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Abstract. We obtain an exact modularity relation for the q-Pochhammer symbol. Using
this formula, we show that Zagier’s modularity conjecture for a knot K essentially reduces
to the arithmeticity conjecture for K. In particular, we show that Zagier’s conjecture holds
for hyperbolic knots K 6= 72 with at most seven crossings. For K = 41, we also prove a
complementary reciprocity formula which allows us to prove a law of large numbers for the
values of the colored Jones polynomials at roots of unity. We conjecture a similar formula
holds for all knots and we show that this is the case if one assumes a suitable version of
Zagier’s conjecture.

1. Introduction

Among knot invariants, the colored Jones polynomials {JK,n}n≥2 and the Kashaev invari-
ants {〈K〉N}N≥2 are of particular interest, by their relation to quantum field theory, and the
geometry of hyperbolic manifolds [25, 26, 44]. We refer to e.g. [31, 46] for their definitions;

by [31], the two invariants are related by 〈K〉N = JK,N (e2πi/N ). We refer to [24, 25, 14] for
more results and references on this topic.

The Kashaev invariant is extended to a function on roots of unity by setting, for (h, k) = 1,

JK,0(e2πih/k) := JK,k(e
2πih/k). For fixed k, the values (JK,0(e

2πih/k))(h,k)=1 are simply the

Galois conjugates of 〈K〉N in Q(e2πi/k). In the case of K = 41, the simplest hyperbolic knot,
we have explicitly

J41,0(q) =

∞∑
r=0

|(1− q)(1− q2) · · · (1− qr)|2(1.1)

for a root of unity q.1 In general, JK,0(q) can be written as a multiple series of this kind, with
each addend being a ratio of q-Pochhammer symbols of various indexes. See Section 2.4 for
some more examples and the precise definition of JK,0(q) in the cases we will consider.

The volume conjecture [26] predicts that for any hyperbolic knot K,

(1.2) lim
N→∞

log |〈K〉N |
N

=
Vol(K)

2π
,

where Vol(K) is the hyperbolic volume of the complement of K. This is motivated by the anal-
ogy between the usual dilogarithm, which measures volumes of tetrahedra in the hyperbolic
space, and the quantum dilogarithm, which are the building blocks of Kashaev’s invariant.
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1Notice that the series is in fact a finite sum at roots of unities.
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A generalization for non-hyperbolic knots was formulated in [31, section 5], with the vol-
ume Vol(K) being replaced by a suitable multiple of the Gromov simplicial volumes of the
complement of K.

This conjecture was extended in [22] and implicitly in [18] to a full asymptotic expansion,
referred to as the arithmeticity conjecture in [12], whereas the corresponding question for the
imaginary part of the logarithm is conjectured to involve the Chern-Simons invariant cs(K)
of K [32, 22]. The arithmeticity conjecture has been proved for all knots with up to seven
crossings in [2, 35, 37, 36]. We refer to [16, 34, 33, 30, 27] and the references therein for more
results and information on the volume conjecture.

In [47], Zagier studies several examples of what is called “quantum modular forms”. Mo-
tivated by extensive numerical computations, he predicts that JK,0 satisfies an approximate
modularity property which relates, in the limit as x→∞ among rationals of bounded denom-
inator, JK,0(e2πi(ax+b)/(cx+d)) with JK,0(x) for any ( a bc d ) ∈ SL(2,Z). The constants involved
are also considered from an algebraic point of view, and are expected to belong to simple
algebraic extensions of the invariant trace field FK of the knot (see e.g. [29, Chapter 3] for the
definition). More specifically, given a hyperbolic knot K, the following conjecture is made (cf.
also [19] and [15] where the coefficients in the series are analysed in detail).

Conjecture 1 (Zagier’s modularity conjecture for K). For all γ ∈ SL2(Z) such that2 α :=
γ(∞) ∈ Q, there exist CK(α) ∈ C and a sequence (DK,n(α))n≥0 of complex numbers such
that, for all M ∈ N and x ∈ Q, with x→∞, there holds
(1.3)
JK,0(e(γ(x)))

JK,0(e(x))
=
(2π

~

)3/2
ei

Vol(K)−i cs(K)
~ CK(α)

( ∑
0≤n<M

DK,n(α)~n+O(~M )
)
, ~ :=

2πi

x− γ−1(∞)
,

where e(x) := e2πix and the implied constant depends at most on α, on the denominator of x
and on M . Moreover, if FK,α := FK(e(α)), then:

• CK(α) is a product of rational powers of elements of FK,α;
• DK,n(α) ∈ FK,α for n ≥ 0.

