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Abstract. We investigate the first moment of primes in progressions∑
q≤x/N
(q,a)=1

(
ψ(x; q, a)− x

ϕ(q)

)
as x,N → ∞. We show unconditionally that, when a = 1, there is a significant bias
towards negative values, uniformly for N ≤ ec

√
log x. The proof combines recent results

of the authors on the first moment and on the error term in the dispersion method.
More generally, for a ∈ Z \ {0} we prove estimates that take into account the potential
existence (or inexistence) of Landau-Siegel zeros.

1. Introduction

The distribution of primes in arithmetic progressions is a widely studied topic, in part
due to its links with binary additive problems involving primes, see e.g. [9, Chapter 19]
and [10]. For all n ∈ N we let Λ denote the von Mangoldt function, and for a modulus q ∈
N and a residue class a (mod q) we define

ψ(x; q, a) :=
∑
n≤x

n≡a (mod q)

Λ(n).

In the work [5], the second author showed the existence, for certain residue classes a,
of an unexpected bias in the distribution of primes in large arithmetic progressions,
on average over q. An important ingredient in this result is the dispersion estimates
of Fouvry [8] and Bombieri-Friedlander-Iwaniec [1]; these involve an error term which
restricts the range of validity of [5, Theorem 1.1]. Recently, this error term was refined
by the first author in [4], taking into account the influence of potential Landau-Siegel
zeros. This new estimate allows for an extension of the range of validity of [5, Theorem
1.1], which is the object of the present paper. In particular, we quantify and study the
influence of possible Landau-Siegel zeros, and we show that, in the case a = 1, a bias
subsists unconditionally in a large range. Here is our main result.

Theorem 1.1. There exists an absolute constant δ > 0 such that for any fixed ε > 0
and in the range 1 ≤ N ≤ eδ

√
log x, we have the upper bound

(1.1) N

x

∑
q≤x/N

(
ψ(x; q, 1)− x

ϕ(q)

)
≤ − logN

2 − C0 +Oε(N−
171
448 +ε),
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with an implicit constant depending effectively on ε, and where

C0 := 1
2

(
log 2π + γ +

∑
p

log p
p(p− 1) + 1

)
.

In other words, there is typically a negative bias towards the class a = 1 in the
distribution of primes in arithmetic progressions modulo q. One could ask whether
Theorem 1.1 could be turned into an asymptotic estimate. To do so we would need to
rule out the existence of Landau-Siegel zeros, because if they do exist, then we find in
Theorem 1.3 below that the left hand side of (1.1) is actually much more negative.

In order to explain our more general result, we will need to introduce some notations
and make a precise definition of Landau-Siegel zeros. We begin by recalling [5, Theorem
1.1]. For N ≥ 1 and a ∈ Z \ {0} we define

M1(x,N ; a) =
∑

q≤x/N
(q,a)=1

(
ψ∗(x; q, a)− x

ϕ(q)

)
,

where1

ψ∗(x; q, a) =
∑

1≤n≤x
n≡a (mod q)

n6=a

Λ(n).

With these notations, [5, Theorem 1.1] states2 that for N ≤ (log x)O(1)

(1.2) M1(x,N ; a)
φ(|a|)
|a|

x
N

= µ(a,N) +Oa,ε,B

(
N−

171
448 +ε

)
with

(1.3) µ(a,N) :=


−1

2 logN − C0 if a = ±1
−1

2 log p if a = ±pe

0 otherwise.

We recall the following classical theorem of Page.

Theorem 1.2 ([9, Theorems 5.26 and 5.28]). There is an absolute constant b > 0 such
that for all Q, T ≥ 2, the following holds true. The function s 7→ ∏

q≤Q
∏
χ (mod q) L(s, χ)

has at most one zero s = β satisfying Re(s) > 1 − b/ log(QT ) and Im(s) ≤ T . If it
exists, the zero β is real and it is the zero of a unique function L(s, χ̃) for some primitive
real character χ̃.

Given x ≥ 2, we will say that the character χ̃ (mod q̃) is x-exceptional if the above
conditions are met with Q = T = e

√
log x. There is at most one such character.

