THE FIRST MOMENT OF PRIMES IN ARITHMETIC
PROGRESSIONS: BEYOND THE SIEGEL-WALFISZ RANGE
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ABSTRACT. We investigate the first moment of primes in progressions

> (w(x;q,a) - %)

q<z/N
(g,0)=1

as x, N — oo. We show unconditionally that, when a = 1, there is a significant bias

towards negative values, uniformly for N < eViog The proof combines recent results
of the authors on the first moment and on the error term in the dispersion method.
More generally, for a € Z\ {0} we prove estimates that take into account the potential
existence (or inexistence) of Landau-Siegel zeros.

1. INTRODUCTION

The distribution of primes in arithmetic progressions is a widely studied topic, in part
due to its links with binary additive problems involving primes, see e.g. [9, Chapter 19]
and [10]. For all n € N we let A denote the von Mangoldt function, and for a modulus ¢ €
N and a residue class a (mod ¢) we define

Y(riga)= > An).

n<x
n=a (mod q)

In the work [5], the second author showed the existence, for certain residue classes a,
of an unexpected bias in the distribution of primes in large arithmetic progressions,
on average over ¢q. An important ingredient in this result is the dispersion estimates
of Fouvry [§] and Bombieri-Friedlander-Iwaniec [I]; these involve an error term which
restricts the range of validity of [B, Theorem 1.1]. Recently, this error term was refined
by the first author in [4], taking into account the influence of potential Landau-Siegel
zeros. This new estimate allows for an extension of the range of validity of [5, Theorem
1.1], which is the object of the present paper. In particular, we quantify and study the
influence of possible Landau-Siegel zeros, and we show that, in the case a = 1, a bias
subsists unconditionally in a large range. Here is our main result.

Theorem 1.1. There ezists an absolute constant 6 > 0 such that for any fixed ¢ > 0
and in the range 1 < N < e9V18% we have the upper bound

N x IOgN _1n
L1 z (w ‘T7Q71 o ) < - - C +Os N~ amte )
(1.1) . qu/:N (z:9,1) 0 5 0+ O( )
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with an implicit constant depending effectively on €, and where

1 log p
Co:= = (log2m +~v+ —i—l).
’ 2( zp:p(p—l)

In other words, there is typically a negative bias towards the class a = 1 in the
distribution of primes in arithmetic progressions modulo ¢. One could ask whether
Theorem could be turned into an asymptotic estimate. To do so we would need to
rule out the existence of Landau-Siegel zeros, because if they do exist, then we find in
Theorem below that the left hand side of is actually much more negative.

In order to explain our more general result, we will need to introduce some notations
and make a precise definition of Landau-Siegel zeros. We begin by recalling [5, Theorem
1.1]. For N > 1 and a € Z \ {0} we define

x
My(z,Nja) = ) (@D*(w;q,a) - >
q<z/N ©(q)
(g,a)=1
wherd]]
Veiga) = Y An).
1<n<x
n=a (mod q)
n#a
With these notations, [5, Theorem 1.1] state that for N < (logz)°®
Mi(x,N;a _am
12 Sl = )+ O (V1)
lal N
with
—3logN —Cy ifa==1
(1.3) p(a,N) =< —1logp if a = £p°

0 otherwise.
We recall the following classical theorem of Page.

Theorem 1.2 ([9, Theorems 5.26 and 5.28]). There is an absolute constant b > 0 such
that for all Q,T > 2, the following holds true. The function s+ [1,<q 1y @mod ¢) L(S, X)
has at most one zero s = (3 satisfying Re(s) > 1 — b/log(QT) and Im(s) < T. If it
exists, the zero (3 is real and it is the zero of a unique function L(s,X) for some primitive
real character x.

Given z > 2, we will say that the character ¥ (mod §) is z-exceptional if the above
conditions are met with Q = T' = V187, There is at most one such character.

