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ABSTRACT. We estimate the spectral radius of perturbations of a particular family of
composition operators, in a setting where the usual choices of norms do not account
for the typical size of the perturbation. We apply this to estimate the growth rate of
large moments of a Thue-Morse generating function and of the Stern sequence. This
answers in particular a question of Mauduit, Montgomery and Rivat (2018).

1. INTRODUCTION

The present note is concerned with a case of asymptotic perturbation of a linear
operator, which is a widely studied subject; we refer to the monograph [8] and to the
recent work [I1] for references. There are well-understood general results which deal
with the behaviour of the spectrum of the perturbation 7" + ¢ of a bounded linear
operator T, granted one can find a norm with respect to which ¢ can indeed be considered
a perturbation.

In the recent works [4] [12], instances of this question arose which do not fall in the
scope of the general analysis, the reason being that the natural norms one has do not
account for the true expected magnitude of the perturbation. The purpose of this note
is to present an alternate argument, which relies on an ad-hoc construction but allows
to answer completely the questions in [4, 12]. We begin by a discussion of the two
arithmetic applications we are considering.

1.1. Moments of a Thue-Morse generating function. In this section only, for
all m € N, we let t(m) € {1} denote the parity of the sum of digits of m in base 2, so
that (t(m))m>o is the celebrated Prouhet-Thue-Morse sequence [I]. For all n € N, we
let T, : R/Z — C be defined as

To(z)= J[ A—e@2)= > t(me(mz).

0<r<n 0<m<2n

In [12], the authors study the moments
1
My(n) = / Th(2)*de,  keN.
0

Upper-bounds on My (n) are an important ingredients on works on the level of distribu-
tion of the Thue-Morse sequence, in particular in [6], [I3] where estimates of M /s(n) =
1Tl and limy_o0 My (n)Y %) = ||T, || are used to obtain asymptotic formulas for the
number of integers with multiplicative constraints (primes or almost-primes) having a
predetermined parity of their sum-of-digits modulo 2.
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In [I2], the authors show that the sequence (Mg(n)),>o satisfies a linear recurrence
equation, and they deduce, for each £ > 0 the existence of constants C > 0 and o > 0
such that

(1.1) My (n) ~ Cyop (n — +00).

The behaviour of the constant g, as k — 400 was left as an open question in [I2]. The
authors conjectured that g = 33"(1+ O(k™2)) for k > 1. Towards this estimate, they
show the upper-bound g < 1(3% + 4%/3).

Using Theorem |3| below we are able to prove this conjecture, isolating also a secondary
term of size exponentially smaller.

Theorem 1. For 6; = II,»; 25 sin(§(1 + 55)) = 0.6027- -+ and n = 0.506, we have

or = 33" (1+ 87 + 0(™)).

1.2. Moments of the Stern sequence. Our second application concerns the Stern
sequence (s(n))nen.,, defined by s(1) and the recursion formula

s(2n) = s(n), s(2n+1) = s(n) + s(n+1).

This sequence has been widely studied due to its links with Farey fractions and enumer-
ation of the rationals [9], Automatic sequences [2], or the Minkowski function and the
thermodynamic formalism of the Farey map [15, [5, [10] 4].

For all 7 € C and N € Ny, define the moment sequence

M,(N):= > s(n).
2N <n<2N+1
In [4], the asymptotic estimation of M, (N) as N — oo for 7 in a neighborhood of 0 led to
a central limit theorem for the values log s(n). The asymptotic behaviour of M, (N) for 7
away from 0 is an interesting question. Let us focus on large integer moments, 7 = k € N.
It is not difficult to show, in analogy with (1.1)), that the sequence (M, (N))n>o satisfies a
linear recurrence equation, from which we deduce the following statement, to be proven
in Section [4| below: for all k£ € N, there are constants Dy > 0 and o, > 0 such that

(1.2) My(N) ~ Dyor (N — +o0).