By the analytic properties of Dirichlet L-functions, if exceptional zeros exist, their
effect can often be quantified in a precise way, and are expected to lead to secondary

1Note that we have excluded the fixed term a because it has a significant contribution which is trivial
to estimate.

2The improved exponent is deduced by applying Bourgain’s work [2].
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terms in asymptotic formulas. For instance, it is known [11, Corollary 11.17] that if the x-
exceptional character exists, then there is a distortion in the distribution of primes in
the sense that

ψ(x; q, a) = x

ϕ(q) − χ̃(a)1q̃|q
xβ

βϕ(q) +O(xe−c
√

log x)(1.4)

= x

ϕ(q)(1− ηx,a1q̃|q) +O(xe−c
√

log x)(1.5)

with

(1.6) ηx,a := χ̃(a)
βx1−β ∈ (−1, 1).

We are now ready to state our more general result. As we will see, the secondary term
in (1.4) can potentially yield a large contribution to M1(x,N ; a) for N considerably
larger than q̃. For this reason, it is relevant to consider instead the expression

(1.7) MZ
1 (x,N ; a) =

∑
q≤x/N
(q,a)=1

(
ψ∗(x; q, a)− (1− 1q̃|qηx,a)

x

ϕ(q)

)
,

where, by convention, the term involving ηx,a is only to be taken into account when
the x-exceptional character exists.

Our results show that, in the case of the hypothetical two-term approximation (1.7),
there is a new bias term, which results from the contribution of the possible x-exceptional
character.

Theorem 1.3. Fix an integer a ∈ Z\{0} and a small enough positive absolute constant
δ, and let x ≥ 2 and 2 ≤ N ≤ eδ

√
log x.

(i) If there is no x-exceptional character, then

(1.8) M1(x,N ; a)
φ(|a|)
|a|

x
N

= µ(a,N) +Oa,ε

(
N−

171
448 +ε

)
.

(ii) If the x-exceptional character χ̃ (mod q̃) exists, then with Ca,q̃ and Da,q̃ as in (2.5)
and (2.6) below,

(1.9)
MZ

1 (x,N ; a)
ϕ(|a|)
|a|

x
N

= µ(a,N) +Nηx,a

( ∑
r≤N

(r,a)=1
q̃|r

1− ( r
N

)β

ϕ(r) − Ca,q̃
{

log
(
N

q̃

)
+Da,q̃ −

1
β

})

+Oa,ε

(
N−

171
448 +ε

)
.

(iii) If the x-exceptional character exists and N ≥ q̃, then the previous formula admits
the approximation

(1.10)
MZ

1 (x,N ; a)
ϕ(|a|)
|a|

x
N

= (1− ηx,a)µ(a,N) + ηx,aµ̃q̃(a) +Oa,ε

(
N ε(N/q̃)− 171

448 + (logN)2 1− β
x(1−β)/2

)
,

where µ̃q̃(a) = 1
21a=±1(log q̃ −∑p|q̃

log p
p

).
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In (1.9), we have that Ca,q̃ �a 1/φ(q̃) and Da,q̃ �a 1, hence the secondary term
involving ηx,a is Oa,ε(N(logN)q̃−1+ε). Since by Siegel’s theorem we have the bound q̃ �A

(log x)A for any fixed A > 0, we recover [5, Theorem 1.1].
Finally we remark that if the x-exceptional character exists and N ≥ q̃, the associated

“secondary bias”, that is the difference between the main terms on the right hand side
of (1.10) and µ(a,M), contributes an additional quantity

−ηx,a(µ(a,N)− µ̃q̃(a)).

The bound q̃ �A (log x)A does not exclude the possibility that (1−β) log x = o(1) in the
context of (1.10). Should this happen, we would have that ηx,a = χ̃(a)+o(1). If moreover
a = 1 and N ≤ q̃O(1), then the main term of (1.10) would become asymptotically (1 +
o(1))µ̃q̃(a), and would not depend on N anymore. Compared with Theorem 1.1, the
resulting main term is roughly of the same order of magnitude, but the additional bias
coming from the exceptional character would annihilate the N -dependance of the overall
bias.

Remark. This problem is closely related to the Titchmarsh divisor problem of estimating,
as x→∞, the quantity ∑

1<n≤x
Λ(n)τ(n− 1).