By the analytic properties of Dirichlet L-functions, if exceptional zeros exist, their
effect can often be quantified in a precise way, and are expected to lead to secondary

INote that we have excluded the fixed term a because it has a significant contribution which is trivial
to estimate.
2The improved exponent is deduced by applying Bourgain’s work [2].
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terms in asymptotic formulas. For instance, it is known [I1), Corollary 11.17] that if the z-
exceptional character exists, then there is a distortion in the distribution of primes in
the sense that

P
P N pe—cVioET
— i _ . $e—c@
(15) - QD(Q) (1 7733711111|Q) + O( )
with
(1.6) Nea 1= Bxx(la_)ﬁ € (—1,1).

We are now ready to state our more general result. As we will see, the secondary term
n (1.4) can potentially yield a large contribution to Mi(x, N;a) for N considerably
larger than ¢. For this reason, it is relevant to consider instead the expression

z N . 11, T
(1.7) M{ (z,N;a) = q;ﬂv (w (z3¢,a) — (1 1q|q771,a)(p(q>>a
(g,0)=1

where, by convention, the term involving 7., is only to be taken into account when
the z-exceptional character exists.

Our results show that, in the case of the hypothetical two-term approximation (1.7)),
there is a new bias term, which results from the contribution of the possible x-exceptional
character.

Theorem 1.3. Fiz an integer a € Z\ {0} and a small enough positive absolute constant
5, and let x > 2 and 2 < N < eVIoez,

(1) If there is no x-exceptional character, then

Ml(xa Na CL)

¢(la]) o
la| N

(11) If the x-exceptional character x (mod §) exists, then with Cy 4 and Dy 4 as in (2.5)

and (2.6) below,

(1.8) = p(a, N) + O, (N735+2) |

(1.9)
MZ(x, N;a) 1—(%)° N 1
S = o M)+ N X S = Caliog (5) + Dus — 5))
a0 S et ) e
(7‘7?‘):1
q|r

+ Oue (N75H)

(iii) If the x-exceptional character exists and N > G, then the previous formula admits
the approzimation

(1.10)
MZ(x, N;a) 3 E 1-3
M = (1 - 77:1:,11)“(&7 N) + nx,aﬂq( ) + Oa5<N (N/q) 448 + (log N) 21— 5)/2>7

where fiz(a) = %Lz:il(l(’gq — 2plg 10;5)10)'
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In (1.9), we have that C,3 <, 1/¢(¢) and D,; <, 1, hence the secondary term
involving 7, , is Oa (N (log N)G—'"¢). Since by Siegel’s theorem we have the bound G >4
(log z)4 for any fixed A > 0, we recover [5, Theorem 1.1].

Finally we remark that if the z-exceptional character exists and N > ¢, the associated

“secondary bias”, that is the difference between the main terms on the right hand side
of (1.10) and u(a, M), contributes an additional quantity

—Nea(p(a, N) — fig(a)).

The bound G >4 (log x)* does not exclude the possibility that (1—/3)logz = o(1) in the
context of (L.10)). Should this happen, we would have that 7, , = X(a)+0(1). If moreover
a=1and N < W, then the main term of would become asymptotically (1 +
o(1))fiz(a), and would not depend on N anymore. Compared with Theorem the
resulting main term is roughly of the same order of magnitude, but the additional bias
coming from the exceptional character would annihilate the N-dependance of the overall
bias.

Remark. This problem is closely related to the Titchmarsh divisor problem of estimating,
as r — 00, the quantity

> A(n)7(n—1).

