map &y is a quantum modular form for I' with multiplier u.,, in the sense that for ally € T',
the map

(3.1) hE (@) = Es(v2) — jiy (€)X (7)E4 (@),

initially defined for x € C(T) \ {00,700} extends to a (1/2—e)-Holder continuous function on R~ {y~"oc}.
More precisely, for z,2’' & [y~* -t

00 —g,v7 too + €], we have
(32) K (@) = hE(2")] Keppy o= @' [275 (14 [ 4 [/ |) 0.

Note that for v and z fixed, j (x)* depends only on the parity of k. Note also that hf =0 for all v € ',
so that Theorem [3.1]is trivial in this case.
Throughout the rest of this section, we let v € I' \ ',
0= 7_1005
and we let I C R~ {zg} be a closed interval, not necessarily bounded.

3.1. A geometric proof of quantum modularity. We will start by considering the special case where
¢ = iRy is of weight 2, cuspidal, with trivial nebentypus, meaning that ¢ is a Maafl cusp form of weight 0 for
I" and Ry is the weight 0 raising operator. In this case one can give a pleasant geometric interpretation of the
discrepancy function h., = h§ This argument should furthermore serve to give some intuition before reading
the somewhat technical proof in the general case, in Section below.

The starting point is the following alternative representation of the Eichler integral in the case of weight 2:

x) = 2@'/36 %np(z)dz

which follows directly from the definition of the raising operator Ry. By a change of variable z <+ vz we get
the following expression for the discrepancy function

[0
—22/ 8 —o(z 2—22/ 6—¢(z)dz

for v ¢ T'w (the stabilizer of co) and z € C(T") \ {00, z¢}. The key idea is now that one can apply Stoke’s
Theorem to express the difference of these two line integrals (over infinite geodesics) to a surface integral
over a surface of finite hyperbolic volume. More precisely, for z,zo € R we denote by F, ., the hyperbolic
triangle with vertices co,x,x9. Recall that the geodesic between two points on the boundary is exactly a
Euclidean semi-circle through the two endpoint (if one of the points is oo this is vertical line), see Figure
We apply [19, Lemma 2] to the 1-form %g@(z)dz on the hyperbolic surface Fy; 40 Observing that [19, Lemma
2] easily extends to general discrete and cofinite subgroups I' as our 1-form is sufficiently regular at the cusps

of I'. This gives
T 9 e >0 Ap
[ i [ igees [ et = [ e,

0 THT(Q)

where du(z + iy) = dm;'!y is the hyperbolic measure and A\, = A, is the Laplace eigenvalue. This yields the
following geometric expressmn
[0
(3.3) m@ =2 [ e, [ el
o x,rQ
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Notice that the first term is independent of z. Now we see that for z,2’ € I (i.e. bounded away from
—1
xo =7 'o0)

o) = o) = ( [ e~ [

T, o z',zQ

gp(z)duo(z)> < |/\w| lelloo -area(}“xwoﬂfmr@o),

where AAB denotes the symmetric difference between the sets A and B, area denotes the hyperbolic area,
and || is the sup norm of ¢ (which is finite by cuspidality). The key point is now the following elementary
hyperbolic geometric estimate, see Figure

Lemma 3.2. For z,z' € I, we have
area(Fy, o0 AFpr 2y) <oyr |z — 2|12,
More precisely, for x,x’ & [xg — €, xq + €], we have
(3.4) area(Fy po AFpr z0) Loy |T — ac'|1/2 (1 + |z| + |2']) Y2
Proof. First of all we observe that by the Gauf§ Defect Theorem [29, Theorem 1.3] we have area(F, ,,) =
area(Fy 5,) = . The symmetric difference Fy », AFy 4, is the union of the two sets
Ay = Furwg N Fowo N Farzgy Az = Fuwg ™ Far g N Fazos

as illustrated in Figure 2| (and similar for the other configurations of z, 2’ 2¢). Clearly we may assume that xg
is not between z and z’, for otherwise |z — 2’| >, 1 and the claimed bound is trivial. Thus we can restrict to
the case 2’ > x > x¢ +¢. The three angles of the hyperbolic triangles A; are 0,0, 7 — 6 with 0 < 8 =6, . < 5

such that cos§ = iﬂf:igll — 1, and thus by the Gaufl Defect Theorem
area(A;) = area(As) = 6.
By the classical fact that S”# € [%, 1) for 0 <z < 7, we conclude
462

— <1- (cos0)? = (sin0)? < 62.
T

This implies by the definition of # and since =’ > x > xo that

' — x| — |z — x| |z — x x—a||la’ —x x—a

o I ol ollle ol e ] [l
2" — o |z — @0 |2" — o

Now (3.4)) follows by taking square roots since &’ — xg >¢ 1 + |z| + |2/|. O

Thus we conclude that for z, 2’ & [xg — €,z + €], we have
hoy(2) = ho(20) ey Mol @Il = 2'[V2 (1 + [2] + [2']) /2,

which is a more precise version of Theorem [3.1] in this special case.

We end this section with a philosophical remark. As noted the vertical geodesics from x to ico have infinite
hyperbolic length, which is responsible for the fact that the Eichler integral £, (x) itself is not continuous in .
However when considering the discrepancy hfy we can transform this using Stoke’s Theorem into an integral over
a hyperbolic triangle bounded by such infinite geodesics, which has finite hyperbolic area. This is a geometrical
version of the idea of “going up in regularity” underlying the notion of quantum modular forms [60].

3.2. Quantum modularity in the general case. In this section we will prove the Holder continuity of hi
on I. Let 6 € (0, 3d(zo, 1)), where d(zo,I) denotes the distance from zo to I. For all z € I and 0 < y < 4, we
define

. 2 -1/2
(3.5) pa (y) o= (1 - m) )

va(y) = 255 — sign(a — o)/ (25700)% — 2.

With this definition, the points zo+v,(y)+iy and x—v, (y)+iy both lie on the geodesic half-circle connecting z
and x. We also recall the definition of u, in (2.1)
The following simple bounds will be used repeatedly: for z,2’ € I, § > e and 0 < y < §, we have

(3.6) e (y) — 1] <c /7, 2 (y) — par (1) <e @ — 2|y,
(3.7) V2 (y)] < 7, Ve (y) — vor (y)| e |z — 2’|y,
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]:ac,xo

X Zo

FI1GURE 1. Hyperbolic triangle with vertices x, xg, 0o

Ay

A

x T x
FIGURE 2. Symmetric difference of F;, ,, and Fy/ 4,

The following lemma gives a good bound for an integral near a cusp which, as we will show later, corresponds
to the least regular contribution to hf;.

Lemma 3.3. Forz €1 and 0 <y <6, we have

(3.8) [un () + iy) = us (@ = va(y) + iy)d(@ — va(y) + iy)a(y)] = Ocs(y'/*~%),
and the map
5
. ; . d
(39) 2 H@) 1= [ (1 @06l + i) = (o = valy) + in)ole = vio) + i) 2
0
defines a (1/2 — €)-Holder continuous function on I. More precisely, the bound
(3.10) H(z) — H@') = Oregr (o — 2|7 + o — ')

holds uniformly for x,z' € I.

Proof. In the following proof, we allow all implicit constants to depend on I,e,¢ and 7. Note first that u,
is constant in a some neighborhood I of I, say u,(z) = ug € R for all x € I. Moreover, or any =z € [
and 0 < y < 1, we have

(3.11) |uy (z + iy) — u2| <y.

We complement this with the bounds 7 , and . Along with the triangle inequality, this
yields the bounds .

We deduce that the integrand in is O(y~1/27¢) and the integral in is well-defined. Let §’ € (0, 4)
be such that x + v, (y) € I'" for all (x,y) € I x (0,4’), which implies that u,(x + v,(y)) = uJ for 0 <y < ¢’
In the following computations, let us abbreviate

v=ue(y), vV =voy), p=py), 1 =pa(y).
By the triangle inequality, for z, 2’ € I, we have
s
d
[Hw) = HE| < [ Fofas.a)]
0
where

Fy(y;z,2') == ug((b(x +iy) — d(x' +iy)) — u (@ — v+ iy)d(z — v +iy)p + uy (2’ — V' +iy)d(a’ — v +iy)y'.
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By taking successive differences, we write

Fo(y;.'I},.'IJ/): Z F](yax7xl)7

1<;5<6

where
Fi(y;z,a') = ud (¢ + iy) — o2 +iy) — p(x — v +iy) + ¢(a’ — v + iy)),
Fy(y;m, ') = ud (g’ — V' +iy) — ¢(a' — v +iy)),
Fy(yia,a) = (us (2 — ' + i) — ud) (6’ — v/ +iy) — b(x — v + i),
Fy(ysz,a') = uq (2" = v/ +iy) (o’ — v/ +iy) — dle — v +iy))(1 - 1),
Fs(y;o,2) = uy (2! — v +iy)o(z — v +iy) (1 — ),
Fy(ysz,2) = (uy (2" = v/ +1iy) —uy(2 — v +iy))d(z — v +iy)p.

We bound each integral
5 dy
Dy = [ 1B )| L
0 Y
separately.
— By (2.10) and the first bound in (3.7)), we have Fy(y;z,2') < y'/>~¢ min(1, ‘I*Tm,l), and so

Dy < |z — a7,
— By and the second bound in (3.7), we obtain F»(y; z,2’) < y*/?7¢ |z — /|, so that
Dy < |z —2'|.
— By again, and (3.11)), we obtain F3(y; z,2') < y~/27 min(1, ‘z;x,l), and so
D3 < |z — m’|1/2_5.
— By (2.9), the second bound in and the first bound in (3.6)), we have Fy(y; z,2') < yt/2=c |z — 2/,
therefore
Dy < |z —2'|.
— By and the second bound in (3.6)), we get Fi(y;z,2') < y3/2=¢ |z — 2'|, so that
D5 < |z —2'|.

— TFinally, for all a,a’ € I, we have
uy(a +iy) — uy(a’ +iy)| < |arg(a +iy) —arg(a’ +iy)| < yla —dl,

so that, by (2.8), the second bound in and the bound p < 1, we obtain Fy(y; z,2') < y*/?~% |z — 2|,
and so
De < |z — 2.
We conclude that
H(z) - H)| < Y Dy < |z —a'|"* 7 4|z~ 2|
1<5<6
as claimed. O

Proof of Theorem[3.1. For Res > 1 and x € INC(T"), we recall the definition (2.11]), and we abbreviate in this
proof &(z, s) = E(¢, x, s). We consider

(3.12) Az, ) = u9€(x, ) = (v, 2)|* " E(ya, 5).

We recall that . (x) = u for all € I. Since § < d(xo, 1), for each = € I, the line Im(z) = § intersects the
geodesic connecting  and xg at two distinct points. For all 2 € I, we let n(z) > 0 be the smaller solution to
(3.13) Im(y~(yx +in(z))) = 6.

Note that 7 defines a smooth map on I, which is bounded and non-zero. We have explicitely

ey = 220 - (1 VT @ wl?).
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We deduce in particular

@), [0 (@) =c (& —20)7,  (zel).
By inserting the integral (2.11)) in the definition of A(z, s), and splitting the two integrals respectively at y = ¢
or y = n(x), we obtain for x € I N C(T) the decomposition

(3.14) Az, s) = Ag(z,5) — Ac(z, 8) + Ao (x, 8),
where
0 ’ . 129y . 2s—1 [ . 1/2dy
Ao(z,5) = “w/o $(x +iy)y" 5 i)l /O $yx +iy)y Y/ m

o (@)
— 5 — d . s— K _ d
A (z,s) = ug/ oo ()5 1/2gy —i(y,2)]? 1/ b ()12 yy7
0 0

> : so12dy s—1 [~ . s_1/2dy
Aoo(,5) = U3/6 (Bla+9) = duoly)y™ 227 - (v, 2)? 1/( (00 + i) = 9 (y)y v
n(x
By the explicit expression (2.5)), the map A.(z,-) can be analytically continued to C \ {1/2 — s4, s — 1/2}.
For some constants ¢y, ¢2, ¢ depending on ¢, v and I, we evaluate for all z € I N C(T),

Ac(w,1/2) = e1 + can(w)™ + can(a) ',

Since 7 is smooth and non-zero on I, we deduce that the map A.(-,1/2) extends to a smooth function on I,
and

(3.15) |Ac(2,1/2) — Ac(2,1/2)] 1 mpe |7 — 2| (1 + || + |2/])F°

with x = max{0,2(Re(sy) — 1)} € R>o.

The integrals in A, are uniformly convergent for bounded s € C, since the maps y — o¢(t + iy) — doo(y),
for t € {x,vyx}, have exponential decay at oco. Since the Fourier expansion is uniformly convergent
for Im(z) > ¢ for any € > 0, and 7 is non-zero on I, we deduce by dominated convergence that A, (-,1/2) also
extends to a smooth function on I. Moreover, letting ¢1 (z+1iy) := 8% (z+iy), we have ¢y (x+iy) gy~ 32+,
and thus

> dy  n'(z)

d e N . _ ) .
%Aoo(a; 1/2) = ug/é o1(x + zy)?y — iy, z) 72 - o1(yx + zy)? + ) o(yz + in(x))

(3.16) LIpe |2 — 20| <1+ |2].

We obtain by integration
Ao (,1/2) = Aso(2',1/2)] K1y |2 — 2| (1 + || + [2']).
We focus on Ag(z, s). For Re(s) > 1, we change variables in the second integral, getting

ya+in(z)

z+18
Ao(x, ) = Ug/ ¢(z)(Im 2)° /% ds(2) — Ij(%z)IQS_l/ ¢(z)(Im 2)*~1/2 ds(2)

x

2+ “Hyztin(z))
=g [ o may 2 ase) o [ gz imazy 2 dsta)

vy~ (ya+in(x)) 2s—1

x+16
Ga) = [ @) tma) s - [ s (2)6(2) (Im 2)°~ /2

€T

j(v, 2)

37, 2)
Here the integrals with respect to the SL(2, R)-invariant Poincaré metric ds(z) = (dz? + dy?)'/?/y are taken
along geodesics. In the penultimate integral, we have written u,(x) = ug in anticipation of using of Lemma|3.3
We parametrize both integrals according to Im z, which runs in both cases over (0,d) by our definition (3.13).
L yatin())

ds(z).