After initial works of Titchmarsh [12] and Linnik [10], Fouvry [8] and Bombieri, Fried-
laner and Iwaniec [1] were able to show a full asymptotic expansion, with an error
term O(x/(log x)A). In the recent work [4], the first author refined this estimate taking
into account the influence of possible Landau-Siegel zero, with an error term O(e−c

√
log x).

2. Proof of Theorem 1.3

2.1. The Bombieri-Vinogradov range. We begin with the following lemma, which
follows from the large sieve and the Vinogradov bilinear sums method. Given a Dirichlet
character χ (mod q), we let

ψ(x, χ) :=
∑
n≤x

χ(n)Λ(n).

Lemma 2.1. For 2 ≤ R ≤ Q ≤
√
x, we have the bound

∑
q≤Q

1
ϕ(q)

∑
χ (mod q)

R<cond(χ)≤Q

max
y≤x
|ψ(y, χ)| � (log x)O(1)

{
R−1x+Q

√
x+ x

5
6
}
.

Proof. We sort the sum according to the primitive characters inducing χ. For each χ in
the sum, we denote by χ1 the primitive character inducing χ; then by [3, page 163] we
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have maxy≤x |ψ(y, χ)| = O(log(qx)) + maxy≤x |ψ(y, χ1)| and therefore∑
q≤Q

1
ϕ(q)

∑
χ (mod q)

R<cond(χ)≤Q

max
y≤x
|ψ(y, χ)|

� Q(log x)2 +
∑

R<r≤Q

∑
χ1 (mod r)

primitive

( ∑
q≤Q
r|q

1
ϕ(q)

)
max
y≤x
|ψ(y;χ1)|

� Q(log x)2 + (log x)
∑

R<r≤Q

1
ϕ(r)

∑
χ1 (mod r)

primitive

max
y≤x
|ψ(y;χ1)|.

The claimed bound follows upon setting Q1 = R in the third displayed equation of [3,
p.164]. �

We deduce the following version of the Bombieri-Vinogradov theorem, with the con-
tribution of exceptional zeros removed.

Lemma 2.2. Fix a ∈ Z \ {0}. There exists δ > 0 such that for all x,Q ≥ 1 we have the
bound
(2.1)∑
q≤Q

max
y≤x

max
(a,q)=1

∣∣∣∣ψ(y; q, a)− (1− ηx,a(x/y)1−β1q̃|q)
y

ϕ(q)

∣∣∣∣� xe−δ
√

log x +Q
√
x(log x)O(1),

where ηx,a was defined in (1.6).

Proof. By orthogonality and Theorem 11.16 of [11], the left-hand side of (2.1) is

� xe−δ
√

log x +
∑
q≤Q

1
ϕ(q) max

y≤x

∣∣∣∣ ∑
χ (mod q)
χ 6=χ0,χ̃

χ(a)ψ(y, χ)
∣∣∣∣

� xe−δ
√

log x +
∑
q≤Q

1
ϕ(q)

∑
χ (mod q)
χ 6=χ0,χ̃

max
y≤x
|ψ(y, χ)|. = xe−δ

√
log x + S− + S+,

say, where S− is the contribution of those χ with cond(χ) ≤ R := eδ
√

log x, and S+ is the
complemenary contribution. By [11, Theorem 11.16], if cond(χ) ≤ R, then |ψ(y, χ)| �
xR−3, and so

S− �
∑

1<r≤R

∑
q≤Q
r|q

1
ϕ(q)

∑
χ (mod q)
cond(χ)=r

xR−3

≤ xR−3 ∑
1<r≤R

∑
χ (mod r)
primitive

( ∑
q≤Q
r|q

1
ϕ(q)

)

� xR−2 log x
� xR−1.

On the other hand, by Lemma 2.2, we have
S+ � (log x)O(1)(xR−1 +Q

√
x).
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Combining those two estimates, and reinterpreting δ if necessary, we obtain our claimed
bound. �

2.2. Initial transformations, divisor switching. From now on, we let δ > 0 be a
positive parameter that conductor q̃ and associated zero β, and recall the notation (1.3).
In order to isolate the contribution of the potential Landau-Siegel zero, we define

E(x; q, a) := ψ∗(x; q, a)− (1− ηx,a1q̃|q)
x

ϕ(q) .