1<n<lzx

After initial works of Titchmarsh [12] and Linnik [I0], Fouvry [8] and Bombieri, Fried-
laner and Iwaniec [I] were able to show a full asymptotic expansion, with an error
term O(z/(logx)?). In the recent work [4], the first author refined this estimate taking
into account the influence of possible Landau-Siegel zero, with an error term O(e~¢V1og®),

2. PROOF OF THEOREM

2.1. The Bombieri-Vinogradov range. We begin with the following lemma, which
follows from the large sieve and the Vinogradov bilinear sums method. Given a Dirichlet
character x (mod q), we let

Uz, x) =Y x(n)A(n).

n<x

Lemma 2.1. For 2 < R < Q < +/x, we have the bound

1 _ 5
> — Y max[u(y, )| < (logz) " {Rw + Qv+t |
9<Q »(a) X (mod ¢ ¥=*

R<cond(x)<Q

Proof. We sort the sum according to the primitive characters inducing x. For each x in
the sum, we denote by x; the primitive character inducing x; then by [3, page 163] we
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have max,<, |¥(y, x)| = O(log(gx)) + max,<, |¥(y, x1)| and therefore

2o 2 maxlv(x)
< X (mod q) V=
R<cond(x)<@

<QUogaf+ Y Y (¥ ) max (i)
R<r<@Qx1 (mod r) " q<@Q 90 q -

primitive rlq

< Q(logz)* + (logz) > max[e(y; )l
R<r<@ SO(T) x1 (mod r) Y=

primitive

The claimed bound follows upon setting ) = R in the third displayed equation of [3]
p.164]. 0

We deduce the following version of the Bombieri-Vinogradov theorem, with the con-
tribution of exceptional zeros removed.

Lemma 2.2. Fiza € Z\ {0}. There exists d > 0 such that for all z,) > 1 we have the
bound
(2.1)

Z max max
g<0 V=T (@)=

where 1, was defined in (1.6)).
Proof. By orthogonality and Theorem 11.16 of [I1], the left-hand side of (2.1)) is

a4 30 —omax | Y x(@d(y, x)

W(y;q,a) — (1 — m,a(x/y)l_ﬂqu)sjq)’ < zeVleT 1 \/z(log 2)°W,

4<Q SD(Q) ys x (mod )
X#XO,X
CgeVIET LY~ 37 max[i(y,x)|. = pe VBT LG 4 S
q<Q SO(Q) X (mod q) y=e
X#X0,X

say, where S_ is the contribution of those y with cond(x) < R :=e?V¥e® and S, is the
complemenary contribution. By [I1, Theorem 11.16], if cond(x) < R, then |¢(y, x)| <
xR™3, and so

1
S K Z Zi Z TR
1521420 P\ | (od 0
rlg cond(x)=r

<en? Y Y (¥ )
1<r<R x (mod r) §|Q q)
primitive r|q

< rR%logx
< xR
On the other hand, by Lemma [2.2] we have

S, < (logz)°V (xR + Qvx).
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Combining those two estimates, and reinterpreting J if necessary, we obtain our claimed
bound. 0

2.2. Initial transformations, divisor switching. From now on, we let § > 0 be a
positive parameter that conductor ¢ and associated zero 3, and recall the notation (|1.3)).
In order to isolate the contribution of the potential Landau-Siegel zero, we define

E(w;q,a) = 4" (z;¢,a) — (1 — nx,a1q~|q)Jq)~

If the z-exceptional character does not exist, then every term involving 7., can be
deleted. With this notation we have the decomposition

M{(z,N;a)= > Eziqa)+ > ¢*xqa)— > ' (x;q,a)

xl+6 xl+6 . z/N<q<zx

o1 s (g.0)=1

1 1
—x Z @ + Nz,al Z @

x%+5<qu/N 1’%+6<q§x/N
(9,a)=1 (q,g|)=1
qlq
(22) :T1+T2 _T3_T4—T57

say. We discard the first term by using the dispersion estimate [4, Theorem 6.2]. With
the notation used there, we have by [11, Theorem 11.16] that

o(r) = Y Aln) = 2 + O(ze™2VI0eT),

n<x

(n,q):l
V(%) = Y Am)x(n) = =72 + Oze V8T,
n<z
(n7Q):1

for all sufficiently small 6 > 0. We may reduce the value of ¢ if necessary and insert
back the term n = a in [4, Theorem 6.2]. Doing so, we obtain that in the range |a| < °,

rvers v 1 ooz
(23) Ti = Y. E(z;q,0) < 23 4 g 0VIET | pe-20vioes S —— < e tVlos,
q<a3* g<z3+ #la)

(g,a)=1
We end this section by applying divisor switching to the sums 75 and T3.