It is well-known [3} eq. (1.4)] that oy = 3 (in fact, M;(N) = 3~ exactly). The constant o,
is related to the pressure function associated to the Farey system [10} 5], and one can
show] that o) = exp(P(—k/2)), where P(6) denotes the pressure function of the Farey
system [10, p.135].

In Proposition 4.4.(8) of [10], the authors show by combinatorial arguments that

<o <AL+ -¢ ) (¢=155)

Note that 1 — ¢ ¢ & 0.944---; we also refer to [5, Theorem 4.15] for a qualitative
estimate. Also in this case we are able to identify a secondary term in the asymptotic
expansion.

Theorem 2. Let ¢ = 252, For 0y = 2 = 0.8944- -+ and n = 0.837, we have

or = ¢ (1405 + 0(n")).

IThis requires a slight alteration of the argument in Lemma [5| below, since the pressure function
in [I0] involves sums of (s(n)s(n + 1))7 rather than s(n)".
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Using a suitable uniform version of our arguments, particularly the size of the se-
ries >, VF 3, V- (x) in Lemma [2| below, one could deduce an upper-bound for the
number of very large values of s(n) (see [14] for works on related questions).

1.3. Perturbations of composition operators. We will obtain Theorems [I| and
as consequences of a more general result on perturbations of composition operators, for
which we need to introduce some notation.

Let X be a set, a,b : X — X be two maps and x : X — C be a bounded map. We
assume that a has a unique fixed point g € X, which is attracting on X; we will assume
stronger estimates below. Denote L*(X) the set of bounded functions from X to C,

and define 7" : L*>°(X) — L*(X) by

(1.3) T[fl(x) = (f o a)(z) + r(x)(f o b) ().
Note that for kK = 0, the operator Ty : f — f o a has spectral radius 1, and in this
case 1 is an eigenvalue. A corresponding eigenfunction is 1, with eigenprojection given
by f > f(xo)1. Define

Ko := K(Zp).
An application of [8, th. VIIL.2.6] (see also Theorem 1.6 of [I1]) shows that if 7§ is
compact, if 1 is an isolated simple eigenvalue of Ty, and if ||%||o is small enough in terms
of a, then the spectral radius of T is asymptotically 1 + x¢ + O(||&]|2,). In order for
this estimate to be useful, it is crucial that ||k||2, = o(kg). The setting in which we
are interested here is one where such a bound is not satisfied because x does not decay
uniformly in X.

We will answer this question, in the special case k > 0 and under the specific conditions
stated below, by constructing an approximate eigenfunction and taking into account the
interaction of @ and b on X. For £y, ks, ... € N5g and z € X, we will use the shorthand
notation a*1b*2 ... x for (k1 o b*2 0 ...)(x).

Let (o)), (o), (Be), (6¢) (with indices k,¢ € Nsg) be sequences of non-negative real
numbers. Assume that v > 0, 5y > 1, and

(14) cl = Z a,j < +00 25661 .- '6571 < +00,
k>0 e>1
(1.5) =g+ ap+Y BB < oo,
k>0 0>2

We make the following hypotheses.

(1.6) k(b'x) < By, (¢ >0)
(1.7) 0 < Ko — a; < k(d"z) < Ko+ ay, (k> 0),
(1.8) rk(afbax) < Ko + yoi, (k>1).

Finally, let g : X — R% be such that
1 ) 9(z) g(@)
< 00, su + su < dy.
g(az) vex 907) " yex g(¥ay) =
Let T, act on functions on X by Tig[f] := ¢T[g~" f] (this is well-defined by (1.9))).

Theorem 3. Under the conditions (L.4)—(1.9), if ko and n are small enough in terms
of ¢1, then the series

(1.10) F(x) =Y T@)  (reX),  Filz) =3 2|0

r>0 r>0

(1.9) Sup (g(fﬂ) +



4 S. BETTIN AND S. DRAPPEAU

have radius of convergence 1 — ko + O, (nKo + Kk2), where the implied constant depends
at most on c1. In particular,

lim sup || T |11 = 1+ fio + Ocy (1550 + K5).