If the x-exceptional character does not exist, then every term involving ηx,a can be
deleted. With this notation we have the decomposition

MZ
1 (x,N ; a) =

∑
q≤x

1
2 +δ

(q,a)=1

E(x; q, a) +
∑

x
1
2 +δ<q≤x
(q,a)=1

ψ∗(x; q, a)−
∑

x/N<q≤x
(q,a)=1

ψ∗(x; q, a)

− x
∑

x
1
2 +δ<q≤x/N

(q,a)=1

1
ϕ(q) + ηx,ax

∑
x

1
2 +δ<q≤x/N

(q,a)=1
q̃|q

1
ϕ(q)

= T1 + T2 − T3 − T4 − T5,(2.2)
say. We discard the first term by using the dispersion estimate [4, Theorem 6.2]. With
the notation used there, we have by [11, Theorem 11.16] that

ψq(x) =
∑
n≤x

(n,q)=1

Λ(n) = x+O(xe−2δ
√

log x);

ψ(x, χ̃q) =
∑
n≤x

(n,q)=1

Λ(n)χ̃(n) = −β−1xβ +O(xe−2δ
√

log x),

for all sufficiently small δ > 0. We may reduce the value of δ if necessary and insert
back the term n = a in [4, Theorem 6.2]. Doing so, we obtain that in the range |a| ≤ xδ,

(2.3) T1 =
∑

q≤x
1
2 +δ

(q,a)=1

E(x; q, a)� x
1
2 +2δ + xe−δ

√
log x + xe−2δ

√
log x ∑

q≤x
1
2 +δ

1
ϕ(q) � xe−δ

√
log x.

We end this section by applying divisor switching to the sums T2 and T3.

Lemma 2.3. Fix a ∈ Z \ {0} and define T2 and T3 as in (2.2). There exists an absolute
constant δ > 0 such that in the range N ≤ x

1
2−δ, |a|N ≤ xe−2δ

√
log x we have the estimate

T2 − T3 = x
∑

r≤x
1
2−δ

(r,a)=1

1− ( r
x1/2−δ )

ϕ(r) − ηx,ax
∑

r≤x
1
2−δ

(r,a)=1
q̃|r

1− ( r
x1/2−δ )β

ϕ(r)

− x
∑
r≤N

(r,a)=1

1− ( r
N

)
ϕ(r) + ηx,ax

∑
r≤N

(r,a)=1
q̃|r

1− ( r
N

)β

ϕ(r) +O(xe−δ
√

log x).
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Proof. We rewrite the condition n ≡ a (mod q) as n = a+qr for r ∈ Z. Summing over r
and keeping in mind that |a|N < x, for large enough values of x we obtain the formula

T3 =
∑

1≤r<N−aN/x
(r,a)=1

(
ψ∗(x; r, a)− ψ∗(a+ rx

N
; r, a)

)

=
∑

1≤r<N−aN/x
(r,a)=1

(
ψ(x; r, a)− ψ(a+ rx

N
; r, a)

)
+Oa(N).

Recalling that N ≤ x
1
2−δ, we may apply the Bombieri-Vinogradov theorem in the

form of Lemma 2.2. We obtain the estimate

(2.4) T3 = x
∑
r≤N

(r,a)=1

1− ( r
N

)
ϕ(r) − ηx,ax

∑
r≤N

(r,a)=1
q̃|r

1− ( r
N

)β

ϕ(r) +O(xe−δ
√

log x).

Replacing N by x 1
2−δ, we obtain a similar estimate for T2, and the result follows. �

2.3. Sums of multiplicative functions. In the following sections, we collect the main
terms obtained in the previous section and show that they cancel, to some extent, with
T4 and T5. We start with the following estimate for the mean value of 1/ϕ(q), which is
a particular case of [6, Lemma 4.3] (setting r = q0 and M = Q/q0), with the main terms
identified in [8, Lemme 6].