In the case K = 41, Garoufalidis and Zagier [20] announced a proof of Theorem 1, and also
numerically investigated the conjecture for other knots. The case of the 41 knot is special and
rather simpler than that of other knots, due to the fact that in this case all the summands in
the definition (1.1) of J41,0 are positive. One can then use Laplace’s method to extract the
asymptotic expansion (1.3). In general, this positivity is not present and there is a remarkable
amount of cancellation between the terms of the series. Indeed, JK,0(e(1/N)) is typically
exponentially smaller than the largest summands in its definition, and this prevents one from
applying a direct estimation based on Laplace’s method. We circumvent this serious obstacle
by obtaining a new modularity relation, with a precise description of the holomorphic and
periodic behaviour of the error terms, for the q-Pochhammer symbol. This symbol is of
crucial importance in the theory of q-series and often appears in the theory of modular forms
and combinatorics (see for example [7] and references therein). For r ∈ Z≥0, it is defined as

(1.4) (q)r :=
r∏
j=1

(1− qj), q ∈ C.

2In what follows, a matrix in SL(2,R) acts on C by homography.
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When |q| < 1, one can also take r = +∞ and obtain the Dedekind η-function, an important
example of a (half-integral weight) modular form defined as η(z) := e(z/24)(e(z))∞, with
e(z) := e2πiz. As such, η satisfies the relation

η(γz) = χ(γ)(cz + d)
1
2 η(z), γ = ( a bc d ) ∈ SL(2,Z),

for a certain “multiplier system” χ (see [23, Section 2.8]). This modularity relation can be
naturally extended to the partial product at root of unities. Indeed, denoting with den(α) the
reduced denominator of α ∈ Q, in Theorem 6 below we show that for α ∈ Q, 1 ≤ r < den(γα)
we have

(1.5) e
(γα
24

)
(e(γα))r = χ(γ) e

(
α
24

)
(e(α))r′ψγ(α, r)

for some 1 ≤ r′ < den(α) and where ψγ(α, r) is an explicit function with suitable holomor-
phicity properties. We refer to Section 2 for the precise formulation of this reciprocity formula
which we believe to be of independent interest. With this new tool, we can reduce Zagier’s
modularity conjecture to a slightly modified form of the arithmeticity conjecture, thus show-
ing that the two conjectures are “morally equivalent”. In particular, we are able to prove the
conjecture for all hyperbolic knots K 6= 72 with at most seven crossings, since for these the
arithmeticity conjecture is known by works of Andersen and Hansen [2] (in the case K = 41),
Ohtsuki [35, 36] (in the case K = 52 and with 7 crossings) and Ohtsuki and Yokota [37] (in
the case of 6 crossings). We recall that the fields FK , FK,α were defined just before and in
Conjecture 1.

Theorem 1. Let K 6= 72 be a hyperbolic knot with at most 7 crossings. Then Conjecture 1
holds for K. The constant CK(α) has the shape

(1.6) CK(α) = e
(νK

2
s(α)

)
cνK/2Λ

1/c
K,αδ

−1/2
K ,

where c is the denominator of α, ΛK,α ∈ FK,α, νK ∈ Z, and δK ∈ FK , νK is given in Figure 4
below and s(α) is the Dedekind sum (see (2.4)).

Remark 1. By the works [38, 35, 37, 36], the number ±2iδ−1K can be interpreted as the
conjugate of a twisted Reidemeister torsion of K. Our method gives the constant term CK ·
DK,0 as an explicit product of algebraic numbers; in Remark 6 in Section 3 we give as examples
its value in the cases of K = 41 and K = 51.

Remark 2. Recently, Calegari, Garoufalidis and Zagier [12] made a more precise conjecture

on CK(α), predicting it naturally factors as µK,8c · εK(α)1/c/
√
δK , where c is the denominator

of α, µK,8c is a 8c root of unity, εK(α) is a unit of FK,α and δK ∈ FK . We do not at present
have such a precise description of CK(α). This would presumably require a fine understanding
of the congruence sums (3.7).