Translating Theorem [3]in terms of an expansion of the leading eigenvalue of T', instead
of the spectral radius, would a priori require additional hypotheses on a and b, at the
cost of restraining the applications. In the applications mentioned above, the objects of
interest are, in fact, the iterates of some fixed function.

The method could in principle be extended to provide further lower order term, under
a strengthening of the condition , but this is not straightforward to carry out,
especially compared with the methods of [8 [11].
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2. PROOF OF THEOREM

The proof of Theorem |3] is simply based on an explicit estimation of iterates of Tj,.
In the proof, we denote ¢y > 0 any number satisfying

1
Bo+ Y 6B1---PBe—1+sup (g(x) - ) < ¢o.
2 sup g(az)
The value of ¢, will not affect the uniformity of the error term.

Given a word w = wy - - - wy,, € {a,b}*, of length |w| =n, and z € X, we interpret wz
to mean wy o - -+ o wy,(x). Let ¢ denote the empty word. For all w € {a,b}* and z € X,
we define u(w, z) recursively by

(2.1) wu(e,x) =1, w(wa, z) = J u(w, ax), u(wb, x) = k(z)u(w, bx).

g(bx)
It is easily seen, by induction, that

g(x)
(2.2) w(w, z) = k(vz),
g(wx) Uégb}*
we{a,b}*bv

where the product is over all words v such that bv is a suffix of w. For instance,

g(x)
b - I
aba, z) g(aba*b?abaz)

By iterating the relations (2.1)), we obtain that for all r > 0,

(2.3) o) = > ulw,x).

we{a,b}"

u(aba*b? rk(a*b*abaz)k(babax)k(abax)k(azx).

There are as many k-factors in u(w, z) as occurences of b in w. Since we expect K to
typically have small value, the main contribution to the sum is expected to come
from words containing few occurences of b. For these terms, we expect the product
to consist of words v starting with a long string of a, and so with an associated x-value
close to kg. Similarly, under some regularity assumptions on g (which we eventually
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will not need), we expect g(wzx) ~ g(xy) for such words. If |w|, denotes the number of
occurrences of b in w, then we are indeed led to expect 77 [1](z) ~ % > welap}r Ry =

g((;o)) (1 - HO) )

We seek an upper-bound for u(w, x) valid for all words w, and a lower-bound valid
for specific words which are expected to yield the main contribution to the sum (2.3)).
For ¢ > 1, write

L & k>0, (=1,
o¢ =P+ B, 5k,€—{5£ (k = 0), w_{l (¢ >1).

with the convention o; = 1. To ease notations, we also denote

H(ko, c ey kT) - < H O_k]) < H (/{:0 + ’Yk]+2al—<i:;+1)> ‘
1<j<r 1<j<r—3
j odd 7 odd
Lemma 1. Forr > 2, ky € N>, ki,..., k. € Nyg and z € X, we have
(2.4) u(a®b* - a x) < Sk, (Ko + o )(ko, .., ky) (r even)
(25) U’(akobkl T bkru (L’) < 6k0,k160(’£0 + Oél_c‘—r,l)H(k()a BRI k'r) (T 0dd>

Moreover, forr >0, ko, k1,..., k. >0 and x € X, we have

(26)  w(@®ba® - ba* x) > ¢t g(x) T (ko — ay,).

1<j<r
Proof. Let us examine the case of positive, even r. Then

r—1 kj

ulab o 2) = g(akobkl... I I @Y b ).