Lemma 2.4. Fix ε > 0. For a ∈ Z \ {0} and q0 ∈ N such that (a, q0) = 1 and q0 ≤ Q,
we have the estimate∑

q≤Q
(q,a)=1
q0|q

1
ϕ(q) = Ca,q0

{
log

(
Q

q0

)
+Da,q0

}
+Oa,ε(qε0Q−1+ε),

where

(2.5) Ca,q0 := φ(a)
aϕ(q0)

∏
p-aq0

(
1 + 1

p(p− 1)

)
,

(2.6) Da,q0 :=
∑
p|a

log p
p− 1 −

∑
p-aq0

log p
p2 − p+ 1 + γ0.

Here, γ0 is the Euler-Mascheroni constant.

We now estimate the main terms in Lemma 2.3. For N ∈ N, a ∈ Z \ {0} and q0 ∈ N
we define

Jγ(x,N ; q0, a) :=
∑
r≤N

(r,a)=1
q0|r

1− ( r
N

)γ

ϕ(r) +
∑

q≤x/N
(q,a)=1
q0|q

1
ϕ(q) .
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Lemma 2.5. Fix δ > 0 small enough and a ∈ Z \ {0}. For γ ∈ [3
4 , 1], (q0, a) = 1 and in

the range 1 ≤ N ≤ x1−δ, 1 ≤ q0 ≤ xδ, we have the estimate
(2.7)

Jγ(x,N ; q0, a) = J̃γ(x; q0, a)+ γfq0,a;N(1)− fq0,a;N(γ)
1− γ +Oa,ε

(
Nx−1+ε+q

171
448 +ε
0 N−1− 171

448 +ε
)
,

where the implied constant does not depend on γ, the value of the second main term at
γ = 1 is defined by taking a limit, and

J̃γ(x; q0, a) := Ca,q0

{
log

(
x

q2
0

)
+ 2Da,q0 −

1
γ

}
;

(2.8) fq0,a;N(γ) := (q0/N)γ
ϕ(q0) Z(−γ)Ga,q0(−γ)ζ(1− γ)ζ(2− γ)(1− γ),

where
Z(s) :=

∏
p

(
1 + 1

ps+2(p− 1) −
1

p2s+3(p− 1)

)
;

Ga,q0(s) :=
∏
p|aq0

(
1 + 1

ps+1(p− 1)

)−1∏
p|a

(
1− 1

ps+1

)
.

Proof. Assume that γ < 1. We will obtain error terms that are uniform in γ; this will
allow us to take a limit and the result with γ = 1 will follow. Mellin inversion and a
straightforward calculation gives the identity

Jγ(x,N ; q0, a) = 1
2πi

ˆ
(2)

1
qs0ϕ(q0)Z(s)Ga,q0(s)ζ(s + 1)ζ(s + 2)

{
γN s

s+ γ
+
(
x

N

)s}ds
s
.

Taking Taylor series shows that for R ∈ R≥1, in a neighborhood of 0, we have the
estimate

γRs

s+ γ
+
(
x

R

)s
= 2 + s

(
log x− 1

γ

)
+Ox,γ,R(|s|2).

We first shift the contour to the left until (−1
2). The residue at s = 0 contributes

2Z(0)ζ(2)Ga,q0(0)
ϕ(q0)

(
Z ′

Z
(0) +

G′a,q0

Ga,q0

(0) + γ + ζ ′

ζ
(2) + 1

2

(
log

(
x

q2
0

)
− 1
γ

))
.

Using the evaluations

Z(0)ζ(2)Ga,q0(0) = ϕ(|a|)
|a|

∏
p-aq0

(
1 + 1

1 + p(p− 1)

)
,

Z ′

Z
(0) + ζ ′

ζ
(2) +

G′a,q0

Ga,q0

(0) = −
∑
p-aq0

log p
p2 − p+ 1 +

∑
p|a

log p
p− 1 ,

we obtain that the residue is exactly J̃(x; q0, a). We turn to the remaining integral
1

2πi

ˆ
(−1/2)

1
qs0ϕ(q0)Z(s)Ga,q0(s)ζ(s+ 1)ζ(s+ 2)

{
γN s

s+ γ
+
(
x

N

)s}ds
s
.