The integral ffﬂ-é is over a straight line, and the second integral f;f is over a portion of geodesic
connecting x with v~ too = zg. By construction of v, in (3.5)), this is precisely the set

{:L' - Vz(y) + iyvy € (075)}
Moreover, a quick computation yields ds(z) = . (y) dy/y. We deduce

4 .
Bafiss) = [ (100 + i) = = ) + )6 = 10 (0) + i) |
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We write |j(v,2)/§(7,2)|* 7" =1+ &4(y), where

(3.18) Es(y) <y
for fixed x,~ and bounded s. Correspondingly, for all x € I N C(T') we obtain

s—1/2%

4
Ag(z,s) = /O (uy(7)p(x + iy) — uqy (T — v2(y) +iy)d(z — va(y) +iy)pa(y))y y

o
[ e = vl + )06 = a0+ i)

The bound (3.18]), combined with (2.8)), ensures that the second integral here converges uniformly on compact
subsets of {Re(s) > 0}. The bound (3.8) from Lemma yields the same conclusion for the first integral.
This gives the analytic continuation of Ag(z,-) on {Re(s) > 0}, and the expression

)
Aolz,1/2) = / (1 (@) + i) — (& — valy) + i) — v (y) + iy)ugg(y))%,

which we recognize as the quantity H(z) defined in (3.9). Lemma [3.3]shows that Ag(-,1/2) extends to a (1/2—
e)-Holder continuous function on I for any € > 0. Since we had shown earlier that A (-,1/2) and A.(-,1/2)
are smooth on I, we deduce by ([3.14) that A(-,1/2) extends to a (1/2 — ¢)-Hélder continuous function on 1.

Moreover, the bounds (3.15), (3.16) and (3.10), we get
IA(2,1/2) = A2, 1/2)] <1mype |2 — 2775 4 o — 2| (1 + || + [2]) (12 (Re(sg) 1) +e
However, we see from the definition and Proposition that for x € I N C(T),
A(z,1/2) = uy(x)E(x,1/2) — E(ya,1/2) = —hf;(x).

This gives the desired extension of h,gy to a (1/2 — e)-Holder continuous function on I for any € > 0, and the
claimed bound on the difference. O

3.3. Generalized quantum modularity with conjugation. For the applications to reciprocity formulas
which we will consider in Section [8| below in the case of the Hecke groups I' = I'y(¢), we will need the action of
Fricke involutions, and in the case of non-real nebentypus, it will be handy to generalize slightly the definition of
quantum modularity. Given a matrix v € GL(2,R) we consider the following operation on functions f : HH — C

(3.19) (7f)(2) == f(v(=2))-
We extend this definition “to the boundary” as follows: let I be a Fuchsian group as in our setting (Section,

and v € T be such that we have y(—z) € C(T') for all z € C(T"). Then given a map f : C(I')\{cc} — C, we
define

() (@) = f(v(==)),
for x € C(I')\{—v too}.
Theorem 3.4. Let v € SL(2,R) and let ¢ € AT, x, k) satisfy hypotheses (Hiy)-(Hy) from Section @, and

assume additionally that (Y¢)(z) = nj,(2)k¢(z) for some n € C. Then E(¢,x) is quantum modular for 7 in
the sense that

(3.20) he(z) = E5(v(~)) — njy () Es (@),
initially defined for x € C(T')\{oo, —y~loc}, extends to a (1/2 —¢)-Hélder continuous map R\{—y~too} — C.
Proof. The proof is identical to that of Theorem 3.1} starting from the difference
. , 25—1 5773
A(z, 5) = njy(2)*E (2, 5) = (v, 2)” 7 E(v(~2), 5).
O
Remark 3.5. The above notion of quantum modularity can be put into the following general framework.
Consider a structured space (e.g. a topological space, manifold) Y, a group G and a representation p :

G — Aut(C[Y]) where C[Y] denotes the ring of (set theoretic) maps ¥ — C with pointwise addition and
multiplication. Let u : G — C[Y] be a cocycle for the pair (G, p) in the sense that

pg(u(gla )) : U(g, ) = u(ggla ')a
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for all g, ¢’ € G. Then we say that f € C[Y] is modular for the pair (G, p) with multiplier u if
pg(F)(y) = ulg, v) f(y),

for all ¢ € G and y € Y. Notice that the cocycle condition is forced from the previous equation since p
preserves the ring structure. Furthermore, let Yy be some (possibly discrete) subset of Y. Then we say that a
map f € C[Yp] is quantum modular for (G, p) with multiplier ug, if

hg(y) == pa(f)(y) — (g, y)f(y),

is “more regular” than f itself, i.e. hy can be extended to a continuous (or smooth, or analytic) function on
some intermediate space Yy C Y’ C Y.

Let H = HURU {oo} and consider the group G = PGLa(R) x Z/2Z acting on C[H] where PSLy(R) acts by
precomposition with the inverse of the associated linear fractional transformation (in order to insure that it is
a left action), (_01 (1)) acts by precomposition with z — —Z and the generator ¢ of Z/27Z acts by composition
with conjugation. One can check that this is indeed a well-defined group action. Now let Gy C G be the

subgroup generated by T'g(g) together with the element
((90),0 €G,

which acts as the operator W, using the notation (3.19)) with W, = (2 _01) the Fricke matrix of level g. One
can now check that the following defines a cocycle for G, with the representation p : G; — Endging(C[H])

(321) U(qu Z) = 77]Wq (Z)ka u(Va Z) = X(’Y)j’yfl(z)k? for v e FO(Q)7

where n € C satisfies [§] = 1 and x : T'g(g) — C* is a character (here the only relation one has to check is
Wyy ='W, for v € SL2(R) and qu =1). In particular, we will see in Section [6.1| that if ¢ is a Hecke-Maaf}
newform of level ¢, weight k and nebentypus x4, then we automatically have that Wao = ns( qu)qu for some

ne € C of absolute norm 1. Thus in the just described formalism, Theorem and Theorem can be
interpreted as saying that

£(¢,+) : C(To(q))\{oo} =Q = C,
is quantum modular for the group G, together with its obvious representation where the multiplier is as in
(3-21) (with n =ne and x = x¢)-

4. BEHAVIOUR OF h‘s AT 00

For our prospective applications, it will be of importance to have some information of the behaviour of hi

near oo and v~ 'oo.

Theorem 4.1. There exist numbers A',, B, depending on ¢ such that the following holds. Let v € I' \ 'y,
and zo := v~ too. If sy # 1/2, then

(4.1) hg(x) = x(7) (A4 |z — xo|** + By |z — zol T — ik&b(wo)) + Op e (o] 719) as = — +oo.

If sy = 1/2, the asymptotic formula holds upon replacing the term involving Bl by Bl |x — :vo|1/2 log |z — xo].
The numbers AlL, B!, are obtained from the coefficients A, B in (2.5)) through

(42) L= AThai(ss),  Bl=BTrai(l-ss), (56 #1/2).
where Yy +(s4) satisfy equation (4.16)) below. When sy = 1/2, we have
(4.3) Ay = ATy (3) + BY) 44(3),  Bh=BTru(z), (59 =1/2).

We insist that in this statement, it is understood that the bottom left coefficient of «y is positive, or otherwise

the ill-defined factor y(7) must be replaced by x(7)sgn(c)*.
1

We deduce the following asymptotic expansion close to vy~ o0.

Corollary 4.2. Let the notations be as in Theorem[{.1], and let ¢ > 0 denote the bottom left coefficient of ~.
Then if sy # 1/2, we have

hE(y7 oo — ¢728) = —(F1)* (AL [6] 7% + BL 8] 7! — i*E(y00)) + Oy c(I8]'°)  as 6 — 0%,

If s4 = 1/2, the analogous formula holds with the term involving B!, replaced by B!, |6|71/2 log(1/|9]).
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FIGURE 3. The hyperbolic triangle F, o for large

4.1. A geometric proof in a special case. As for quantum modularity we will begin with a geometric proof
in the special case where ¢ = iRy with ¢ a Maafl cusp form of weight 0, trivial multiplier and now assumed
to be of level 1 (i.e. I' = PSL(2,Z)). We will consider the behavior of hg = h§ where S = (9 '). In this case
the proof boils down to an elementary geometric lemma, which in words states that as |z| — oo, the majority
of the area of F, o is near the cusp at co (see Figure 3)).

Lemma 4.3. We have for any Y > 1:
area(FyoN{z € H:Imz <Y}) < 2min(Y/|z|,1/2).
Proof. Clearly we can assume z > 0. Now the result follows from the following calculation
2V
2

v

min(z/2,Y)
area(fm’oﬂ{zeH:IngY}):2/ /
0 0

min(z/2,Y) 1 .
=2 ————dv < 2min(z/2,Y)x”".
/ Ao < 2miin(2/2,Y)

Using the expression (3.3]) for hg in this case, we write

hs(z) = —2i /OOO %gﬁ(z)dz + e (z)dpo(z) + )‘w/

e(2)dpo(2),
Fo,oN{z€H:Im z>Y}

/]-},oﬂ{zEH:Im 2<Y} v
with Y = 2 log |z|. For Im z > 2 log |z|, we have

p(z) <, e 2mz « e loglzl — |1,
using the exponential decay of the Whittaker function. Now using that area(F, o) = 7 as well as Lemma

we conclude that % 5 log |z
_ og |z
:—2 a
hse) = 2 | az*"“)d”%( B >

as ¢ — Foo. This is exactly Theorem in our case (even with an improved error-term).
Finally we notice that by Fourier expanding it can easily be seen shown that

_22-/ ﬁw(z)dzz Yo(1/2)L(p,1/2), €, = -1
0 82’ 07 6@ = 1,

where 7y, (s) = 23/2(2m)~°T (SH;““)) r (Hl;t“’), L(p,s) = Y. ,-oa(n)n'/?=% is the standard L-function
associated to ¢, and €, is the eigenvalue of ¢ under the involution Qs, 0. We will see in Section this fact
in greater generality.

4.2. Proof in the general case. The rest of this section is devoted to the proof of Theorem We allow
all implicit constants to depend on ¢, and ¢, possibly in addition to other parameters indicated in subscript.
Let z € C(T') be given, and
1 £
Zo =7 00, Y = z|°.
We may assume that x # 2. It suffices to prove the theorem for z € C(T"), since we have shown that h§ is
continuous. We take a representative v = (¢ %) with ¢ > 0. For r,r’ € C(T), let G(r,r’) denote the geodesic

going from r to r’ in H. Let
Z = G(x,x9), L, = G(r,00),
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so that L, is follows a vertical half-line upwards. Finally, we denote the truncations
z* LE

9

where Z* is the portion of Z located in {Imz > Y}, and Z~ consists of the two portions of Z located
in {Im 2z < Y'}. Similarly, L, is the portion of L, starting from r+:Y upwards, and L, is the segment [r, r+iY].
For Re(s) > 1, we consider the integrals

Gz, s) = /Zuﬂ,(z)qb(z)(Imz)s_l/zds(z),
(4.4) Va(t) := /G(il ) (u/ [u])* oo (|t Tm w) ds(u), (t € R~ {0}, + = sgn(t)).

Proposition 4.4. (1) The map G(z,-) extends to a meromorphic function in {Re(s) > 0}, which is
analytic at 1/2.
(2) We have G(x,1/2) = E4(yz).
(3) As |z| — oo, we have

(4.5) G(,1/2) = x(7) (Valw = w0) = *E(w0)) + us (@)E(2) + O(la] ).

Proof. To prove the first assertion, we change variables, and write
xo
Gle,9) = [ o1 ) 2 ds(2)

= [ o)tV as(z)

(4.6) = /00 hoo(Tm 2)(Imy~12)* 712 ds(2)
4.7 h Z) — Goo(Im 2 Im~~tz)5~1/2 = (Imz)s—1/2 ds(z
(47) [ 00) — g ltma) (@m0 - ast)
(4.9 L .

(vt )|

We note that j(y~!,y2) = j(v,2)~!, but we will not use this at this point. The meromorphic extension and
regularity at 1/2 of the third summand (4.8 is a consequence of Proposition Next, by the exponential
decay of ¢(2) — ¢oo(Im 2) for large Im 2, and since

o (Im z)*~1/2 o 25—1 ., _ 25—1 . s
1/2—W:(’J(7 17’72)| —|J(’Y 17’733)| )(Im 2) 1/2:01-((11113) H/Q)

as Imz — 0, we deduce that the second integral (4.7)) converges uniformly with respect to s on compacts
of {Re(s) > 0}, and is therefore an analytic function of s in the same region. It obviously vanishes at s = 1/2.
Finally we focus on the first integral (4.6)). Writing z = yx + iy, we have

I —-1_ Yy _ Yy
mry "z2= - 2
l7(y~1 vz 4 dy)|

(Imy~'2)

3y, )72+ (ey)*

Since j(v,z) = c(z — o), we deduce

omlm )y 206 = [ o) (o)

= fo—al ™ [T o () (1) T Y
’ o Nz —wo|/ \1+y? y'

Given the shape of ¢, in (2.5), we deduce that for Re(s) > 1, the integral (4.6]) is a linear combination of
g-(s) == /°° gy dy
TSy (R y
for 7 € {s4,1 — 54}, and its derivative with respect to 7. But for Re(s) > 3 + |Re(7)|, we have by [25| 8.380.3]

F(SJrT;l/Q)F(SfT;l/Z)

20 (s — 1/2)

YT

g-(s) =
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Thus, both g, and % g- extend meromorphically to C, are regular at s = 1/2 and vanish there. This finishes the
proof of the first item. Evaluating at s = 1/2, the terms (4.6) and (4.7) vanish and we are left with G(z,1/2) =
E(vx) as announced in the second item.
To prove the asymptotic estimate (4.5)), we split [, = [, + [,_, and write accordingly
G(z,5) =G (z,5) + G (x,59).

It is clear that G (z,-) is defined and holomorphic on C, since the integration path Z* is compact in H. We
write

G4 (@5) = [ ,(2)6(2) ~ dnim2))(Im2) 2 ds(z) + [ (20ne [ 2)(Im )2 d),
Z+ Z

+

We recall that Z* is contained in {Imz > Y} and Y — oo. By the Fourier expansion (2.4) at oo and the
exponential decay of the Whittaker function, we deduce that [¢(2) — ¢oo(Im 2)| < Y4 for any fixed A4 > 0.
Using the triangle inequality and a rough estimate of the hyperbolic length of Z7, it follows that for |s| < 1,
we have

/z+ 1 (2)(9(2) = doo(Im 2))(Im 2)° "2 ds(z) = Oa (Y~ Ja]) = O(l] ).

by picking A large enough in terms of e. Evaluating at s = 1/2, we deduce
(4.9) G+ (2, 1/2) = O(a| ) + / ) (2) oo (T 2) (I 2)*~1/2 ds(2).
Z+

On the other hand, we let u, v be shorthands for u.(y) and v,(y). We insist that these depend on y. By
parametrizing Z—, we have

Y
G (2,s) = / w (& — v+ ig)ple — v + z'y)ys—l/?u%
0

Y
d
- / Uy (20 + v + i)z + v + iy)y' 2L
0

Y
= gl_(x’ 5) - g;(l‘, 5)7
say. We split

where

Y
Gi(w,s) = /0 (uy(z — v +iy)p(z — v+ iy)p — u, (2)d(x + z‘y))ys—l/Q%y,

Ga(z, s) = uy(2)E(2, 8) = uy(x) /OOO(¢($ rig)— ¢Oo(y))ys_1/2%7

Gs(,8) 1= —uy(2) /Y (ol + i) - ¢oo(y))ys_1/2d?y,

Y
Ga(w,s) := /0 (uy(2) —uy(z —v+ iy)u)aﬁoo(y)ys’l“d?y,

Y
. _1/0d
Gs(z,s) ::/ Uy (T — v+ 1Y) oo (y)y° 1/2390
0

All five terms here are meromorphic on {Re(s) > 0} and analytic at s = 1/2: For Gy, this follows from the
bounds (2.8)), (3.6) and (3.7). For G, this follows from Proposition For G3, this follows from uniform

convergence. For G4 and G3, this follows from the bound ¢uo(y) < y7 1< as y — 0, where 0 = 1 — Re(sy) > 0

if Re(sg) > 1 or 0 = Re(sg) > 0if s4 = £ (mod 1). Here we used the fact that in the latter case we

have By, = 0 in ([2.5).