] 1¢=1
odd

By (L6), we have w(b"~fakier - 2) < B, if 1 < € < k; — 1. If £ = k;, then we
may use (L.7)-(1.8) to obtain k(af+ ---z) < Ko + %HQa,;ZS if j < r—3, whereas
if j =r —1, then we use to get k(a"z) < ko + o . Finally, the hypotheses (1
yield gwko% < ko k, in all cases. The proof for odd r and for the bound - is
similar. 0

We now sum this over » > 0. Let

= > plow, Si(p) = D (ko + o),
>1 k>1

= > 0oy, S_(p) = > r"(ko — ),
=1 i1
Z prt (Ko + eary)).
k4>1

Define further
Vi)=Y pr+zj Mu(a®obakt - - balr | x),

ko,...kr>0
Vi Y pe b uaort ),

ko>0
ki ooy >1
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where * = a or b according to whether r is even or odd. Note that, by (2.3) and
positivity, for F, and Fy as in ((1.10)) we have

(2.7) S Vi(z) < Fulp) < Fi(p) < S VE

>0 r>0
Lemma 2. For 0 < p <1, we have

« V<2

o Vi" < Bo(Ss(p) + c37%,54(p)),

o if 1 is even and r > 2,
Vo5 < (S5(p) + 372555 (p)) ()"~ 2725 4 (p),
o if r is odd and r > 3,
Vi < Bo(Ss(p) + 37255(0)) S (0) 84 (p) /28 (p),
e forallr >0,

Vi(z) > 3 g(2) 15 (pS-(p))"

Proof. The first two inequalities follow easily as in the proof of Lemma [T} Moreover, if
r > 2 is even, summing the estimate (2.4) we have

r—3
V7~+ < Z pko+k15k07k10k1 Z pkr(ﬁo+a7€;) H Z pk’j+1+kj+20kj+2(f€0+fykj+2aljj+1)

ko>0 kr>1 J=1 kj112>1,
ki1>1 7 odd kjpo>1

= (S5(p) + B12555(p)) S+ (p) S (p) " 272,
The last two inequalities can be obtained in a similar way. U

We are ready to prove Theorem . On the one hand, we deduce that }°,., V,* con-
verges if p < 1 and S.(p) < 1. But by (1.5) and the definition of S,

Ko(1+ 1)

(2.8) Se(p) < == p

=+ C11,

so that S.(p) < 1if p < 1 — kg — 'Ky, for some real number ¢ depending on ¢;. We

conclude that the radius of convergence p, of F,(z) satisfies p, > 1 — kg + O, (1Ko).
On the other hand, we deduce that ), V; () diverges if pS_(p) > 1. Since

Kop
S_(p) > -
we deduce that pS_(p) > 1if p > 1 — kg + ¢ (nro + K2) if ¢ is taken large enough. We

conclude that the radius of convergence p(z) of F,(z) satisfies p(z) < 1—ko+O(nro+K3).
Theorem (3| then follows by ([2.7)).

3. PROOF OoF THEOREM [1]
For all z € [0, 1], define

=
=
I
—_
|
DO |
>
—~
=
|
DO |
=2
&
S~—
S )
w
=.
=
7N
:]
Z%
\/

Note that

(3.1) a"(z) = 2 + <_21>n<a: - ;), b (z) = zlnx,



TWO ARITHMETIC APPLICATIONS OF PERTURBATIONS OF COMPOSITION OPERATORS 7
and S(2/3) = 1. Therefore, the product
(3.2) G(z) =[] S(a"=)

n>0
converges absolutely for € (0, 1]; note that, due to the n = 0 term, it vanishes at
order 1 at x = 0. Finally, let 7 > 0, and ¢,&, k : [0,1] — [0, 1] be given by
G(x/2
Elx) = A2
G(1—xz/2)

The functions G' and & are depicted in Figure [T}

0.5 :

L L L L L L
0 0.25 0.5 0.75 1 OO 0.25 0.5 0.75 1

FIGURE 1. Approximate plots of G (left) and & (right)

Lemma 3. The function £ : [0,1] — [0,1] is of C' class, increasing and bijective.

Proof. The values £(0) = 0 and £(1) = 1 are simple to compute. The C! regularity of &
follows by the uniform convergence of the product defining G. To see that £ > 0, we
define, for all x € [0,1] and n > 0, with z # 0 if n =0,

=552 D) o452 E3)
3 2\ 2 2 3 3 2\ 2 3 2
By the derivative cot’ = —1 — cot? and since cot > 0 on (0,7/2], we find k!, < 0.
Moreover, we have
hon(1) — hoyy1(0) = cot <§ - 17;4171) — cot <7?: + leln) > 0.
We deduce that for all z,y € (0, 1], we have hy,(z) > hay11(y), and so

&) = 5 <_21>nhn(x) > 0.

f n>0
We define the operator T : L>((0,1]) — L*=((0, 1]) by
(3:3) Lifl = (fea)+r-(fob).