We handle the contribution of the term (x/N)s in a way identical to [7, Lemma 5.12],
where the main point is to interpret the integral as the error term in (2.4), which can
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be treated more effectively by the convolution method than by complex analysis. We
recall the steps: first, a trivial estimation using a truncated Perron’s formula shows
the preliminary bound Oa,ε((x/N)−1/2+ε). Second, shifting back the contour to 2 + iR
(picking up a residue at s = 0) and applying Mellin inversion, we obtain the identity

1
2πi

ˆ
(− 1

2 )

1
qs0ϕ(q0)Z(s)Ga,q0(s)ζ(s+1)ζ(s+2)

(
x

N

)sds
s

=
∑

q≤x/N
(q,a)=1
q0|q

1
ϕ(q)−K1 log

(
x

q0N

)
−K2

for some constants K1, K2 depending on q0 and a. Finally, Lemma 2.4 implies that K1 =
Ca,q0 and K2 = Da,q0 (since otherwise we would get a contradiction with our preliminary
bound above), and so the error term obtained in Lemma 2.4 shows that the above
bound Oa,ε((x/N)−1/2+ε) is actually Oa,ε((x/N)−1+ε). We arrive at

Jγ(x,N ; q0, a) = J̃(x; q0, a) +Oa,ε

((
N

x

)1−ε)
+ 1

2πi

ˆ
(− 1

2 )

1
qs0ϕ(q0)Z(s)Ga,q0(s)ζ(s+ 1)ζ(s+ 2) γN

s

s+ γ

ds
s
.

Shifting the remaining integral further to the line (−1 − ε), we pick up two residues,
at s = −1 and at s = −γ. This gives rise to the second term in (2.7). As for the shifted
integral, we apply Bourgain’s subconvexity estimate [2] for ζ(s). Note that

Ga,q0(s)�
∏
p|aq0

(
1 + 1

pRe(s)+2

)∏
p|a

(
1 + 1

pRe(s)+1

)
.

As in [5, Lemma 5.9], we shift the contour to the line Re(s) = −1 − 1/(2 + 4θ), where
θ = 13/81 is Bourgain’s subconvexity exponent. The shifted integral is

�a,ε q
1/(2+4θ)+ε
0 N−1−1/(2+4θ)+ε.

The desired estimate follows. �

In the next two sections, we will prove approximations for the term

(2.9) Dγ(q0, a;N) := γfq0,a;N(1)− fq0,a;N(γ)
1− γ

appearing in (2.7).

2.4. The main term for γ = 1. The limit of Dγ(q0, a;N) as γ → 1 has a simple
expression in terms of derivatives of fq,a,N , namely

D1(q0, a;N) = f ′q0,a,N(1)− fq0,a,N(1).
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Recall that fq0,a,N is given by the Euler product (2.8). A direct computation yields that
for q ∈ N, a ∈ Z \ {0} and N ∈ R≥1,

fq,a,N(1) =

0 if a 6= ±1;
− 1

2N if a = ±1,

f ′q,a,N(1) =


0 if ω(a) ≥ 2;

1
2N (1− 1

`
) log ` if a = ±`ν (ν ∈ N, ` prime);

− 1
2N

{
log( q

N
)− 2C0 + 1−∑p|q

log p
p

}
if a = ±1.

From these observations, we deduce the following.

Lemma 2.6. We have the exact formula

D1(q, a;N) =


0 if ω(a) ≥ 2;

1
2N (1− 1

`
) log ` if a = ±`ν (ν ∈ N, ` prime);

1
2N

{
log(N

q
) + 2C0 +∑

p|q
log p
p

}
if a = ±1.

2.5. The main term for γ < 1. Now that we have estimated the main term in
Lemma 2.5 for γ = 1, we will do so for γ < 1. Under this restriction, we write

Dγ(q0, a;N)−D1(q0, a;N) = 1
γ − 1

ˆ 1

γ

ˆ 1

δ

f ′′q0,a,N(δ′)dδ′dδ.

By a direct estimation of the Euler product we see that in the range 3
4 ≤ γ ≤ δ′ ≤ 1,

|f ′′q0,a,N(δ′)| �a
qδ
′

0 |Ga,q0(−δ′)|
φ(q0) (log q0N)2N−γ � (log q0N)2N−γ.

Therefore, when 3
4 ≤ γ ≤ 1, we obtain

(2.10) Dγ(q0, a;N) = D1(q0, a;N) +Oa((log q0N)2(1− γ)N−γ).