We now use the more precise bounds, valid for y <Y,
(4.10) =1 <2, <z
and

(4.11) s (= v+ i) — iy (2)] < [ oretan /@) | [y,
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Using these bounds along with and , we obtain
(uy (@ — v+ iy)d(e — v +iy)p — uy(@)d(x + iy)) <y 2|70, (0<y <Y),
and therefore
Gi(x,3) = O(l=| 7).
Concerning G3, using the bound ¢(x + iy) — ¢oo(y) = Oa(y~4) for any fixed A > 0, we deduce
Ga(,3) = 0a(Y ) = O(l2| )
by picking A large enough in terms of €. We bound G4 by using again and , obtaining

Y
Ga(z, 1) <</ Yl ReGo) |27 dy < ||
0

Finally, we have Ga(z, 1) = u,(z)€(z), and leaving G5(z, 3) unevaluated for now, we conclude the analytic
continuation of G; (x,-) and the expression

Y
(4.12) Gy (z,3) = uy()€(2) +/0 Uy (T — v+ iy)(boo(y)u%y +O(j] ).

We evaluate G, (z, s) in a similar way, except for the terms involving u.. First we notice that for y > 0, the
quantity
uy (20 +iy) = x(7)(isgn(c))*
is independent of y. Then we bound

lun (o + v + i) — uy (0 + iy)| < [P/ 1| <« |y < y x|t

Using this bound in place of (4.11), we may reproduce the above computations, to the effect that G, (z,-)
extends to a meromorphic function on {Re(s) > 0} which is analytic at 1/2, and

Y
(4.13) Gy (w,3) = X(1)i*E(wo) + /O Uy (20 + v + z'y)a:oo(y)u% +O(z| ).

The map G~ (z,-) therefore extends meromorphically to {Re(s) > 0} since G; and G5 do. Summing our
two estimates (4.12)) and (4.13)), and by parametrizing again Z~, we get

(4.14) G™ (2, 3) = uy(2)E(x) = X(1)i"E (o) + / t (2) oo (Im 2) ds(2) + O(|z| ),

By summing the estimates and (4.14), we deduce
G(x, 3) = uy(2)€(x) — x(7)i*E(x0) + / Uy (2) oo (Im 2) ds(2) + O(|z| %),
z

There remains to evaluate the last integral. To do this we change variables z = |z — x| u + x¢. This sends
the geodesic circle Z = G(x,xg) to G(n,0), where n = sgn(x — x), and matches the corresponding geodesic
lengths. We also have Im z = |z — 2| Imu, and since we assumed ¢ > 0, we get u,(2) = x(7)(u/ |u|)k. We
deduce as claimed

[ (o (tnz)ast) = xo) [

(i)kgboo(kc — zo| Imu) ds(u).
G(n,0)

Jul

Comparing the second and third items of the previous proposition, we have
hi (z) = E(ya) — uy(2)€(x)
= X(M) (Vg (x — w0) — i*E(wo)) + O(|a| 7).

The asymptotic formula (4.1]) follows using the expression (4.4)) for Vy(xz — o) and (2.5) for ¢eo.
For k € Z, n € {£1} and 7 € C, Re(7) > 0, define

(4.15) Ty (7) = /G( 0)(u/|u|)k(1mu)Tds(u).
7,

The expressions (4.2) and (4.3]) are clear from the definition of Vi, and Yy ,. To finish the proof of Theo-
rem [4.1) we describe Yy ,(7) in terms of I-functions.
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Lemma 4.5. We have

27T (1)

THI4k/2\ oy TH1—k/2
4T (FHFR2) D (TR

(4.16) T (7) = e Emk/4

Proof of Lemma[/.3, Assume first = 1. In the integral (15), we let u = ¢%/2 cos(6/2) with 6 € [0, 7], so
that Imu = 3 sin(0), u/ [u| = €%/? and (Imu) ds(u) = 3 d6. This gives

Tra(r) = 2’7/ ™0/2 (sin 9)7~1 d6.
0

By equations (3.631.1) and (3.631.8) of [25], the stated result follows for n = 1.

When 1 = —1, then we change variables u < —1/% in (4.15)). This sends G(—1,0) to G(1,0), changes (u/u)"
to (—1)*(u/u)~* and leaves Imu, ds(u) unchanged. We deduce Yy _1(7) = (=1)*Y_j 1(7), and by using the
formula above for n = 1 we get the stated result. O

Proof of Corollary[{.3 Let z; := ~voo and
=01 +2.

This is defined so that

vy loo —e 26 =~
1

We have also j(y™1,z) = —cx +a = —cd~!, and therefore

uy (v he) = uy i () = x(7)(—sgn(9)".
We deduce
h‘,gy('y_loo —c7285) = E(x) —uy1 (@) E(y )
= — x(7)(—sgn(8))*hs . ().

As 6 — 0 with sgn(d) = £, we have x — =oo, therefore Theorem applies and yields the announced
estimate. (]

For future reference, we list the special cases

_— 3/2 (1) mh (1 473/2
@) =) = pgmp T = Em Taela) = g

1 . Y .

Yo (3)= —Z —log2, Yzi(%) Z —log2 -2

They are obtained using the values listed in 25| 8.366].

4.3. Behaviour at infinity for generalized quantum modular forms. Theorem admits an exten-
sion to the period function hs which was introduced in Section We recall the notation (3.19) and the

definition (3.20)).

Theorem 4.6. Assume that 7o = njquﬁ for some n € C. Then with the same notation as in Theorem we
have

he(z) = n(AL |2+ 2o|* + By o+ @o] %% = i*E4(~20)) + Opr e (|| 7).

We omit the proof, since it is identical to Theorem starting instead from the integral
Gas) o= [ whE)eEIm e s,
T,—Io

Theorem {4.6| will be useful when studying reciprocity laws in Section |8} This will involve the action under the
Fricke involution.
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5. QUANTUM MODULARITY FOR THE CENTRAL VALUE OF THE TWISTED L-FUNCTION

In this section, we prove an analogue of Theorem for the following twisted Dirichlet series :
— If sy # £ (mod 1), then we let

j2-s _
) Li .T,8) 1= Zn>0 a(n) COS(?WTLI‘) "I”L|11 ) ’ (:t - +)7
(5:1) (9,2,5) {i2n>0 a(n) sin(2mnz) n|"/27°, (£ =-).
— If sy = £ (mod 1), then we let
(5.2) L(¢,x,8) == Z a(n) e(nx).
n>0

This corresponds to the MaaB, respectively holomorphic cases studied in |37, Appendices A.3 and A.4]. Using
the assumption (2.7]), the right-hand sides in both definitions are defined and analytic with respect to s
in {Re(s) > 1}.

5.1. Properties of a Mellin integral of the Whittaker function. For any o € C and 8 € C, 0 < Re(8) <
1/2, we define

(5.3) (v, 5) / Was(y)y*™ Wdy

Since W, 5(y) < y/27Re(®+e (see 18, eq. (4.19)]), the integral certainly converges absolutely for Re(s) >
|[Re(B)|. In particular, it is always regular at s = 1/2. At this particular point, we have by [25, (7.611.1)]

,].(_3/2204
oSBT E —Tat 19TCE — Ta—15)

In the rest of this section, f is fixed. Mellin integrals of W, g have been studied in [18| section 8] (see
also [59] section 12]), and we will return to these works below in Remark[5.2] We are interested in the quantity

(5.5) Ag(a, s) == (% +a+ ﬁ)(% +a—pB)s(—a—1,5)Qs(, s) + Qp(—a, 8)Qs(a+ 1, 5),

(5.4) Qp(e, 3) =

)2

which will appear later as a certain determinant.
Proposition 5.1. The map Ag(a,-) extends to a meromorphic function on C. It is independent of o, and
Ag(a,s) =4°T (s + B)T'(s — B).
In particular, Ag(c, s) # 0.
The special case s = 1/2 of Proposition can be checked directly from the explicit expression .

Proof. By analyticity, we may assume that Re(s) > [Re(3)|, and also that s ¢ a+ 3 +Z. By equations (7.621.3)
and (9.131.1) of [25], we have for Re(s) > |Re(f)| the equality

[(s+ B)'(s — B)

(5.6) Qs(a, s) = Ts—a+tl)

F(s—B,s+8;s ).

=

)

N

Letting
(a,b,c) = (57ﬂ75+6357a+%)7
we then have 8—|—a+%=a—|—b—c, %—!—a—&—ﬁzb—c, %—&-a—ﬁ:a—c, and we eventually arrive at

['(a)’T(b)*

_ _ . L1 . _ .1
7F(a+b—c+1)1—‘(c+1)<(c a)(c—=b)F(a,b;c+1;5)F(a,b;a+b—c+1;3)

+c(a+b—c)F(a,b;c; 3)F(a,bja+b—c;1)).

An identity between hypergeometric functions, which we have stated and proved in Lemma[A.2]in the appendix,
allows us to deduce Ag(a, s) = 2%FT'(a)T'(b), which is the claimed equality. O
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Remark 5.2. In [1§], section 8, integrals closely related to Qg(«,s) are studied. A minor mistake in the
computations there was recently corrected in [59], section 12. With the notation from [59} section 12], we find
for k € Z>¢ that

Qp(k/2,5) = 7 P47 (5, 8) + Dy, (s, B)),

L3+ 134 _
W%k)(@:(&ﬂ) — P, (s, ).

Then a quick computation shows that Proposition at a = k/2 is essentially equivalent to the equality

r(s+ 4t
Pi (5, B)Picya(5,8) = Py, B (5, 8) = M~

Notice the right-hand side is independent of s. The sequences of polynomials (pf) satisfy a recurrence rela-
tion, see [59, eq. (12.2)]. It would be interesting to know if one can show the above relation, and therefore
Proposition for a = k/2, by induction on k instead of the arguments presented here.

As we will see, the quantity Ag(a,s) arises from the computation of the discriminant in a 2 x 2 linear
system below, which is somewhat analogous to a Wronskian: the second row arises from Mellin integrals
of Whittaker functions similar to the first row, but to which a level-raising operator was applied. It would be
interesting to know if a more direct argument could be used. Our early attempts were unsuccessful.

Qp(—k/2,5) = m~1/2451

5.2. Relation with the period integral. In the setting described in Section [2, we let ¢ be a Maafl form for
I' of weight k and eigenvalue s,. In this section, we relate the twisted L-functions — to the Eichler
integral . This can be seen as a generalization of computations done in Sections A.3 and A.4 of [37].

Recall the definition of the raising and lowering operators. We will require two different forms related
to ¢. When § < Re(sy) < 1 and s4 # 1/2, let

(5.7) ¥ = Ryo.

This is a weight k£ + 2 MaaB form for I' with the same eigenvalue sy and nebentypus x as ¢. In particular, it
follows from Propositionand Theoremthat forallz € C(T'), the map (¢, z, -) extends to a meromorphic
function on C which is regular at 1/2, and that the map Ey(z) = (¢, x,1/2) is such that for all v € T', the
difference

hE (@) == Ey(vx) — jy (@)X (7)€ (2)

extends to a (1/2 — ¢)-Holder continuous function of x on R \ {7 'oo}. Note that since j,(z) € {£1}, we
obviously have

(5.8) hE (15 2) = €y (va) — iy (€)X (1) Ey (@).
When ¢ is associated to a holomorphic form, say Re(sy) = ¢/2 with 1 < ¢ <k, { =k (mod 2), then we let
(5.9) fi=Aeo - ApoAd

be the underlying Maaf form of weight ¢, same eigenvalue sy = £/2 and same nebentypus as ¢. The map z —
y~ Y2 f(2) is holomorphic of weight ¢, see [18, p. 507]. Similarly as above, it follows from Proposition and
Theorem that the map £¢(x) = £(f,x,1/2) is such that for all v € T, the difference

hf’;(f; :c) = Ef(’yl’) - j'y(x)kX(fY)gf(f)

extends to a (1/2 — ¢)-Hélder continuous function on R \ {7y !oo}. Here we have used that k and ¢ have the
same parity.
We will pass through the intermediate object

Ui((b,x, 8) = Z a(n) e(nx) |n|1/2_s,

n#0
sgn(n)==+

defined and analytic in {Re(s) > 1}. This is for convenience only, and we will switch soon thereafter to L*
itself.

Lemma 5.3. For Re(s) > 1, the following holds:
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— Ifsy # % (mod 1), then
(5 10) { (471—)571/25((7253 z, 5) = in(ga 5)U+(¢7 z, S) + Qit¢ (757 S)U7 (¢, z, 8)7
. (4m)* Y2 (), x,5) = — Qit, (5 +1,5)UT (¢, 2,8) + (s + 5)(1 — s + £)Qus, (=5 = 1,5)U (¢, 2, 5).
— If sy =k/2, then
(5.11) (27)S Y28 (¢, 2, 5) = 2k/21"(§ +s— DU (g, 2, s).
Proof. Consider first the case sy # £ (mod 1). For Re(s) > 1 we have

- d
E(9,,9) = Z“(")e(”x)/ W2 sgn(ny it (47 0] )y /2

720 0 Yy
1/2 s s— 1/2dy
= Z e(nz)(4m n|) Wk/gggn(n)ﬂw( )y
n#0 Yy
— (42 Y a(n) e(na) |n\1/2*8 i, (& sgn(n), s).
n#0

This gives the first claimed equation.
To prove the second claimed equation, we recall the action of Ry on the Fourier expansion described by [18|
eqs. (4.25)-(4.26)], frow which we obtain for all z € C

¥(2) )+ Zaw (@)W (k1 1) sgn(n).it, (47 [0 1),
n#0
where
_ —a(n) (n > 0)7
ay(n) = {(5¢ + 51— s+ Ba(n) (n<0).