By the work of Ohtsuki [36], the arithmeticity conjecture is known also for K = 72 and we
expect that our method would give Theorem 1 also in this case. However, the proof of this
case is more involved, so we decided to exclude this case for simplicity. In any case, we want
to stress again that the scope of our work is more general and suggests that any proof of the
arithmeticity conjecture should be adaptable into a proof of the modularity conjecture via the
use of the reciprocity relation (1.5).

The modularity and the volume conjectures likely don’t give the full picture on the sym-
metries of JK,0 nor on its values at roots of unity. Indeed, in the case of K = 41 we can show

that Theorem 1 can be complemented by a second reciprocity formula relating X = h
k with
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X ′ = h
k , where the overline indicates the multiplicative inverse modulo the denominator. This

new reciprocity formula involves the “cotangent sum” (which appears also in the main term
in the variation, effective for other ranges of the parameters, of the reciprocity formula given
in Theorem 8 below)

c0(h/k) := −
k−1∑
m=1

m

k
cot

(
πmh

k

)
, (h, k) = 1, k ≥ 1,

which is itself a quantum modular form [9] and has been widely studied due to its connection to
the Báez-Duarte-Nyman-Beurling criterion for the Riemann hypothesis (see, for example, [5,
3, 4, 43]).

Theorem 2. Let 1 ≤ h ≤ k with (h, k) = 1. Then

(1.7)
J41,0

(
e(h/k)

)
J41,0

(
e(k/h)

) = exp

(
Vol(41)

2π

k

h
+ E(h, k)

)
,

where

E(h, k) = O
(1

k
max

0≤r′<h

∣∣∣ ∑
1≤n≤r′

cot
(
π
nk

h

)n
h

∣∣∣+
1

h

∣∣∣ c0 (k
h

)∣∣∣+ log
k

h
+

k

h2

)
.(1.8)

This may be compared with (1.3). Note that cs(41) = 0 (see e.g. [13]), so there is no
corresponding contribution on the right-hand side of (1.7).

In this case as well, the reciprocity formula (1.7) stems from a corresponding relation for
the q-Pochhammer symbol (see Theorem 7 below). Notice that, despite not giving a full
asymptotic expansion, (1.7) is completely uniform. In particular, it permits to be successfully
iterated for “typical” roots of unity, allowing us to deduce the following law of large numbers
for logJ41,0.

Theorem 3. For α ∈ Q ∩ (0, 1) with simple continued fraction expansion

α = [0; b1, . . . , br] =
1

b1 + 1
b2+···

,

where b1, . . . , br−1 ≥ 1 and br > 1, and let

r(α) := r, Σ(α) :=
r∑
`=1

b`.

There is a function ε1 : R+ → R+ with ε1(x)→ 0 as x→ 0, such that for all α ∈ Q ∩ (0, 1),

(1.9) logJ41,0(e(α)) =
(

1 +O
(
ε1
(
r(α)/Σ(α)

)))Vol(41)

2π
Σ(α).

In particular, there is a function ε2 : N → R+ with ε2(N) → 0 as N → ∞, such that for all
roots of unity q of order n ≤ N , with at most ε2(N)N2 exceptions, one has

(1.10) logJ41,0(q) =
(
1 +O(ε2(N))

)12

π2
Vol(41)

2π
log n log log n

as N →∞.
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Equation (1.10) can be seen as a version of the volume conjecture (1.2) for typical roots
of unity. Indeed, the volume conjecture provides the asymptotic behavior of logJ41,0 at the
root of unity e(1/N), whereas our result gives the asymptotic for almost all roots of unity
of denominator ≤ N . Notice then in both cases the leading constant involves the hyperbolic
volume Vol(41), but the size of J41,0 changes dramatically.