Lemma 4. For k > 1, we have g, = 3gli'limr_wroo lgT5. (g7 11X

Remark. Note that the operator f — gTo[g'f] is well-defined also as an operator
acting on C([0, 1]), since goa > 0 on [0, 1] and by extending % continuously at 0.



8 S. BETTIN AND S. DRAPPEAU

Proof. By Proposition 1 of [12], we have
o = lim ||PLA]II,

T—+00

where P acts on continuous functions on [0, 1] by

pise = 3o ()" () o () (57).

Note that P, preserves the subspace of functions symmetric with respect to % We
“desymmetrize” it by defining, for all 7 > 0, an operator U, on C(]0, 1]) by

Ulf@) = Sy (£(1-35) + £(35)):

Then, writing f*(t) := f(1 —t), we have
k

Pf 4+ £)(w) = 2 (Unlf)(e) + Ul 7)1 — )

3 .
5 (Ul (@) + Unelf]7()).
and so, by induction, we have for all r € N
T * 3k r *
(34) P+ @) = (5) WhIA@) + VBT ().
We take f =1, and deduce by positivity that $[|U3.[1]]|ec < [|P[1]]lec < |U3[1][|cc. In
particular,

3* 1
(3.5) on =+ lim U5 [1]]1"

r—+00

By construction, we have T[] = ¢ 'U,[gf] for all f € C((0,1]), in other words, ¢gT,[g ' f] =
U.[f]. This yields the claimed formula.

We can now finish the proof of Theorem [I] Since G(z) vanishes at order 1 at z = 0,
we may find ¢ > 0 so that (cz)” < g(z) < (x/¢)”. Also, note that for 0 <z <y <1,

(3.6) E)" —&@) < (y = )€ |oeé(y)
Define kg := £(2/3)7, and
5@ = 5( 76)7-7

ap = 3277€ e,

N {1 (k € {0,1}),

T 2  max(1, 2¢|rE )Y (k> 2),
v = 2)€ oore (D),

52 — C—2T2l+(f—|—1)7.

We apply Theorem [3| with x = £7. The condition ((1.6)) follows from the fact that £
is increasing, and b°([0,1]) = [0, 2_5]. The condition follows from and the
inclusion a*[0,1] C [2(1 —27%),2(1 4+ 27%)]. The condition ) follows from the in-
clusion a*bal0,1] C [0, {], and the condition ) follows from a[O 1] c [3,1]. The
convergence of the series is ensured by the fact that £(27%) — 0 as £ — oo.
With n = O(7£(3)7), the above yields

limsup g7 g1 =1+ ko -+ Onsa).
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Lemma {4 finishes the proof of Theorem |1} From Lemma , we have & (%) < 1; the more
precise bound & (%) € [0.833,0.835] is checked numerically by truncating the product (3.2)
at n = 11 and estimating the remainder.

4. PROOF OF THEOREM [2]
For z € [0, 1], let

and for all 7 > 0, define
1
oa) = @+a),  gl) =g, k) = (o)
Note that ¢ is an increasing function with £(0) = ¢!, £(1) = 1. It is easy to see that

if (Fo)n>0 = (0,1,1,...) denotes the Fibonacci sequence, then for all n € Nsq,

F,_1x+ F, T
n — b’n — .
a"(z) Fox+ Foiq’ (%) 1+ nzx
Note also that the map « : [0, 1] — [0, 1] is increasing, with (1) = 1.
For notation convenience, the variable k£ in the statement of Theorem [2] will be re-

named 7. In this section, 7 is a positive integer.
We define an operator 7). on C([0,1]) by

T[fl = (fea)+r-(fob).