We deduce that

U+(7/)7 z, 5) = - U+(¢> z, 8)7

U™ (¥,2,8) = (s¢ + £)(1 — 84 + YU (¢, 2, 5).

On the other hand, by the above computations applied to v instead of ¢, we deduce

(513) (471—)571/25(11)7 €T, 5) = Qit¢ (g + 17 S)U+ (wv Z, 8) + Qit¢ (7g - 1? S)Ui (1,[), z, S)'

Grouping (5.12)) and (5.13]) proves the second claimed equation and completes the proof when ¢ is not associated
with a holomorphic form.
Assume that s4 = k/2, with £ > 1. Then we have the explicit expression [18, eq. (4.21)]

Wi s1(y) = Yy ev?,

(5.12)

from which we deduce in the larger region of absolute convergence Re(s) > 0 that

E(p,x,s) = (4m)s~ 1/ 29k/2+s= 1/2F( +s—1) Z a(n) e(nz)n/?72.
n>0
This gives our second claim. (|

Lemma 5.4. The maps L*(¢,z,-) extend to meromorphic functions on the domain {Re(s) > 0}, which are
regqular at 1/2.
More precisely, the following holds:

— If sy # % (mod 1), then for some constants cj and Ci, we have
(5.14) L£(6,2,1/2) = c£E(6,7,1/2) + cEE(w, 3, 1/2),

where ¥ was defined in (5.7)).
— Ifsp=14/2 for 1 <l <k, { =k (mod 2), then for some constant cjf, we have

(5.15) L(¢,2,1/2) = cs&(f,2,1/2),
where f was defined in (5.9)).
The constants ¢ 5 cw , cf depend only on sy and k. They are given in and (| - ) below.
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Proof. First we assume sy # £ (mod 1). Let
8= it¢,
which satisfies Re(5) € [0,1/2). Note that
(59 + 5)(1— s+ 5) = (F* + B)(HE - ).

With this notation, the system of equations from Lemma [5.3| has discriminant Aﬁ(%, s), where Ag was defined
in (5.5). Since it does not vanish by Proposition we have the existence of functions gf; holomorphic
on {Re(s) > 0} such that for Re(s) > 1

(5.16) UF(¢,2,5) = A(5,9) 7 (g ()E(d, 2, 8) + g (5)E(¥, w, ),

and this identity between meromorphic functions holds for Re(s) > 0 by analytic continuation. More precisely,
we have by Cramer’s rule

g5 (s) = (4m) 71204, (=5 = 1,8) (s + 5)(1 = 5 + 5),
gl (s) = — (4m)* 120y, (-4, 5),
9y (s) = (4m)*" UZQm(? +1,s),
gy (s) = (4m)* 20, (5, 9).
Now, by the hypothesis (H4) and computing the action of Q) on the Fourier expansion |18} equation (4.70)],

we have for all n > 0 that

Tl %)
a(n) = 6¢7F(5¢ n g)a( n).
We deduce, for all z € C(T'),
+ . o F(S¢> B g) —
(5.17) U (¢, —x,s) = 6¢7F(s¢ n %)U (p,z,5s)
Therefore, we have
L5(0,2,8) = 5 (U (6,2,9) = eqsw “(6.,9)),
D(sp + 5)

we deduce that for any x € C(T), the map L¥(¢,z,-) also extends to Re(s) > 0. By Proposition we
have A(%,1/2) # 0, therefore both sides of (5.16) are regular at 1/2. The relation (5.14) follows with

cf=:<2zs<§71/2>>-1(gr<1/2>ﬂ:e¢£f5¢§)g;<1/2>)7 (+ € {6,0)).
S+ 5)
The coefficients here are expressed using and the functional equation of the I' function as
) 73/291Fk/2
9 (2) = cosh(mtg)D(AEE 42 )p(22k —jl2)’
G-
cosh(mtg)['(557 + i )D(5* — i)

Along with the explicit expression for A(E» 1/2) from Proposition and upon using the complement and
duplication formula for the Euler I" function, this yields

c;f = 1 \/ifilif_/; T, (1 + eq&c?s%(i?}: i Z.td))))’
(5.18) (= +ig)T(=F —i%) sm(?(Tl ;Z%),)
ci _ S 1k/2 (_ 1i6¢sm(§(%+zt¢))>.
CCEE T 5T (- i) cos(5 (1% — it,))

Note that the quotients of cos, sin on the right-hand sides simplify somehow when k € 2Z>, for then we have

cos(§(54 +ity)) _ sin(5CHE +ite))

(5:19) sin(Z(3EE —ity))  cos(Z(HEE —ity)) ’

(k even).
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Next, we assume s, = £/2 for some integer 1 < ¢ < k of the same parity as k. Then, by definition, we
have L(¢,x,5) = UT(¢,z,s). By the action of the level-lowering operator Ay on the Fourier expansion [18|
egs. (4.27), (4.28) and (4.30)], we deduce that for n > 0,

L(*F + DT(H)

as(n) = (~1)*~0/2

Hence, for Re(s) > 1

_ _peon IO »
L(¢,w,s)—U+(¢7x,s)—( 1)(k o/ F(%—f—l)l“(%)UJr(f’ ’ )

Since f has eigenvalue sy = s, = /2 and weight ¢, we can apply (5.11) to obtain
L(¢,x,s) = cp(s)E(f,x,9),

where
1 E=0)/2(9)s=1/2T /
(5.20) cr(s) == ) ( W;Z 7 ()k 0o
PTG 45— DT(5E + DI(ED)
This shows the claimed analytic extension of L(¢,x,-), and the equation (5.15) with
(=)*=9721(0)
2020(§)T (A5 + 1D (AE)

(5.21) Cf :Cf(l/Q)
(I

Remark 5.5. In the holomorphic case s, = ¢/2, another option would be to compute directly the Eichler
integral £(¢,x,s) from the Fourier expansion of ¢, instead of passing through the original form f. This
raises two difficulties. The first is that the explicit expression for the Whittaker function Wk e is more
involved, see (25, (9.237.3)], although still elementary. The second difficulty is that £ (z) vanishes completely
if k— ¢ =2 (mod 4). Indeed one way to see this is the following: use the formulas (9.237.3) and (8.970.1)

of [25] to reduce to proving that F, ¢(v) := > " _, (Z)%vm vanishes at v = —2 for odd n; by (8.380.1)

tbid., we have F,, ;(v) =T'(¢/2)~ fo (14 vt)™(t(1 — t))¥/2~1 dt, which obviously vanishes at v = —2 for odd n
by changing ¢ to 1 — ¢t. Therefore, we cannot avoid having to switch to a lowered or raised form in that case.

In practical situations, the formulas |18} (4.25)-(4.30)] provide all the information one needs to translate
data from ¢ to f.

5.3. Quantum modularity for the twisted central L values. By Lemma we may now define
(5.22) Ly(x) = L(¢,2,1/2)  or  Lj(x):=L*(¢,2,1/2),
depending on whether sy = 7’ (mod 1) or not. We recall that ¢ or f were defined in terms of ¢ in or

Theorem 5.6. When s4 £k 5 (mod 1), the maps L¢ () are quantum modular forms for T with multiplier u,
in the same sense as in Theorem meaning that for all v € T, the map

(5.23) hy (x) = L (yx) = jy (@) " x(v) L5 (x),

initially defined for x € C(T) \ {o0,7 oo} extend to a (1/2 — €)-Hélder continuous function on R~ {y~1oc}.
More precisely, for z,x' & [y oo —e,7v 1oo + €], we have

,|1/2—5

[P (2) = W3 (@')] €1 2 — @ 14 ] + [2/]) 0D,

(
The analogous statement holds for the map Ly(-) when sy = % (mod 1).
Proof. Assume first that s4 # g (mod 1). By the relation and linearity, we deduce
(5.24) hi (z) = ey hE(¢5 ) + e hE (s @),
where h&(¢; z) satisfies and h&(¢; x) satisfies (5.8). By Theorem both extend to (1/2 — &)-Holder

continuous functions of x to R \. {y7!oo}, which proves our claim in the case where ¢ is not associated to a
holomorphic form.
The proof in the case Re(sy) = £/2 is similar, invoking (5.15]) in place of (5.14). O
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From Theoremsand it is straightforward to obtain the asymptotic behaviour of hfyr and h; as z — oo
or x — v 1oo. However, the constants involved do not seem to admit a particularly simple expression in terms
of ¢oo or LT (0), s0 we refrain from carrying this out here.

Similarly as for Theorems and we obtain the following asymptotic behaviour on the generalized
period function h% define in .

Theorem 5.7. Let v € SL(2,R) and let ¢ be as above. Assume that for some n € C, we have (F¢)(z) =
njy(2)k¢(2) for all = € H. Then the analogue of Theorem holds for the period functions defined for x €
C(T) \ {00, =y too} by
- . (1)
(5.25) hE(x) o= LE(y(=x)) = njy (2)* LT (@), (sp 2
hy(@) == Lo (v(=)) = nj (2)* Ly (@), (8¢ =

Note the change of sign + in the first case, which, as we will see, is ultimately due to the conjugation.

(mod 1)),
(mod 1)).

[SIESEN ST ES

Proof. We first note that c; € R. Therefore the second equality immediately follows from .

Next, when k is even, we see from and from the fact that {4, € RU R, that ci, cjf are real numbers.
Therefore, the first equality follows by linearity from and Theorem when £ is even.

When £ is odd, then as remarked in [18, p. 508], we have t, € R always. Then a simple computation shows
that

By (5.14) we deduce
hi(x) = chE (9, ) + L hE (v, ),
and our claim follows from Theorem [3.4] O

5.4. Functional equation for the additive twist. In this section only, we assume that ¢ is cuspidal at oo,
in other words

Goo = 0.

We state a functional equation relating, for instance in the non-holomorphic case sy # g (mod 1),
(5.26) L*(g,x,5)  and  LECV(g,-7,),

where z € C(T') \ {oo} is any cusp equivalent to oo, and given v € I' with = oo, —Z is by definition

—r=7v"too (z = y00).

This depends modulo 1 only the class of v in I'so\I'/T'. Note, as in Theorem the change of sign in (5.26))
when k is odd. The content of this section is not strictly related to quantum modularity, but it is convenient
to include it at this point.

Define
= —x(i,
(5.27) vei= ()BT (s, £ 5 (mod 1)),
vy o= (—1)*020 (s, =L=k (mod1)).

If ¢ # 0 denotes the bottom-left coefficient of a matrix v € T" such that z = yoo, we let

A (4,2, 5) = (%)sr(s +2Z't¢ n 1F EZ(—l)k)F(s —2it¢ n 1 E%)Liw’x’s)’ (s¢ 2 g (mod 1)),
A (¢, z,s) = (%)sf(% — 2 +5)L(¢,x,5), (s =5=% (mod1)).

Proposition 5.8. With the above notations, for any cusp x € C(T') \ {oo} equivalent to oo, we have
A (9, m,5) = A=V (9, 7,1 = 5)

if s Z % (mod 1), and otherwise
A (¢, 2,8) = qupA (¢, —Z,1 — s).
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The special case x = 1 is Proposition 3.3 of [43], see also Lemma 1.2.(iv) of [41] for an expression in terms of
modular symbols. The special case when ¢ is a certain Eisenstein series of weight 0 is the functional equation
of the Estermann function [21], which we mention below in Section We focus on the non-holomorphic
case 54 # g (mod 1), the complementary case being similar and comparatively simpler. The proof is based
on the argument of Hecke [26] in the case of holomorphic forms. The functional equation is deduced from
the corresponding one for Eichler integrals, but thereafter one needs to prove a similar functional equation for
integrals of Whittaker functions of the shape (5.3).

The case k = 0 of Proposition was proved in [37, Appendix A], see equations (A.12) and (A.13). This
uses explicit expressions for the integrals Q;,(0, s) in , which we do not have for more general k.

The computations we need for general k are done in [18] Section 8]. They correspond to the local functional
equation at a real infinite place for the L function of an automorphic representation of GL(2), which was
worked out in |31, Chapter 5]; see also [22, Sections 2.7-2.8].

Here we sketch a more classical argument which passes through properties of hypergeometric functions. This
circumvents the induction over k carried out in [18], and highlights the relevance of k being an integer in this
context. We start by the functional equation for Eichler integrals.

Lemma 5.9. For any x € C(I") equivalent to oo, with denominator ¢, we have
E(p,x,8) =nc'~2°E(p, —2,1 — s),
where
n=x(7)i".
Proof. Recall the expression and the fast decay of ¢ near the cusps. Let z € C(T') and v € T be such

that x = yoo. We write ¢ = ¢, > 0. For z = v~ Loo + iy, y > 0, we have j(v, z) = icy. For those values of z,
we deduce u.(z) = x(7)i*. Hence, for any s € C,

E(p,x,8) = - o(2)(Im z)s_l/2 ds(z)

Yoo

/ T b)) 2 ds(2)

—loo

—x* [ T )i ) ()2 ds(2)

—loo

= Xx(1)i*e' 7*E (¢, 7,1 — s).

The previous Lemma can be applied to ¥ = Ry ¢, formally replacing k with k + 2. This yields
5(% Zz, 8) = —7701_255(¢a _i‘v 1- 8)

with the same value 7 = x(7)i* as in Lemma
We write, as in Section

L*(¢,x,5) = ¢ (5)E(p,x,8) + i (s)E(1h, m, 9).
By Lemma using the value of 1 defined there, we find
Li(d)v €z, 5) = ’r]0172s (C;F(S)g((bv 7577 1- 5) - Ci(S)g(ﬁ% 7ja 1- S))
Proposition [5.8]is therefore an immediate consequence of the following lemma.
Lemma 5.10. Define
1—s—it 1Fes(—1)F 1—s+it 1Fe
F(2¢+:F¢i))F( 2+¢+:l;¢)
s+it 1Feys(—1)k s—1i 1Fe
I( +2¢+ :szi ) )T( 2t¢+ ZZ¢)
where vy was defined in (5.27). Then we have
+(—1)
E(s) = Wi g(s)e, TV (1 - ),

cE(s) = — Wi y(s)e, T (1),

(5.28) Uy(s) =vam®t
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Proof. This statement is precisely the local functional equation at the real infinite place for the representation

of '\ GL(2, Ag) associated with ¢ |31, Theorem 5.15]. We give here a proof in classical terms which relies on

computations involving hypergeometric functions. These computations are carried out in the appendix.
Recall the definition (5.3). For s,3 € C with 0 < Re(8) < % and Re(s) > |[Re(8)|, and k € Z, let

! L5 +5)
T(s — B)T(s + f) ( - Qﬂ(_gvs) * MQB(%S))

Lemma 5.11. The following identity between meromorphic functions of s holds:

Ff (s, B) =

1-s+8 | 1F1yp(l=s—B 4 1F(D"
Fki(s,ﬁ):_(_1)Lk/2*(1¥1)/4)JF( S+ (= + )

s 1F(=1)* s—
TR+ T (o )

FEEV 1 - s, ).