Lemma 2.3. Fiza € Z\ {0} and define Ty and T3 as in (2.2]). There exists an absolute
constant 0 > 0 such that in the range N < x%_‘;, la|N < xe 20V e have the estimate

1 — (Gi755) 1 — ()’
T —Ts = LT - el
2 ) )
r<z2 r<x?2
(ra)=1 (r,a)=1

alr

1-(%) 1- (%) —s5\/logz
-z ) + Mo D + O(ze™°V87).
el v elr)
(r,a)=1 (r,a)=1
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Proof. We rewrite the condition n = a (mod ¢) as n = a+qr for r € Z. Summing over r
and keeping in mind that |a|N < x, for large enough values of x we obtain the formula

= Y (Ve —vi(a+ Era)
1<r<N—aN/z
(ra)=1

= Y (laira) —dlat Eira)) + Ou(N).

1<r<N-aN/x
(r,a)=1

Recalling that N < x%_‘s, we may apply the Bombieri-Vinogradov theorem in the
form of Lemma 2.2l We obtain the estimate

r 1— ()8
(2.4) =z Z ) oy 1= () + O(xe0Vios™),
r<N r<N o(r)
(ra)=1 (r,a)=1
qlr
Replacing N by $%’5, we obtain a similar estimate for 75, and the result follows. O

2.3. Sums of multiplicative functions. In the following sections, we collect the main
terms obtained in the previous section and show that they cancel, to some extent, with
T, and T5. We start with the following estimate for the mean value of 1/¢(q), which is
a particular case of [0, Lemma 4.3] (setting r = o and M = @)/qp), with the main terms
identified in [8, Lemme 6].

Lemma 2.4. Fixe > 0. Fora € Z\ {0} and gy € N such that (a,qy) =1 and qo < Q,
we have the estimate

1 Q o
Z @ = Ca,qo{ log <QO> + Da7q0} + 04 (65Q 1+ ),
q<Q
(g,0)=1

qolq

where

(2.5) Coao = 4(a) I <1 + 1),

aP(40) ppogo p(p—1)

logp logp
(2'6) Daﬂo = Z 1 Z +1 7
pla p Maqo —bp

Here, ~q is the Fuler-Mascheroni constant.

We now estimate the main terms in Lemma[2.3] For N € N, a € Z\ {0} and ¢p € N
we define

1—(§)"
J(x,N;qo,a) := NZ_ 4 .
" P Ry
(ra)=1 (g,a)=1
qolr qolq
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Lemma 2.5. Fiz 6 > 0 small enough and a € Z\ {0}. For~ € [3,1], (qo,a) =1 and in
the range 1 < N < 2179, 1 < gy < 2°, we have the estimate

(2.7)
Jy(2, N qo, a) = Jo (x5 g0, a )+WqOﬂ;N(?_—Wfqo,a;N(v)

where the implied constant does not depend on v, the value of the second main term at
v =1 is defined by taking a limit, and

] 1
S35 90, 0) = Ca,qO{ log ( ) +2Dqq — };
% Y

171
=4 171
—|—Oa7€<NZL’ e g™ N s 8),

28 fypa0) = B Z()Gun ()61 = 162 = 2)(1 = )
where
1 1
7= 1;[ (1 TR - 1))’
1 -1 1
Gago(s) = ]I (1 + psﬂ(p_l)) II (1 - ps+1)~

plago pla

Proof. Assume that v < 1. We will obtain error terms that are uniform in ~; this will
allow us to take a limit and the result with v = 1 will follow. Mellin inversion and a
straightforward calculation gives the identity