Lemma 5. For all 7 € Ny, there exist constants 0., D, > 0 such that the asymptotic
formula (1.2)) holds. Moreover, we have
1/r

or = ¢ limsup 19T (g~ 1L,

Proof. We claim that for all N > 1,
where P, acts on degree 7 polynomials by
1 x
P, = (1 T )
W) = 0o (4 (-57) + 1 (553)

To prove this, we let By = (1) and B; = (19). Then, by the chain rule [7, eq. (2.3)],
it follows that
(4.2) PYflx)=" > jm(@) (M- 2)

€0,--,6N—1€{0,1}
M=BeyBey_,

where jy(z) = cx+d if M = (2%). We now recall that if 2 < n < 2V*1 is written n =
2V + 3 0<j<n €;27 in base 2, then the formula [4, eq. (2.1)]

(4.3) (“;;5”) = Ay Ay G) :

holds, where Ay = ({1) and A; = (19). We wish to rewrite the sum in terms
products of Ay and A;. Let T'= (9}), so that TAy = AT = By, and also TA; = AT
To each tuple (gq,...,exy_1) € {0,1}Y, we associate a tuple (gf,...,ely) € {0, 1}V
such that

Tew,

M:=B., By, =Ay Ay

EN-1 EN-1
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by writing By = Ay, By = T'Ap, and then pushlng all the occurences of T' to the right,
using 7% = id and TAy = A,T. Then &y is given by the sign of det(M). We also
always have ¢ = 1. Finally, the map (eg,...,en—1) — (€], ...,€)y) is injective, since By
and By are free over GLy(N) (their transposes map (R*)? into {(z,y) € R*,z >y > 0}

and {(x,y) € R? y > x > 0} respectively), and thus also bijective. Using this bijection
in (4.2)), we deduce

Now we note that 7"- 1 = 1, so that for each tuple (&, ...,}y) in the sum,

(1) = (0 1) AAg, - A%_F&G>

= (0 1) AA,-- A%1<D
= s(n'),
where ' = 2V 4+ 30, .y €527 + 1. Note that this is independent of efy. As (¢/,...,ely_;)
runs through {0, 1}¥~1 n’ runs through the odd integers in [2V,2¥+1). We deduce that
PYA(1) =2 > s(n),

2N <p<oN+1
n odd

and finally follows since s(2n) = s(n).

Since P, acting on the set R, [z| of real polynomials of degree < 7, with its canonical
basis, is positive, by the Perron-Frobenius theorem, it has a simple isolated dominant
eigenvalue o, > 0, equal to its spectral radius, and actually o, > 1 since P[1] > 2 1.
We have in particular, by positivity,

o, = limsup | P7[1][| 2"
r—00

By spectral decomposition, we deduce the existence of a constant D, > 0 such that,
as N — oo,

MJN)—M(N—l) ~ D!oN

701

and therefore M,(N) ~ D,oY with D, = D'o,/(c, —1). To conclude the proof, it
suffices to remark that, by construction, P.[f] = ¢"¢gT,[¢ ' f]. O

f
Note that |[(a o a) || < 1/2 and a( )= i so that for k € N,
Hak i $||OO < 21—k/2'

(\%)T Define

/(e + 1)
—21 B2 ¢ ere (1),
L (k€ {0,1}),
T 22 max(1, 1€ er€(2)TY) (k> 2),
7 = (€ loere(3)
:¢T

We let kg := n(%)
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We apply Theorem . The hypothesis is satisfied since b°[0,1] = [0, H%] The
hypothesis is satisfied by the inclusion a*[0, 1] C [0, 2] if k£ > 2. The hypothesis
follows by the inclusion a*ba(0, 1] = a*[3, 3] C [0, 3]. Finally the hypothesis follows
from ¢” < g(z) < ¢*". We obtain n < 7£(2)™ and ¢; bounded independently of 7, and
deduce

lim sup [|g77[g 7|27 = 1+ ko + O(no).
r—r00
Theorem [2] then follows by Lemma
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