Proof. First note that
+(— k
F]q:;t(saiﬂ):Fk( 2 (Svﬂ)

This is a restatement of |18 eq. (8.34)]; it follows from the invariance of Qs(a, s) by § < —f and by the
complement formula. We now use Lemma and the functions G+, Q+ defined therein. By (5.6), we have

L (Rex ) P +6) ]
F’f(s’ﬁ):_P(s+%)(r(s+%)F(S_B’”@H%%Fmﬂs—ﬂ,wﬁ;ﬂ%;%))
1 —
T T n e At e S
We then compute
Fi(s,p)  _T(-s+13) G(s— B,s+ B,s+ 155)
F];t(]'*safﬁ)_ F(S—‘r%) G:F(]'_s—’—ﬁ?l"_s_ﬁvl_s'i_l%k)
F(l—s—kﬂ) -
BT R

Using the explicit expression from Lemma with n =k — 1, we get

(1-s+8)T(1-5s-p) (1 - cos(m(B + %)))
k )

F(# — s)F(% —5) cos(m(s + 5))

Q+(s —B,s+p,5+ %) = (,1)k22571r

and therefore

Fi(s,8)  _ kgze1 TA—=s =BT —s+p) ¢ cos(r(B+5))
F,;t(l —s5,—fB) (=172 (3 —s+ %)F(% +5— g) <1 cos(m(s + %)))

and the claimed formula follows by the complement and duplication formulas for the I' function. O

We turn to the proof of Lemma Note that Uy 4(s) = =Ty 4(s), therefore it suffices to show either of
the two formulas. We prove the second. From the definition of ci(s), we have

ik (555 +ity)
+ ™ k 2 ¢ k
= — Qi (5, 8) E oo, (£.5)).
() 4F(s+it¢)r(s—z‘t¢)( te(=2>9) CT(EE + ity) el S)>

We express this as ¢ (s) = iﬂs_l/QFkiE“’ (s,itg), which yields

+ .
C¢ (S) 2s—1 Fki€¢(svlt¢)

(-1 =7 £(—1)ke S
cw( " (1-s) Fk( )¢(1—s7zt¢)

Using the previous lemma concludes the proof.
When sy = ¢/2 = k/2 (mod 1), we do not reproduce the proof since it is similar and much simpler, since
we have in that case the explicit expression (5.20]). O
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6. EXAMPLES

In this section and the following ones, we will be interested in applications in which the group I' is an
arithmetic group, and more precisely a Hecke congruence subgroup I'g(q) (see [29, p. 44]). This is our primary
motivation for the above results.

Let ¢ € Z~g, and denote by T'g(¢) the Hecke congruence subgroup of level ¢. The associated set of cusps is
given by C(T'o(q)) = QU {oo}.

Let ¢ € A(To(q), X, k). If sy # £ (mod 1), then we have already defined in and the central L-
value Lj;(x) If s, = & (mod 1) with k& > 2, on the other hand, we have merely defined by and
the single value Lg(z) = Ut (¢, x,1/2). We now take advantage of the fact that the symmetry w := (_01 ?)
normalizes I'g(¢), and more precisely, if v = (¢ %) € T'y(q), then wyw = ( % _db) € I'p(q). This easily implies
that the map

x> Ly(—x)

satisfies the same quantum modularity relation as Lg in Theorem [5.6, The same is therefore true for the maps
(6.1) Ly (z) == 5(Lg(w) = Ly(—2))

which are the even, resp. the odd part of Ly(-). Thus Ljf () is now defined in all cases, and clearly satisfies
Theorem Moreover, we check that, setting

TE/ N\ . +(—1)*

b (@) == L (v(=)) = njr (@) L5 (@),

we have
1
hi (z) = 5 (15(2) + hayr(—2)).

Here we recall our convention that we pick the representative of v in PSL(2, R) with ¢, > 0 in the notation j, (z),
and in particular jo o (2) = cz —d (with ¢ > 0). Therefore, under the hypotheses of Theorem the
equation ([5.25) also holds when sy = k/2 (mod 1) with the definition (6.1]).

6.1. Hecke—Maaf} cuspidal newforms. We will now review the theory of newforms. We refer to |29} Section
8.5], (28} Section 6.6] for a more detailed account. Let x be a Dirichlet character modulo ¢ and define a character

of I'o(q) by
(25) = x(d),
which we also denote by x (by slight abuse of notation). In this arithmetic setup we have a huge family of

commuting linear operators acting on the space of automorphic functions A(I'o(q), x, k) for each k € Z>o.
These are the Hecke operators |18| eq. (6.1)] defined for n > 1 as

Toé(z) = # dox@) > o (azdij) '

ad=n 0<b<d

A MaaB} cuspform ¢ € A(To(q), x, k) is called a Hecke-Maaf$ cuspform if it is an eigenvector for all Hecke
operators T,, with (n,q) = 1 and normalized so that a(l) = 1. We furthermore, say that ¢ € A(To(q), X, k)
with k > 0 is a Hecke—-Maaf$ cuspidal newform if it is not of the form

kaz tee Rgu(dz),

for a Hecke-Maaf} form u € A(To(q’), x, £) of level ¢ < g with d¢’|q and weight £ > 0 congruent to k modulo
2. Notice in particular that if y is a primitive Dirichlet character modulo ¢ then all Hecke-Maafl forms
¢ € ATo(q),x, k) with k = 0,1 are new. Furthermore, if ¢ is Hecke-Maaf} cuspidal newform not of weight
0 nor 1 then ¢ is holomorphic, meaning that ¢(z) = 3*f(z) for some cuspidal holomorphic Hecke newform
f€8k(To(q), x) of level g, weight k and nebentypus x.

It is a consequence of ‘multiplicity one’ [18| p. 520] that a Hecke-Maaf} cuspidal newform ¢ is automatically
an eigenfunction for all Hecke operators T, with n > 1. Let As(n) denote the Hecke eigenvalues of ¢ meaning
that T,,¢ = Ay(n)¢ for n > 1. It follows from the properties of the Hecke operators that we have the Hecke
relation [29) (6.24)]

(6.2) Ap(mn) = " p(d)xe(d)Ag(m/d)Ag(n/d),
d|(m,n)
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for all m,n > 1 (here it is crucial that ¢ is assumed to be a newform). In particular n — Ay(n) is (weakly)
multiplicative. The Fourier coeffcients at oo of ¢ can be written as

ag(n) = Ag(n)n="/2,
which implies that for x € C(T(q))\{occ} = Q, we have
£ cos(2mnx) s
L*(¢.2,9) Z)\d’ { isin(2mnx) }n '

n>1
Here the definition is given by . or by - depending on whether s = £ (Inod 1) or not.

One has the trivial point-wise bound A\4(n) < n'/2, which arises from the bound |a(n)| < 1. This last
bound holds in the general setting for I' as discussed in Section [2f (see [29, Theorem 3.2]). The Ramanujan—
Petersson conjecture predicts that Ay(n) <. n® for any € > 0. This is a theorem due to Deligne [16] in the
case where s, = &, which means that ¢(z) = y*/2f(2) with f € Sx(To(g), x) a holomorphic Hecke cuspform.
In general it is known by work of Kim and Sarnak [35] that [\s(n)| < d(n)n/¢4.

Consider the involution

W(Lk : A(FO(q)a X5 k) — A(FO(Q)7 X k)7
defined by

oo = (1) 57

Notice that W, ;, is not linear but skew-linear. It can be shown that W, ; commutes with the Hecke operators
and satisfies

(6.3) Wy koK = KWy i,

By multiplicity one we conclude that for any Hecke-Maaf} form ¢, we have

Wq,k¢ = 77q5¢a

for some 74 of absolute norm 1. In the terminology of Section this means that a Hecke—Maaf} form is
automorphic of weight k for the group G, generated by I'g(¢) and W, where

Wy = (2 o ),
is the Fricke matrix of level ¢. Thus we conclude from Theorem and Theorem that the central values
Li (z) = L*(¢,x,1/2) define (generalized) quantum modular forms, meaning that

hE(x) = L (va) — 3 (@) x (1) L (@),
for v € T'y(q), as well as
hE (@) i= L3 (1/q) = no(—sen(@) "L " (@),

initially defined for x € Q/{y oo} (resp. z € Q/{0}) extends to a (1/2 — )-Hélder continuous function on
R/{y oo} (resp. = € R/{0}). For applications to reciprocity formulae, we will need precise information on

the discrepancy function h% as follows.
q

Proposition 6.1. For ¢ a Hecke-Maaf cuspidal newform of weight k with sy # k/2 (mod 1), we have as
T — 00

L(I) = _77¢€¢L(¢» 1/2) + O¢,€(|x|71+6)7 t=+
Wa O¢’€(|x|_1+8)7 +t=-,
for k=0, and
- eﬁﬁ%ﬁﬂu¢w2+o (lz|~1*¢), +=+
i( ): Mg cosh(7te) ’ ¢, ’ ’
W O (|| ~179), +=-
for k=1. For ¢ a Hecke-MaafS cuspidal newform of weight k with s4 = k/2 (i.e. holomorphic), we have

hE_(z) = § T L(8:1/2) + Oge(jal7F9), £ =+
W Ope(|2|7+9), +=-
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Proof. We proceed by using Lemma [5.4] combined with Theorem Implied constants are allowed to depend
on ¢ and €. If s, = k/2 (meaning that ¢(z) = y*/2f(2) for f € Sk(I'o(q), x) a holomophic cupsidal Hecke
newform) then we have
+
h%q(x) S Cf(5¢(0)2 £€4(0))
Using Lemma in reverse, we get the wanted in the holomorphic case. Similarly we have for & € {0,1}
and sy # k/2 (mod 1)

+O(|z|~).

(6.4) hE (@) = —i*nsc; T E4(0) = i, T E,(0) + O(al )

(6.5) = =iy (e Es(0) - cw(‘” £4(0)) + O(lz|7+9),
using that 7y = 1, which follows from . Recall that

Ly (2) = c;Es(x) + €€y (),
with ci, ci defined as in . Consider the matrix

+
Cy = %
o Cu)’

which has determinant

(6.6) cheg — e =o(1+en)(—1-eh) —o(1-eT) (=14 €T) = ~2064(Th +T2),
where
7.(.2—2—k
0 = 9

DOSE +i) NS PG )N — i)
and

- cos(Z(HE +ity)) - sin(Z (32 +ity)

sin(Z (£ — ity)) cos(Z (LHE — ity))

Since

2 cos(mity)
sin(m(EEL —ity,))’

we conclude that Cy is invertible (since ity ¢ 1/2 4+ Z). Now by simple linear algebra we get that

T+ 15 =

+ - -+
c,c, +c,cC ctet + ctet
cEEs(w) — chEp(r) = L2V LH(a) - L2V L7 (a).

ChCy — CyCy c¢c¢ —c¢cw

For x = 0 we have
L;(0) = ~L;(~0) =0,

and

L{(0) = L(¢,1/2),
where L(¢,s) = 3,51 Ap(n)n™° denotes the (standard) L-function of ¢. Using that

o(14e,)(—1-eB) +o(1-eT)(— 1% eT)
(6.8) = o(=2(1 £ T'Ty) + e5(Ty — o) (1 F 1)),
this yields

(6.7) cic; + c;ci

+ — ==
+ + CyCyp T CyCy 20+ TN Ts) —eg(Th — T2)(1 F 1)
Es(0) —cEy(0) = —F—L(¢,1/2) =
“ +(0) v v(0) = ChCy —CyCy (¢,1/2) 2¢(Th + T3)

For k =0, we have Ty =T, =1 and for k =1

L(¢,1/2).

T = —tan(%i%), T = cot(git¢).

Plugging this in gives the wanted. ([l
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6.2. Eisenstein series. Let ¢1,q2 € Z~¢ and x; (mod ¢;) be primitive characters, and k¥ € {0,1} be such
that (—1)* = y1x2(—1). For Re(s) > 1 define the twisted Dirichlet series

Dy o (2,8) = Z(X1 xxz2)(n)e(nx)n™°.

When z € Q, orthogonality of additive characters yields an expression of D, , (2, s) as a linear combination
of the Estermann function D 1(x, s), which is known [21] to have a meromorphic continuation to C which is
analytic on C \ {1}. We deduce that the map s — D, ,,(x, s) extends to a meromorphic function of s which
is analytic on C \ {1}, and also at 1 if x ¢ Z. When x; = x2 = 1, this is Estermann’s function [21].

We are interested in the central value

DX1»X2 (1’) = DXl»X2 (:L'v 1/2)

Theorem 6.2. The map D, ,(+) is a quantum modular form of weight k for the Hecke congruence group I'o(g142)
with nebentypus x((% 7)) == xixz(d), in the sense that for all v = (% 7) € To(quqz) with ¢ # 0, the map

ho () := Dy, . (72) = sgn(ez + d)*x1X2(d) Dy, x, (@)
indtially defined on Q . {—d/c}, extends to a (1/2 — €)-continuous function of x € R~ {—d/c}.
Proof. For Re(s) > 1 and z € H, define as in [59}, Section 3.2] the Eisenstein series

1 (2y)°x1(c)x2(d) [ cqaz +d \*
(69) Bos(#9)i=g 2 (e dl)
. deZ lcqaz 4 d q2
(e, d)=1

It is proved in Section 3.2 4bid. that E,, ,,(-,s) is a MaaBl form for the Hecke congruence group I'g(gig2), of
weight &, nebentypus x((5 7)) := x1xz(d), and eigenvalue s. Moreover, it is proved in [59, Proposition 4.2]
that the modified series

S
'(_(J;/ ™)
i~*7(x2)
extends to a meromorphic function of s € C which is regular at s = 1/2.

Define ¢ = E} ., (2,1/2). By [59, Proposition 4.1] evaluated at s = 1/2 (see the proof of Proposition 4.1

ibid.), we have the Fourier expansion with
(1 *X2)(n)
Vn
This is Ay, .y, (7,1/2) in the notations of [59} eq. (4.2)]. We deduce that
Dy, ixa(7) = Uy (2) = 5(L () + Ly ()
in the notation . Theorem yields the desired conclusion. O

(6.10) Er  (z,8):=

X1,X2 (SJF g)L(Q&XlX?)EXl,)@(ZaS)

a(n) = (n>0).

The behaviour at infinity of h., can be spelled out using the expression [59} eq. (4.1)] for the coefficients Ay, By
in (2.5). We have explicitely
1 =q =1
B¢ _ ) (ql QQ. )7
0 (otherwise),

Yo — log(4m), (1 =q=1),
i* c
Ay = %mr(%)L(LX% (1 =1 < qo),
Oa (Q17 qQ > 1)
Proposition 6.3. As x — +o0, we have an asymptotic expansion of the shape

ho(z) = X(7) (A |2 — o] + Bl & — 20]"/* log | — @] + C") + Oy xare (|21 7).