SRR B B ()
Jo(, Niqo,0) = o — /(2) q890<q0)Z(3)Ga,q0<3)C(3 + 1)¢(s + 2){S+7 + (N) } —

Taking Taylor series shows that for R € Rs;, in a neighborhood of 0, we have the

estimate R .
R T\® 2
+(5) =2+ (1 — ) +0, :
Tt (&) =2+ s(tomr o)+ 0nallsl)
We first shift the contour to the left until (—3). The residue at s = 0 contributes

O G0+ G Lo (3) 1)

Using the evaluations

2006206 = AP T (14 10— )

|al plago 1+pp—

¢ g _ logp log p
—(0) + +—° = — ,
PO G R e

we obtain that the residue is exactly J (x; g0, a). We turn to the remaining integral
1 / 1 YN? x\%) ds
— Z(s)l,, s§s~l—1(s+2{ —1—() }

2mi (-1/2) Q(S]SO(qO) ( ) QO( ) ( ) ( ) s+ N S

We handle the contribution of the term (x/N)*® in a way identical to [7, Lemma 5.12],
where the main point is to interpret the integral as the error term in (2.4]), which can
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be treated more effectively by the convolution method than by complex analysis. We
recall the steps: first, a trivial estimation using a truncated Perron’s formula shows
the preliminary bound O, .((z/N)~/?*¢). Second, shifting back the contour to 2 + iR
(picking up a residue at s = 0) and applying Mellin inversion, we obtain the identity

1 1 ds 1
— 2(5)Glags (5)C (541 s+2< ) - Klo( )K
i [ s G (5) T = F - Kaos () -k
(g,@)=1
qolq

for some constants K7, K, depending on ¢p and a. Finally, Lemma [2.4 implies that K; =
Caq and Ky = D, 4, (since otherwise we would get a contradiction with our preliminary
bound above), and so the error term obtained in Lemma shows that the above
bound O, . ((x/N)~Y2*¢) is actually O,.((z/N)~'*). We arrive at

~ N 1—¢
Jy(z, N; qo,a) = J(x; qo,a)—{—Oaﬁ((m) >

o |1 o 250G (6 + (s + 2)
(=3)

2mi a5 (qo) s+7v s’

Shifting the remaining integral further to the line (=1 — &), we pick up two residues,
at s = —1 and at s = —~. This gives rise to the second term in (2.7)). As for the shifted
integral, we apply Bourgain’s subconvexity estimate [2] for ((s). Note that

1
Gaa(s) < H( W>H<1+pme<s>+l>-

plago pla

As in [5, Lemma 5.9], we shift the contour to the line Re(s) = —1 — 1/(2 + 46), where
0 = 13/81 is Bourgain’s subconvexity exponent. The shifted integral is

s 1/(2+49)+€N7171/(2+40)+5
The desired estimate follows. [l

In the next two sections, we will prove approximations for the term

quo,a N(1) = foan(7)

appearing in ((2.7)).

2.4. The main term for v = 1. The limit of D,(gp,a; N) as v — 1 has a simple
expression in terms of derivatives of f,, n, namely

Di(q0,a; N) = fa0.0v(1) = fag.an(1).
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Recall that f,, . n is given by the Euler product (2.8)). A direct computation yields that
for g € Nya € Z\ {0} and N € Ry,

0 if a # +1;
a 1) =
faan() {—Q}V if = 41,
0 if w(a) > 2;
f(;,a,N(l) = LN(l - *) log ¢ if a = £V (v € N, £ prime);

—ﬁ{ log(£) —2Co +1 S, logp} if g =41,
From these observations, we deduce the following.

Lemma 2.6. We have the exact formula
0 if w(a) > 2
Di(g,a; N) = { 50(1 — 7) log ¢ if a = £0¥ (v € N, L prime);
2N{log(q)+200+zp|q lofjp} if a = £1.