Along with Lemma 2.6, the above yields the following approximation.

Lemma 2.7. Define

R(x,N) := (1− β)(log q̃N)2

Nβx1−β .

For (a, q̃) = 1, ν ∈ N and ` prime, we have that

D1(1, a;N)− ηx,aDβ(q̃, a;N)

=


Oa(R(x,N)) if ω(a) ≥ 2;
(1− ηχ,a) 1

2N (1− 1
`
) log `+Oa(R(x,N)) if a = ±`ν ;

(1− ηx,a) 1
2N {logN + 2C0}+ ηx,a

1
2N {log q̃ −∑p|q

log p
p
}+Oa(R(x,N)) if a = ±1.
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2.6. Cancellation of main terms and proof of Theorem 1.3. In this section we
combine the main terms in T2, T3, T4 and T5 and prove our main theorem.

Proof of Theorem 1.3. Recalling (2.2), we have by (2.3) and Lemmas 2.3 and 2.5 that
for some small enough δ > 0,

MZ
1 (x,N ; a) = T1 + T2 − T3 − T4 + T5

= x
{
J1(x, x 1

2−δ, 1, a)− J1(x,N, 1, a)
}
− ηx,ax

{
Jβ(x, x 1

2−δ, q̃, a)− Jβ(x,N, q̃, a)
}

+O(xe−δ
√

log x)

= − xD1(1, a;N)− ηx,ax
{
J̃β(x, q̃, a)− Jβ(x,N, q̃, a)

}
+Oa,ε(xN−1− 171

448 +ε).

Here, we used the bound D1(q, a,N) �a N−1(log qN) along with (2.10). If the x-
exceptional character does not exist, then this yields (1.8).

Next, assume that the x-exceptional character does exist, and that N � q̃. Then by
definition and since q̃ ≤ e

√
log x,

J̃β(x, q̃, a)− Jβ(x,N, q̃, a)

= Ca,q̃

{
log

(
x

q̃2

)
+ 2Da,q̃ −

1
β

}
−

∑
r≤N
q̃|r

(a,r)=1

1− (r/N)β
ϕ(r) −

∑
q≤x/N
q̃|q

(q,a)=1

1
ϕ(q)

= Ca,q̃

{
log

(
N

q̃

)
+Da,q̃ −

1
β

}
−

∑
r≤N
q̃|r

(a,r)=1

1− (r/N)β
ϕ(r) +O(x− 1

5 ),

where the sum over q was evaluated using Lemma 2.4. SinceN ≤ eδ
√

log x, this yields (1.9).
Assume now that the x-exceptional character exists and thatN ≥ q̃. We use Lemma 2.5

to write

J̃β(x; q̃, a)− Jβ(x,N ; q̃, a) = −Dβ(q̃, a;N) +Oa,ε(N−1+ε(q̃/N) 171
448 ).

Therefore,

MZ
1 (x,N ; a) = −x

{
D1(1, a;N)− ηx,aDβ(q̃, a;N) +Oa,ε(N−1+ε(q̃/N) 171

448 )
}
.

Our claimed formula (1.10) then follows from Lemma 2.7. �

2.7. Unconditional bias. In this last section we prove our unconditional result.

Proof of Theorem 1.1. If the x-character does not exists, then the claimed bound follows
from (1.8). We can therefore assume that it does exists. Note that

M1(x,N ; 1)
x/N

= MZ
1 (x,N ; 1)
x/N

−Nηx,1
∑

q≤x/N
q̃|q

1
ϕ(q)

= MZ
1 (x,N ; 1)
x/N

−Nηx,1C1,q̃

{
log

(
x

Nq̃

)
+D1,q̃

}
+O(x− 1

5 ).
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Using our estimate (1.9), and noting that the r-sum is O(log(q̃N)/ϕ(q̃)), we obtain that
M1(x,N ; 1)

x/N
= µ(1, N) +Oε(N−

171
448 +ε)− ηx,1NC1,q̃

{
log

(
x

q̃2

)
+O(log(2 +N/q̃))

}
.

Since q̃, N ≤ eδ
√

log x and ηx,1 > 0, the last term here contributes a negative quantity for
large enough x, and we obtain the claimed inequality. �
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