When k = 0, the coefficients are given in terms of Ay, By by

171 l+ir 174
Al = A 7(77 1 2)3
+T Ty ¢ 5 9 T g 1082)De
1F2
Bl = ——Bj,

C'= - X2(*1)DX1,XQ(*~TO)-
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When k =1, the coefficients are
+1+1
2 )

L= v
B, =0,
C;: = _DX17X2(x0)'

Proof. In the proof, implied constants are allowed to depend on x;,y and €. Assume first k¥ = 0. Then we use
the expression

Ut (¢,2,3) = (D0(0,5) (g5 (3)Es(2) + g (5)E4(2))
given at (5.16). In our case, we find
1y = ﬂ gr (L) = Lm
2 r/4)* v T(3/4)2

In particular, we deduce
1 1
h = (7h£ z) — ———hE(1, )
By (18, eq. (4.29)], the coefficients Ay, By in the cuspidal expansion ([2.5) for ¢ = Ro¢ satisfy
Aw = %Aag + B¢, Bw = B¢>‘
By Theorem we deduce as x — £o0o the asymptotic formula
hy(z) = X(7)< "z — x0|1/2 + B |z — ﬂco|1/2 log |z — xo| + C") + O(\ac|71+6)7

where the coefficients are

! 1 1
€= = Vr(aapte) + srgrapte),

p_ (Yox(1/2)  Y24(1/2)
Bi_( 35/4)2 a 41“(i3/4)2 >B¢’

/ ( Yo+ Tz,i(1/2)>A¢ ( 0.+(1/2) Y5 4(1/2) /2,:|:(1/2)) ,
T .

L=

(1/4)>  4AI(3/4)?
Using the expressions ([4.17), we get
Moreover, using the expressions , and , we find
C' = —esUT (—xy).
By [59, Proposition 4.1, eq. (4.2)], we have €, = x2(—1), which gives the claimed value of C".

In the complementary case k = 1, we have B = 0 necessarily. By (5.15)), we express UT (¢, z, 3) = Ly(z) =
\/%7545(:0), and therefore

T(1/42  2T(3/4)2  AT(3/4)2

“log2) By, B, =-—'B,

1
hy(z) = —

@) = =
By Theorem and the expression (4.17)), we obtain

hy(2) = x(v)(x/TrﬂQH

he (¢, ).

& — x0|"? — Ly (o)) + O(jz| ).
[}

Similarly, we can consider the action of the Fricke involution Wq as defined in the previous section on the

Eisenstein series ¢ = £} (z,1/2). Consider the operator

(6.11) (XN)(2) = f(-2),

for f:H — C. Then W, is the composition of X with the usual action of the Fricke matrix (2 _01 ) Using the
definition of the Eisenstein series one sees directly that

(6.12) YEX17X2 (2,8) = x2(—1) Ex7 55 (2,5),
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where E,, ,,(z,s) denotes the uncompleted newform Eisenstein series. Combining this with the calculations
of [59, Section 9.2] and the functional equation [59, Proposition 4.2], one gets for s = 1/2

N . z k
(613) WqEX17X2(Z71/2) =X le(_l) <Z|> EX27X1 (271/2)]
5 k
(6.14) — DD () Bawar)
1/2 k
6.15 _ e TOLLxaxe) (2N g g
(0:45) 0,"*7(x2) L(1, X1%2) <Z|> el 172

By linearity and taking into account the conjugation in (6.11f), we deduce

WoE, o (51/2) = <—1>’“ijq<z>w;m (2,1/2).

This implies that Dy, ,,(-) defines a generalized quantum modular form in the sense of Theorem with the
value 7 being

_ R T(XT)T(X2)
Mxi,x2 = (-1) (Q1QQ)1/2 )

which indeed does satisfy |1y, .| =1 as should be the case. We have the following behaviour at infinity.

Proposition 6.4. The map

th(x) 1= Dy, x> (1/(9122)) — Ny x Sgn(x)kamm (z)
satisfies, as © — +o0o, the asymptotic expansion
1/2 1/2 —14e
hip (@) = Ty o (Al |22 + Bl [ ? log |2] + C') + Oy, e (l2] ),
with Al , By as in Propositz'on and
CI: _X2(_1)L(X171/2)L(X271/2)7 k:O,
_L(X171/2)L(X271/2)7 k=1
Proof. We proceed by using Theorem [5.4] combined with Theorem [4.6] noting that

Dy xe (0) = L(x1, 1/2)L(X2’ 1/2)'

The Estermann function. The Estermann function [21]
D(x) := D11(z),
is a particular case, which was studied in [4]. As a consequence of Proposition 1 of [4], the map
hp(z) :== D(—1/z) — D(z)

extends to a (1/2 — ¢)-Holder-continuous function on R ~\ {0}. Theorem recovers this statement by a
different proof.
Regarding asymptotic formulas, in [4, Corollary 9] (see also [6], the formula above (9.10)), it is shown that
for x € Q, x — 0 with sgn(z) = %1,
ho(x) = A |o| " + Bl 2]~ log || = D(0) + O(x),

with

1+4 —1xirw 1+4
—T(’Y — log(87)) — 9 9 B = :

It is easy to check that this matches the expansion given by Proposition [6.3

Ay =
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The representation function as sums of two squares. Let 7(n) := [{(a,b) € Z?,n = a® + b*}|. It is classically
known (see |30, eq. (1.51)]) that
r(n) = 1(1x4)(n)
where x4 is the non-trivial Dirichlet character modulo 4. For € Q and Re(s) > 1, define

R(z,s) := Z M.

Then we have
R(x7 S) = iD17X4 (l’, 8)
for Re(s) > 1, which gives the holomorphic continuation to C \ {1} of R(x,-). Let
R(z) :== R(z, %).

Then by Theorem the map R is a quantum modular form of weight 1 for I'g(4). Since I'y(4) is generated
by {(*1),(})}, this amounts to saying that the map

hr(z) == R(55) —sen(x + 1)R(z)

extends to a (1/2 — e)-Hélder continuous map on R~ {—1/4}.
More precisely, in this case, the spectral parameter s, = 1/2 is half the weight k = 1, so ¢ is related to a
holomorphic form of weight 1. By applying Lemma [5.4] in the second case with ¢ = k = 2, we deduce

R(z) = 4\/1%

We have also ¢oo(y) = (/7/2)y"/2, so that upon applying Theorem and computing lei(%), we obtain

E(p, x).

hr(z) = %(ﬂ i) |+ 1/4]Y2 —iR(—1/4) + O.(|Jz| ")

as ¢ — £oo.
Similarly since R(-) has real nebentypus, we get that

oy (¢) = R(5) — isgn(a)R(z),
originally defined for 2 € Q* extends to a (1/2 — ¢)-Hélder contuous map in R*. Here Wy = (§ ') is the
Fricke matrix of level 4. Furthermore, we have
-
16

as x — Foo using that 7, = —i.

(o) = 6 (10 o = C0/2)L01/2,x0) + Ol ),

7. NORMAL DISTRIBUTION IN THE CUSPIDAL CASE
In this section, we work with the full modular group and consider cuspidal forms:
[ =SL2,Z), o =0.

If we assume that ¢ is a Hecke-Maaf} cusp form then the coefficients a(n) are real numbers, cf. |18} eq. (6.6)].
Using Theorem [5.6] we can answer completely the question of the asymptotic statistical distribution of the
values of Ly () as  runs over the set of rationals of denominators at most @, and Q — co. This generalizes the
case G = SL(2,Z) of [43| Theorem 1.1] and [6, Theorem 2.3], which were concerned with holomorphic forms
(see [48] Theorem 1.11], [38, Theorem C] for related results for congruence groups).

Given @ > 1, we let

Qg :={xeQn(0,1),den(x) < Q},

where den(z) denotes the reduced denominator of x, with den(0) = 1. Define
Po, Eq. Vo

to be the uniform probability measure over €1g, and the associated expectation and variance.
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7.1. Distributional result: characteristic function. Let S = (1 *1), and for z € Q . {0} and ¢ a Maafl
cusp form, define

g; (@) := —hs(¢,z) = L (x) — Ly (~1/x).
By Theorem [5.6] this map extends to a (1/2 — ¢)-Holder contmuous function on R ~ {0}. By Theorem
and , the maps ¢+ 5 admit limits at 0 on both sides, and at Foo, which implies that h is bounded. By

Euchd’s algorlthm and the 1-periodicity of LT, we deduce

Zg¢ J lTJ 1 )—i—Lfg(O),

where T : (0,1) — [0,1), Tz = {1/z} is the Gauss map, and r > 0 is the least integer such that T7x = 0.
In particular, the boundedness of g* along with the worst-case estimate for the complexity of the Euclidean
algorithm |36 Corollary L, p. 360] immediately implies the following rough but useful bound.

Lemma 7.1. For x € Q, we have Li( ) = O(1 + log(den(z))).

We now consider r € N, ¢1,. .., ¢, distinct cuspidal Hecke-Maafl forms. Note that L:gj () € Rand Ly (z) €
iR. Define the non-normalized vector

(7.1) V(z) = Vs, 4. (x) = (L:;;1 (x),iilL(gl (z),... ,L:;T (x),iilL;T(x)) e R*", (den(z) > 1)

where we set V;t(O) = 0. Our aim is to show that V;t(x) converges, under a suitable normalization, to an
2r-dimensional Gaussian random vector. We consider the linear form on C?" defined at

t=(tf,t,...,t5 ;) e C*

by the value
Litz) =V(@)T = 3 (t;L;gj (2) + 7L, (x)), € Qo,
1<5<r
We define

U(t) = ]EQ(QXp (L(t, x)}).
Proposition 7.2. For some §,ty > 0, and some maps U,V holomorphic on B := {t € C*",|t;| < to}, the
estimate

(7.2) w(t) = exp {U(H)1og Q + V(1) + 0(Q ")}

holds for t € B. The implied constant may depend on (¢;). Moreover, for some row vector p € C" and
some d x d symmetric non-negative matriz 3, we have

1
(7.3) W(t) = exp { (£ log @ + 5t log Q + O(Q™ + O(|1¢]* 1og Q + |1t + Q™) }-
Proof. We apply Theorem [6, Theorem 3.1] with m < 2, d < 2r, and the maps ¢;, j € {1,2} given by
bi(x) = (95, (1) '), i gy (1) '),...) e R*".

By Theorem [5.6 the map ¢; is (1/2 — ¢)-Hélder continuous, and by Theorem [.1] and the relation (5.24)), it is
bounded. Moreover, by (3.2)), for all n > 1 and z,2’ € [0,1] we have

<<5 Tlc |.’]’] z/|1/276

92 (1/(n+2)) = g (1) (n+2"))| = |95 (~n —2) = g5 (~n — )

for some C' = C(¢;), and similarly for gjfj(—l/(n + x)). Therefore, the hypotheses (1)-(3) of |6, Theorem 3.1]
are satisfied with

ko =1/2—¢, ap =3, Ao = 2 min{1/C(¢1),...,1/C(¢;)}.
This yields the claimed estimate for ¢ € B N R?". The holomorphicity of U,V and the fact that holds
throughout B comes from the boundedness of ¢;, as in [2]. The estimate follows from a Taylor expansion

at t =0. O
By reasonning similarly as [6, eqgs. (9.7)-(9.9)], we have
. Eo(V(x)) o Eo(V(@)V(2)
7.4 y=1 —— Yy = lim ————~,
(74) B = 8% logQ = @) Q50 log @

Our next task is to evaluation these two quantities.



36 SARY DRAPPEAU AND ASBJYRN CHRISTIAN NORDENTOFT

7.2. Computation of the first and second moment.

Proposition 7.3. Let ¢ and ¢ be Hecke-Maaf cusp forms of level 1, normalized so that as(1l) = ay(1) =1,
and €1,e2 € {£1}. Then for some § > 0 and some by +, ¢4+ € C, we have

(7.5) Eq(Lj(x) = 0s(Q'?),
(7.6) Eq(Ly (2)%) = £L(sym® ¢,1)log Q + by + + 04(Q "),
(7.7) Eq(Ly (@)L (%)) = coupx +Opp(Q°) if o # .

Here L(sym? ¢, s) is the symmetric square L-function of ¢ [29, Chapter 8.2].

The value L(sym? ¢, 1) can be expressed in terms of the appropriate Petersson inner product (¢, ¢), see [30}
eq. (5.101)] for details. Note that Lj(aﬁ)2 = i|Lf§(m)|2, since in our case a(n) € R for all n. Note also
that Eg (L$ (z)L,, (z)) = 0 because of the symmetry z <- —z. The value ¢y, 4 could be expressed in terms of
the Rankin-Selberg L-value L(¢ x 1, 1) and the constants in the functional equation, but we will not use it.

When ¢ is associated to a holomorphic form, Proposition |7.3| corresponds, up to the size of the error terms,
to the first few cases m +n < 2 of Theorem 5.10 of [43]. An analogous estimate, but for fized denominator,
is established in [9, Chapter 9]. The argument is very different and much more difficult. We cannot, however,
quote them in a straightforward way, due to the coprimality condition on the denominator. This is likely to
change in the near future [57].

Assuming Proposition for a moment, we readily deduce the computation of the first and second moment
of the random vector Vy, .. 4. (), and therefore the values of y and ¥ in (7.4).

Corollary 7.4. Let ¢q,...,¢, be distinct Hecke—Maafl cusp forms of level 1. Then

(7.8) B, = (0,...,0), 4 = Diag(0?,02,02,05,...,02,02),

where 0; = \/L(sym? ¢;,1).

Proof. This is immediate for p using (7.5). The coefficients of the matrix ¥ are indexed by pairs (¢;,+). The
coefficient of indices ((¢, 1), (¥, e2)) is given by

Eq(i¢1 222 L5 (1) L3 (x))

I
anoo log @

By (7.6)), this is L(sym? ¢, 1) if (¢,e1) = (¥,e2), which corresponds to diagonal elements, and otherwise this

is 0. U

The proof of Proposition starts with the following approximate functional equations.

Lemma 7.5. For some numbers uf;w and some smooth functions V* : R, — C, we have

Ap(m) Ay (n) _ Tmn
+ + _ ¢ P + + + +
L¢ (I)L'¢ (I) == Z m (Cm,n(‘r) + :u¢7'¢cm,n(x))v (den(x)z)
m,n>1
Here
Cih () = cos(2rma) cos(2mnx), Copn(x) = sin(2mrmz) sin(27n),

and writing x = a/q in lowest terms, we have
Z=—d/q (mod 1) (ad=1 (mod q)).
Moreover the functions VE can be chosen to satisfy, for any fized a € N and A > 0,
(VE) D (y) Cangy *(L+y) "
Moreover ;Lj;w =1if p=1.