2.5. The main term for v < 1. Now that we have estimated the main term in
Lemma for v =1, we will do so for v < 1. Under this restriction, we write

Dy(q0,a; N) = Di(qo, a; N) = // Y (07)dd’ds.

By a direct estimation of the Euler product we see that in the range % <y <8<,

4 Gago (—9)]
<Z5(QO)

Therefore, when % < v <1, we obtain

‘ q0,a, N( /)‘ <<a (10g qON)2N7’Y < (log qON)2N7’Y

(2.10) D, (qo:a; N) = Di(qo, a; N) + O4((log goN)*(1 — )N 7).
Along with Lemma [2.6], the above yields the following approximation.

Lemma 2.7. Define

— B)(log GN)*
Nbgi-8

For (a,q) =1, v € N and (¢ prime, we have that

R(z,N) := (1

Di(1,a; N) = 10, D3(q, a; N)
Oa(R(x, N)) if w(a) =2
L (1= ) (1= log 0+ O,(R(z, N)) i o=+
(1= o) g7 {l0g N +2Co} + e azm{log 4 — ¥, 1°§p}+0 (R(z,N)) ifa= =+l
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2.6. Cancellation of main terms and proof of Theorem [1.3] In this section we
combine the main terms in 75, T3, 7T, and T5 and prove our main theorem.

Proof of Theorem[1.3. Recalling (2.2)), we have by (2.3) and Lemmas and that

for some small enough § > 0,

ME(x,N;a) =T, + Ty — T3 — Ty + Ts
— x{Jl(x, 2270 1,a) — Jy(z, N, 1, a)} - ngc’ax{(]ﬂ(x, 2278 G.a) — Js(z, N, q, a)} + O(ze VBT
= —xDi(1,a;N) — nx,ax{jg(ac, g,a) — Jg(x, N, q, a)} + Oa,e(a:N_l_iTngf),

Here, we used the bound Di(gq,a,N) <, N~ '(loggN) along with (2.10). If the z-
exceptional character does not exist, then this yields .

Next, assume that the z-exceptional character does exist, and that N < ¢. Then by
definition and since § < evlosz,

Js(z,q,a) — Jg(z, N, q,a)

x 1 1—(r/N)* 1
S CES FEPINEL B G
! & B ;V e(r) q;x;N ©(q)
alr dlg
(a,r)=1 (g,a)=1
N 1 1—(r/N)? 1
O T CATI I B )
! q T ;V o(r) (@)
i
(az“):l

where the sum over ¢ was evaluated using Lemma . Since N < V1982 this yields (1.9).
Assume now that the z-exceptional character exists and that N > ¢§. We use Lemma 2.5
to write

- . . ey 1T
Js(5G,a) = Js(x, Niq,a) = —Dg(q, a5 N) + O, o(N71F5(q/N) ).
Therefore,
Mlz(xa N) (l) - _'I{Dl(lv a; N) - nx,aDﬁ((Z a; N) + Oa,s(N_l+€(6/N)}lzé)}‘
Our claimed formula (1.10) then follows from Lemma [2.7] O

2.7. Unconditional bias. In this last section we prove our unconditional result.

Proof of Theorem[1.1]. If the xz-character does not exists, then the claimed bound follows
from ([1.8]). We can therefore assume that it does exists. Note that

Ml(x,N;l)_Mlz(w,N;l)_ 1
r/N z/N Niaa 2 (q)

~ M{(xz,N;1)
B z/N
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Using our estimate (1.9)), and noting that the r-sum is O(log(gN)/¢(q)), we obtain that

M N;1 171
O T (0, 8) + 0N ) — Ny o () + Olog2-+ N/a)

Since G, N < e?V1e and Nz > 0, the last term here contributes a negative quantity for
large enough x, and we obtain the claimed inequality. 0
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