Proof. This is obtained by an argument identical to |18, Lemma 9.1], specialized at s = 1/2, see also Theo-
rem 5.3 and Proposition 5.4 of [30]. O

Taking expectations of the periodic exponential will give rise to Ramanujan sums.
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Lemma 7.6. Given a map f: N — C and m,n € Z, we have
1

Eq(Crp () f(den(z))) = 2100 Z pFI2 Z dp(q)Lapm—nn f (qd).
Q ne{—1,1} q,d>1
qd<Q
Proof. This easily follows from |30, eq. (3.2)]. O

Proof of Proposition[7.3 All implied constants in the proof will be allowed to depend on ¢, and e. First
note that we have Eq(L, (z)) = 0 by symmetry x <— —z. Consider s € C with Re(s) > 1. Writing out the
central L-value and using Lemma [7.6] we have

Eq(L*(6.2.9)) = Ql > (o) 3o N

d,q>1 n>1
dq<Q

We expand A(nd) using the Hecke relations , to get

Eq(L™(¢,2,5) Z Zc” ’ A(@d/r) Y Mn/rin”

dq<Q r|d ’ﬂ|>1
_ L(d), S) Z T172sd1*5‘u(q)‘u(r)x(’l’))\(d)-
|QQ‘ rdg<Q

At this point we may set s = 1/2 and bound trivially
> dVPu(g)u(r)x(r)A(d) < QY0

rdg<Q

by virtue of the bound \(d) < d?*¢, where # < 7/64 is a bound towards the Ramanujan-Petersson conjecture.
Since |Qg| < Q?, we deduce our first claim since EQ(L;f(x)) < Q /20t « Q1/3,

We switch to the computation of Eg (L;f(x)L$(x)), the case of L ()L, (z) being similar. We first motivate
the upcoming arguments. Using the functional equation and orthogonality, we expect

Eq(Lj (x) Ly (2)) ~ QZZZM (n) QQZZ)\dn JAy ()7 (m —n),

g<@Q m n m n
mn<<Q mn<Q?
qlm—n
where MN < Q% and mg(h) == 1% 111,01(h). Considering m < n and m fixed, the sum over (n,q) is an
instance of the shifted convolution of Ay with a modified divisor function 7g, for which we have very good
error terms using Voronoi summation with Dirichlet’s hyperbola method, as we will do here. This was used
for instance in [49, Lemma 8.1]. If we wanted an estimate for a single large ¢, as in the conjectures of Mazur-
Rubin [41} section 4], then we would be faced with the shifted convolution of Ay with Ay with a large shift,
which is much more delicate |9, chapter 9].
First we smooth out the sharp cutoff on the denominator of = in the expectation Eg. To do this, we
let Y = Q° for some fixed § € (0,1/10] to be set later, and we bound, using Lemma
1

2l > L} (2) L ()] < (logQ)*Y .
Q z€NqQ

Q(1-Y 1) <den(z)<Q
Let Wy : R — Ry be such that 1jg;_y-1) < Wy < 1) and HWO(j)HOO <; Y7. We get
Eq(Lj ()L (2)) = EQ(L} (z)Lj (x)Wo(den(z)/Q)) + O(Q°Y ™).

Denoting for convenience V = VT and p = ”;w’ we have by Lemma
_ 1 + I qd Ap(Mm)Ay(n)  mmn
Eq (L7 (z) LY (x)Wo(den du(q)W, % .
QU@L DWolden(@)/Q) = 51013 3 dua O(Q)m;l = (Gar)

d|m=£n
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The condition gd < @ was dropped due to redundance with the support of Wy. The diagonal + = -1, m =n

contributes
2

Pa - ity St () £ MR (55

n>1
where p(q) = > dla du(g/d) is the Euler totient function. By the complex analytic properties of the Rankin-
Selberg convolution ¢ x v [30, Chapters 5.11-5.12], we have, for some sufficiently small 6 > 0,
2

SR () - ((£) Frosto i1+ 20) 01

n
n>1

Here V (u) is the Mellin transform of V', and by [30, eq. (5.13)], we have Res,—o(---) = P(logq), where P(X)
is either:

— a degree 1 polynomial with leading coefficient L(sym? ¢, 1), if 1 = ¢,
— a constant polynomial with value L(¢ x 1, 1) if ¢ # ¢.
Summing this over ¢, d, we find
1+ _
Do = T“Paogcg) —1+0(YQ™).
Introducing a partition of unity as in e.g. [9, Lemma 2.27], we have

Eq(Lj ()L (z)) = Dg + O(Q°Y " + (log Q)* sup [A+(Q1, D, M, N))),

where
@) gk S (o ( a
5 By () (.
d|m+tn+£0

the function W is smooth and supported inside [1/2,2], and the supremum is over
Q1,D,M,N > 1, M < N,

QD <Q, MN<Q
We focus on A, the case A_ being similar. We have by the triangle inequality

el T Y T o] T Sz

q=Q1 d=<xD mx=xM n=—m (mod d)

(7.9)

We estimate the sum over n by Voronoi summation [9, Lemma 2.21] getting

2 Alf/(ﬁn)w(;)v<&?2) fZZ Z/\w )S (m, F; 1) W n (n/r%),

n=—m (mod d)

where S(m, Fn;r) is the Kloosterman sum [30, eq. (1.56)] and by |9, Lemma 2.23] we have

Q~'%, (y < Q°/N),
(Ny)=2=¢ (y < Q°/N).

Using the Weil’s bound for Kloosterman sums |30, Corollary 11.12], we get

S V(G < e T Ty X e ()"

n=—m (mod d) n«Qer2 /N

‘WiN(y)‘ < NQ*® x {

We use the Rankin-Selberg bound }, \)\w(n)\ < X, the bound ¥ < 7/64 < 1/4 and the elementary bound

2

> (i) <oy

nKQer2 /N
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Combining these estimates by Cauchy’s inequality, we get

Z Aw\/(g)w(;)v(gg)”) <Q 4 Z 3/2 « Q°\/dJN,

and summing this over m, d and ¢, we conclude our first bound

(7.10) A4 (Q1,D,M,N) < Q™ *Q, D> M2 N~1/2,

n=—m (mod d)

The same bound holds for A_. This bound will be acceptable for D smaller than N2/3, however the smooth
average over d allows for a more effective estimate as soon as D > v/N by switching divisors. We arrange

A(D,Q1,M,N) < Q2M1/2 > Pem)]1B(m,q)l,

¢=<Q1 mx=xM

Bomg =S (E) X w(g) () (F)

n n=—m (mod d)

where

Changing d' < (m + n)/d, we get

_ Ay(n) o
- d; ; NG WQ(N)’
T on=—m _(mod d")

where

e W (") ),

Note that here we have used the fact that m + n # 0. The support condition here implies d’ < 8N/D for any
non-zero term in the sum. The Leibniz differentiation rule yields ‘WQ(J )(x)‘ <¢,j Q°Y7. Having this at hand,
we may now apply Voronoil summation as above and bound trivially the dual sum. We get
[B(m,q)| < YOWQ® Y~ /d'/N <YO°WQ ND™?/2,
d'<N/D
Summing over m and ¢ and using (2.7]), we obtain our second bound
(7.11) A(D,Q1,M,N) <« YOWQ 2+Q,D~'/2M'/?N.

The same bound holds for A_, since we have removed the diagonal m = n. Under the constraints (7.9)), we
have

Q72 min(QlDS/QMl/QNfl/Q’Q1D71/2M1/2N) < miH(D3/2N71,D73/2N1/2) S Q71/4-

Therefore, we deduce
Eq (L} (z)Lf(2)) = Do + 0:(Q°(Y ' + YW@~/
and by choosing the exponent § > 0 of Y = Q° sufficiently small in terms of the implicit constant in O(1),
+
we get (7.6) with by 1 = P(0) — 1 in case ¥ = ¢, and cp .+ = i iy 1 # ¢. The analogous computation
for Ly (z)? yields an estimate with a possibly different constant term by — and leading coefficient P’(0) =

—L(sym? ¢, 1).

7.3. Distributional result: normal distribution. We can now use the estimates ([7.3]) and Corollary
in the classical Levy continuity theorem, we obtain the convergence of V*(z) to a complex Gaussian law. We
recall the values o; := y/L(sym? ¢;,1) > 0 and the matrix ¥ defined in Corollary

O

Corollary 7.7. Given a measurable set R C R?*" with measure 0 boundary, we have

V(z)
Po (w c R) SPN(O,D)€R) (Q — o),

where N'(0,%) represents a random centered Gaussian vector in R?*" with covariance matriz 3.



40 SARY DRAPPEAU AND ASBJYRN CHRISTIAN NORDENTOFT

Proof. By partial summation, it suffices to prove the same limiting statement for

V(z)
Po( €R).
“\VIog Q@
This is an immediate consequence of Proposition and Levy’s continuity theorem, see e.g. [55] corollary 2.8].
O

With more work, we could obtain an error term of the shape O(1/+/log @), with an application of a multi-
dimensional version of the Berry-Esseen theorem. We haven’t, however, found a ready-to-use statement in the
litterature, therefore we restrict to a quantitative statement.

We believe that this statement holds without the extra average over g:

Conjecture 7.8. In the context and notations of Corollary[7.7, we have

V(a/q)

2D e (Z/qZ) SPW(0,5)€R) (g — o0).
{ Vlogq

7.4. Moment calculations. Using the complex moments estimate in Proposition and the computation

of the first two moments in Corollary we readily deduce an estimate with power-saving for all moments,

see |2 eq. (2.12)].

Proposition 7.9. Let ¢1,...,¢, be distinct Hecke-Maaf$ cusp forms, ki,...,kp,l1,..., 0. € Nug. Then there
exists § > 0 and a polynomial P such that

Bo( [ 24, @)L, (@)") = PogQ) + 0@ "),

1<j<r

The implied constant may depend on (¢;),(k;) and (£;). When k; and {; are even for all j, then P has
degree %Z; (kj +¢;) and leading coefficient

kj+L; ._ _ k!
H My, My, 0 ; , my = (lc—l)!!—ki.
s J 2k/2(k/2)!

If at least one of the exponents kj;,{; is odd, then P has degree strictly less than %Zj(kj +4;).

Proof. See [27] for a proof when r = 1. The general case is analogous. O

8. ARITHMETIC APPLICATIONS

Let ¢ be a Hecke-Maafl newform (not necessarily cuspidal) of level g, weight k and nebentypus x,. Then
we will be studying the following twisted L-functions;

(8.1) L(¢,x, s) = Z >‘¢(n)X(n)n_s7
n>1

where Ay(n) are the Hecke-eigenvalues of ¢ (normalized so that the Ramanujan—Petersson conjecture predicts
Agp(n) < n°) and x is a primitive Dirichlet character mod ¢. This Dirichlet series admits analytic continuation
and functional equation relating s <+ 1 — s (see e.g. [9, Section 2.2] in the case of prime conductor ¢ = p not
dividing ¢). If (¢, q) = 1, then this is exactly the finite part of the L-function of the automorphic representation
T¢ ® X, where mg is the automorphic representation corresponding to ¢. In this case we will use the notation
L(¢ ® x,s). These L-functions have been studied in many contexts from the analytic point of view and have
many interesting algebraic aspects as well (e.g. if ¢ is holomorphic of weight 2 corresponding to an elliptic
curve), see |9, Section 1.2], |30, Chapter 14.8] and the references therein. In the monograph [9] the full power
of the approximate functional equation-approach is explored including deep input from spectral theory and
algebraic geoemtry. In particular they show how one can use a second moment computation for the family

{L(¢,x,1/2) : x mod p},

with a power saving as p — oo to obtain non-vanishing for a positive proportion using mollification (among
other applications).

In this section we will show some surprising applications of the above results to the family of L-functions
(8-1). On the one hand, we will obtain certain reciprocity formulas for the twisted second moment of
generalizing [15], |4], [42]. They can be seen as the simplest incarnations of spectral reciprocity formulas,
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see [1], [10], |[11]. The second application are to certain computations of wide moments as have been explored
in other contexts [5], [43 Corollary 1.9], [44], [45].

The starting point for each of the two applications is the Birch—Stevens formula which relates additive and
multiplicative twists.

8.1. The Birch—Stevens formula. The central values of additive twists of holomorphic cusp forms of weight 2
are known as modular symbols, introduced by Birch and Manin [8}/40]. Modular symbols have been used
extensively in the study of the arithmetics of L-functions due to the Birch—Stevens formula.

Proposition 8.1. Let ¢ be a Hecke—Maaf$ newform (not neccesarily cuspidal) of level q, weight k € Z>o and
neben-typus xg. Then for x a Dirichlet character mod c, we have

(8:2) V(6 efCNLUEN 2 = S R (6, a/e1/2) + L (6,0/¢,1/2)),
a€(Z/cZ)*

and

(8.3) H0afe1/2) = =5 Y w0 e/e(0)L0.x1/2)x(0),
x mod ¢
x(=1)==1

where x* mod ¢(x) denotes the unique primitive character that induces x and the arithmetic weight v defined
by

(8.4) Vexom) =7 D Xe(m)x(m)u(n)X(na)p(ne) re(ns)ny’?,

ninanz=n

with (X ) the Gauf$ sum of X.
If o = B, , is the newform Eisenstein series from (6.10), then we have

As(n) = (x1 % X2)(n Z)ﬁ )Xz2(n/d),
d|n

and we simply write v(d, x,n) = v(x1 * Xz, X, 1)

Proof. The proof is a straightforward adaption of the proof of |43, Proposition 6.1] recalling that we have the
Hecke relations (6.2]) since ¢ is assumed to be a newform. (]

We will make a few comments on the arithmetic weights v. Note that if x is primitive modulo ¢ then the
arithmetic weight is simply given by v(¢, x*,¢/c(x)) = 7(X). In particular the weight is of absolute norm ¢'/2
in this case. In general, if we have \y(n) <. n?*¢ then one gets the following bound

(85) V(9. x" /() e )M e/ ()3 e/e(x)! <o M0

which is O.(c'/?¢) assuming the Ramanujan—Petersson conjecture. Finally we observe that we can express
v(, x,n) in terms of a triple convolution as follows

T(X) - [(xoxs) * () * (Mg - [1/2)](n).
If we restrict to prime conductor and level 1, we get the following more pleasant form.

Corollary 8.2. Let ¢ be a Hecke—Maaj§ newform of level 1 and let p a prime number. Then

2
(86) LH6.a/p 1) = =5 3 DL 1/2x) +0uel )
x mod p primitive,

x(—1)==+1

fore >0, where 8 = 614 is the best bound towards the Ramanujan—Petersson conjecture for Maafl forms due to
Kim and Sarnak [34).
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8.2. Applications to reciprocity formulae. The starting point is the following unpublished paper of Conrey
[15, Theorem 10], in which a reciprocity relation satisfied by twisted second moment of Dirichlet L-functions
was discovered. Here the terminology “reciprocity” refers to the cosmetic similarity with quadratic reciprocity;
one relates the arithmetics of the seemingly unrelated finite fields F, and F, for primes ¢ # ¢. In the case of
Conrey, the reciprocity relation relates the following two objects

(8.7) Do ILOGL/2PX(0 ~ Y LG 1/2)Px(—a),

x mod ¢ x mod ¢

for primes g # ¢. The results were later refined by Young [58] and Bettin [4]. This can be seen as the simplest
example of a spectral reciprocity-relation. Another example being the GL3 x GLo-relation due to Blomer and
Khan [10] taking the following shape;

Y. LIF@f1/2)L(f,1/2)As(p) ~ Y L(F® f,1/2)L(f,1/2)\s(a),

f level q f level p

where f runs over an orthonormal basis of Hecke-Maaf forms of level ¢ (resp. p), Ag(n) is the n-th Hecke
eigenvalue of f and F is a (fixed) GLs-automorphic form.

The left-hand side of can be seen as the twisted first moment of a twisted Eisenstein series. The
second named author [42] extended this result to general cuspidal holomorphic cusp forms of even weight using
a connection to quantum modularity. In this paper we have extended the quantum modularity to general
GLy-forms, and this implies the following reciprocity relation in the cuspidal case.

Theorem 8.3. Let ¢ be a Hecke-Maaf$ cuspidal newform of level q, weight k, nebentypus x¢, sign €4, and
Fricke eigenvalue ng. Assume that either s, = k/2, or k € {0,1}. Then for any pair of integers 0 < ¢1 < co
with (c1,c2) = (c1¢2,9) =1 and a sign £+, we have

(8.8) S @ e /e L1 1/2)x(en)
90(01) x mod c;
x(—1)==+1
2200 S eV Ebx 1/2)x(er) = Mot + O o((er/e2)' )
@(qCQ) N » X 5 4C2 X X x\c1) = ¢, £ b,e 1/€2 3

x(—=)=%(-1)*

where v(-,-,-) is a finite Euler product defined as in (8.4) and

—ngepL(¢,1/2), k=0,+=+,
sinh(wty)+ie
M¢:t: _77¢6¢co(s+7r)t¢)¢l’(¢’1/2)’ k:178¢7é1/2ai:+5
’ —ikn¢L(¢, 1/2), Sp = k/?, + =+
0, else.

Here L(¢, s) denotes the (standard) L-function of ¢.

Proof. By Proposition the left hand side of (8.8) is exactly h,Wq(_CQ /c1). Now the result follows directly
from Proposition O

Similarly in non-cuspidal case of Eisenstein series we get the following reciprocity relation for products of
Dirichlet L-functions extending [4].

Theorem 8.4. Let x; mod g; be primitive Dirichlet characters with x1(—1)x2(—1) = (=1)¥,k € {0,1}. Then
for any pair of integers 0 < ¢y < cq satisfying (c1,c2) = (c1¢2,q) = 1 where ¢ = q1q2, we have

(8.9)

Y v xes X ea/e(x)) Lixax™, 1/2) L(XTX", 1/2)x(e1)

x mod c2
(_1)k77X1,X2

o plga) Yo vha Xz X aer/e00)Liax” 1/2)L(xax", 1/2)x(—c2)

p(c2)

x mod gci

= Mo (Al (c2 /1) + Bl (ea/er)?log(ca/c1) + C) + Oy, xoie((c1/c2)' 7)),
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. . . P . ..
where v(-,-,-) is a finite Euler product defined as in (8.4), Al , B} as in Proposztzon and

o —x2(=1)L(x1,1/2)L(x2,1/2), k=0,
_L(X171/2)L(X271/2)7 k= 17
and

— (L1 T(x1)7(x2) .
Mx1,x2 ( (Q1QQ)1/2

Here L(x,s) denotes the Dirichlet L-function of a Dirichlet character x.

Proof. Again by Proposition the left hand side of is exactly th(_CQ /(gc1)). Now the result follows
directly from Proposition using that

L(E;th’ X5 8) = L(X1X7 S)L(EX7 5)
O

In the special case cuspidal Maafl forms of level 1 and where ¢y, co are prime, we get the simplified version
Corollary [1.7] stated in the introduction using Corollary

8.3. Wide moments of automorphic L-functions. We will now use Proposition to obtain asymptotic
calculations of certain wide moments of automorphic L-functions. These moments calculations are new and
go beyond what has been obtained with the approximate functional equation-approach. We note that these
moment calculations are derived using quite surprising input: dynamics of the Gaufl map combined with
quantum modularity of additive twists (which we have seen is a very general and non-arithmetic phenomena).

These moment evaluations fit into the a general philosophy of wide moments and distribution of automorphic
periods as described in [44] and [45] (see also [5]). The starting point is that for many natural families of
automorphic L-functions

{L(r®x,1/2) : x € G},

the (finite) Fourier transforms

= L(r 1/2 G
(a) |G|Z ®x,1/2)x(a), a€Qq,
XEG

are “well behaved” in some suitable limit. Here 7 is an automorphic representation of GL,,(Ar) and G is some
finite group of Hecke characters of some number field F. In [44] the setting is that 7 = BCp/g(mo) is the

base change to F' of a (fixed) cuspidal automorphic representation my of GLa(Ag), G = éﬂr are class group
characters of F', where F is an imaginary quadratic field of discriminant tending to infinity. In [44] one has
7 = 1) a Dirichlet character and G = {Dirichlet characters modulo p} as p — co.

In this language we can reinterpret Proposition as follows; let

G = {Dirichlet characters modulo ¢}, G 2 (Z/cZ)*

Then the Fourier transform of
x mod ¢ = v(¢, X", ¢/c(x))L(d, x*,1/2),
is equal to the central values of the additive twist L-function
(Z)<2)* 5 a s L(g,a/e,1/2) = L* (é,a/e,1/2) + L (6,a/c, 1/2).

The well behavedness of the Fourier transform in this context is exactly Proposition we can calculate all
(even, mixed) moments of the additive twists of level 1 Maafl forms! Now it is an easy exercise in Fourier
theory that given function L; : G — C with Fourier transforms L; for 1 < i < m, we have

(3.10) zﬂixa):‘Gl}n,I > s

aeé\ =1 ' X1, xm€G: i=1
Xl Xm=1

The righthand side is what we call the wide moment of Ly, ..., Ly,.
As a corollary of Proposition we obtain the following wide moment calculation.
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Corollary 8.5. Let ¢1,...,¢, be distinct Hecke-Maaf$ cusp forms of level 1, ki, ..., kq,l1,..., 4, € 2N>¢ and
put n=">3_;(k;j +{;). Then we have as Q — oo

r k;

0.
2n—1 + _ . J .
2. St 2 > T T w00 L@ i 1/2) | | TTva(ene) L6550 1/2)
0<c<Q Xj,k mod c, %j.¢ mod c, j=1 \k=1 =1

1<j<r1<k<k; 1<j<r,1<0<4;:

T (e x5,k ) (e th5,0)=1

(8.11)
= P(log Q)Q2 + O¢>j,kj,£]- (Q2_6)7

for some § > 0, where P is a degree n/2 polynomial with leading coefficient

k!

[T i me, Elsym® 65, D2, i= (k= Dl =

1<j<r

Here the decorations on the sums mean restricting to characters with x(—1) = £1, 1 denotes the principal
character (of the relevant modulus suppressed in the notation), and the weights are given by

vi(x) = v(d;, x", ¢/c(x)),

where x* mod c(x) denotes the primitive character inducing the Dirichlet character x, and v(-,-,-) is the finite

Euler product defined in (8.4]).

Proof. This follows directly by combining Proposition the Birch-Stevens formula (8.3 and the Fourier
theoretic fact (8.10]). O

APPENDIX A. COMPUTATIONS WITH HYPERGEOMETRIC FUNCTIONS
In this appendix, the notation F'(a,b;c;z) = 2Fi(a,b;c;z) stands for the hypergeometric function [25|
Chapter 9.1].

A.1. Computation of a determinant. In this section we provide the proof for a certain identity between
hypergeometric functions, which was used in the proof of Proposition [5.1

Lemma A.1. Fora,b,c € C, c¢7Z and |z| < 1, we have the equality

(c—a)(c—b)

zFla—c+1,b—c+1;2—c¢;2)F(a,b;c+ 1; 2
(A1) c(e—1) ( F( )

+Fla—ec,b—c;1—c;2)F(a,bye;2) = (1 — 2)¢7970,
Proof. Assume first that |z — %‘ < % Let
A(z)=Fla—c¢,b—c;1 —¢; 2), B(z) = z°F(a,b;c + 1; 2),
where z¢ is understood to be the principal value. By [25, 9.103.1-3], the left-hand side can be rewritten as

Zl—c

W(z), where W (z) = A(2)B'(2) — A'(2) B(2).

c
Both U = A and U = B satisfy the equation

21=2)U"+(1—-c—(a+b+1—2¢)2)U — (a—c)(b—c)U =0,
see e.g. (9.153.1) of [25], so that W(z) is a Wronskian determinant. We deduce
W/

l—c—(a+b+1-2¢)z ¢c—1 a+b-—c
(2) =— = + .
W z(1—2) z 11—z

Therefore, for some C € C independent of z, we have W (z) = Cz¢71(1—2)¢~%~% which gives the equality (A.1))
for |z —1/2] < 1/2, up to a factor C'/c. This equality holds for all |z| < 1 by analytic continuation. We then
see that C' = ¢ by letting z = 0. (|
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Lemma A.2. Fora,b,c € C, ¢ ¢ Z, we have

A2
( ) 2a+b

T T(@r()
Proof. By |25 9.131.2] with v+~ a4+ b — c and z + 1/2, we have
I'(a+b—c)'(—c) I'(a+b—c)(c)
I'b—c)T'(a—c) T'(a)T(b)
and the similar identity with ¢ replaced by ¢ — 1. We insert this in the left-hand side of . Since
Fla+b+1—-c)'(1—c¢) Ta+b—c)'(—c)
(=)= T o ar 1=0) T(b—ol(a—c)
the terms involving F'(--- ;¢; %)F( e+ 1 %) cancel out, and so the left-hand side of (A.2) is equal to
Tla+b+1—-c)'(c—1)
I'(a)L'(b)
T(a+b—c)(c)
L(a)I'(b)
J@+b+1—-c)(c+1) ((c— a)(ec—1b)
T'(a)T'(b) c(c—1)
—F(a—qb—c;l—c;%)F(a,b;c;%)).

F'la+b—c+ 1) (c+1).

Fla—c,b—cl—ci),

Fla,bja+b—ci)= F(a,bjc+1;3) 4 2°

+cla+b—c) =0,

(c—a)(c— b2 Fla+1l—cb+1—¢2—c;3)F(a,bjc+1;3)

+cla+b—c)2° Fla—c,b—c;1—c;3)F(a,b;c; 1)

=2

tF(a+1—cb+1—c¢2—c3)F(a,bje+1;3)

By Lemma at z = 1/2, the quantity inside the parentheses is equal to 2¢+b—¢. O

A.2. Computations relative to the functional equation. In this section, we prove an identity for a
quotient of hypergeometric functions, which was used in the proof of Lemma First define

T'(c) 1 I'(c—a) i
b¢c)i= ——*——F(a,b;1— b;z)* —————F(a,b;c; 3).
CTY:I:(aﬁ 76) F(l—c+a+b) (CL7 ) c+a+ 72) F(1—0+b) (CL7 7052)
Lemma A.3. Suppose a,b & Z>1 and c € Z. Then whenever a + b — 2c € Z, the quotient
b
Qu(a,b,c) = Gela.b.o

C Gi(l—a,1—b1+c—a—b)

can be expressed in terms of elementary functions and T functions. More precisely, letting n = a + b — 2¢, we
have

Qi(a7 b7 C) = (_1)

9 tb=1D(1 — g)D(1 — b) sin(Z(n+a— b))
F(2+n;a7b)rl(27n;a—b) <_ =+ Sln(g(n+a+b)))

Proof. We have

F(l+c—a-0) 1 T(c—0) 1
l1—a,1-bl4c—a-b=——" "7V pq g1 -p2-eH+t—"2 p_a1-bltc—a—bl).
Gi(1-a,1-b,14c—a—Db) T2 =) (1-a,1-b;2—c¢; 5) Ti—cta) (1-a,1=b;14c—a—b;3)
Thus, letting
w1 ::F(a,b;c;%), wo :=F(1—a,1—b;2—c;%),
w3::F(a,b;1—c+a+b;%), w4::F(l—a,l—b;l—&—c—a—b;%),
we find
I'(c) I(c—a)
G b,c) =
@00 = e E T — e 5"
I'l+c—a-"0) T(c—10)
1—a,1-05,1 —a—>0) = + .
Ge(l—a, I+e—a=b) r'2-e¢ w2 F(l—c+a)w4
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By (25, (9.131.2) and (9.131.1)], the functions w; are related by
I'l—c+a+bdI'(1—c) I'l—c+a+bI'(c—1)

1 + 2a+b— 1

BT TA—cral(l—ctb)” T(a)T'(b) w2
_ol- apl(l+c—a—-0bI(1—c) Fl+c—a-0bIl(c—1)
T1-al(1-b) Tlc—a)l(c—b) »
and therefore
Gi(a,b,c) = A\wr + Aows, Gi(l1—a,1=b1+c—a—>b)=piws + pows,
where
W TEP— L Tlema) e TN
I'l—c+a)'(1—c+b) T(1—-c+b)’ ['(a)T(b) ’
/$1—:|:21abr(c bl (1—|—c—a—b)I‘(1—c)7 M2:F(1—|—c—a—b) I‘(c—l)I‘(l—i—c—a—b).

INl—c+a)l'(1-a)'(1-0) I'2-c¢) I'l-—c+a)'(c—a)
By a straightforward computation using the complement formula, we obtain
I'l4+c—a—0b)I'(c—a) (1 _ sin(m(c — a))? . sin(ma) sin(md) sin(w(c — a)))
L2—¢)T(1—c+b) sin(mc)? sin(m¢)? sin(m(c — b))
I'l4c¢—a—0b)T(c—a)sin(ra)sin(r(2¢c —a — b))
I'2—-c¢)'(1—c+b) sin(me) sin(mw(c — b))

This is zero indeed since 2c—a—b € Z. We deduce that Q4 (a,b,c) = A1 /u1, which is equal, by the complement
formula, to

Aipa — Ao = £

)\1#1_1 _ ga+b-1 I'l—a)T'(1-0) (sin(w(c —b)) n sin(7(c — b)))

I'l—c)I'(1+c—a—>b) \sin(n(c—a)) sin(mc)
Expressing this in terms of n = a + b — 2¢ yields our formula as claimed. O
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