Equation (1.9) is stronger than (1.10), which will be readily deduced by [10], and gives an
asymptotic formula in most cases, e.g. when α is restricted to rational numbers with bounded
r(α) as the denominator of α goes to infinity. In particular, it generalises the volume conjec-
ture, which corresponds to the case α = 1/N = [0;N ]. It is very likely that the assumption
Σ(α)/r(α) → ∞ cannot be removed in general. Indeed, if for example αn = Fn−1/Fn with
Fn the n-th Fibonacci number so that Σ(αn) = r(αn) + 1 = n − 1, then Theorem 1.9 would

give logJ41,0(e(αn)) ∼ Cn, with C = Vol(41)
2π ≈ 0.323 . . . , whereas numerically it appears that

F (αn) grows like C ′n, for C ′ ≈ 1.1 (cf. also [47, Figure 6]).

Our proof of Theorems 3 depends crucially on the positivity of the summands in (1.1)
which is missing if K 6= 41. Nonetheless, we expect a similar result holds for all hyperbolic
knots. Also, since Σ(α) is distributed according to a stable law [10], we expect the same to
hold for log |JK,0(e(α))| for any hyperbolic knot K. Stable distributions are attractors for
independent and identically distributed random variables with variance non necessarily finite.
In our case, the relevant stable law is S1(

6
π , 1, 0), with density function c 7→ f1(c;

6
π , 1, 0) =

1
2π

∫
R e
−itce−

6
π
|t|+ 12

π2
t log |t|dt [41].

Conjecture 2. Let K be a hyperbolic knot. There exists a constant DK ∈ R such that for
any interval [a, b] ⊂ R there holds

|QN |−1
∣∣∣{q ∈ QN ∣∣∣( log |JK,0(q)|

Vol(K)
2π logN

− 12

π2
log logN −DK

)
∈ [a, b]

}∣∣∣
=

∫ b

a
f1(x; 6

π , 1, 0)dx+ o(1)

(1.11)

as N → ∞, where QN is the set of roots of unity of order ≤ N . In particular, there exists a
function ε : N→ R+ with ε(N)→ 0 as N →∞, such that

log |JK,0(q)| =
(
1 +O(ε(N))

)12

π2
Vol(K)

2π
log n log log n

for all roots of unity q of order n ≤ N , with at most ε(N)N2 exceptions.

In [47] Zagier discusses the continuity with respect to the real topology of

H41(h/k) := log |J41,0(e(h/k))| − log |J41,0(e(k/h))|

and suggests that H41 is discontinuous but C∞ from the right and the left at non-zero rationals3

and continuous but not differentiable as one approaches irrational numbers. Using Lebesgue’s
integrability condition and [10], one can easily show that this continuity condition together
with a suitable continuity condition at zero implies Conjecture 2.

Theorem 4. Let K be a hyperbolic knot. Assume the following:

3This continuity property at rationals follows from the modularity conjecture but only when approaching a
rational h/k = [0; b1, . . . , br] with fractions essentially of the form [0; b1, . . . , br, N ] with N → ∞; and not, for
example, with [0; b1, . . . , br, N1, N2] with both N1, N2 ∈ N going to infinity.
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• HK(h/k) := log |JK,0(e(h/k))| − log |JK,0(e(k/h))| has a limit as h/k tends to any
positive irrational number,

• HK(h/k)− Vol(K)
2π

k
h −

3
2 log(k/h) is uniformly bounded.

Then Conjecture 2 holds with DK = 1−γ0−log 2
π2/12

+ 24
πVol(K)

∫ 1
0

HK(1/t)−Vol(K)
2πt

1+t dt, the function HK

being extended to R>0 by taking limits over the rationals.

Remark 3. One could replace the second assumption in Theorem 4 with the assumption that

HK(h/k) − Vol(K)
2π

k
h −

3
2 log(k/h) is left and right continuous as h/k approaches any rational

number.

In the case of torus knots, the invariant JK,0 can still be constructed and a formula of
type (1.3) is expected to hold with Vol(K) replaced by 0. In this situation, the works [6, 10]

would suggest that
log |JK,0(q)|√

logn
becomes distributed according to a Gaussian law. In this case

however, the conditions of Theorem 4 are not sufficient to conclude.

In view of Theorem 2, it is natural to wonder if also the functionH∗K(h/k) := log |JK,0(e(h/k))|−
log |J41,0(e(k/h))| could be regular at irrational points (cf. Figures 1 and 2). We can answer
this question in the negative in the case of K = 41.

Theorem 5. For all x ∈ [0, 1] we have lim supy→x±, y∈Q |H∗41(y)| = +∞.

Figure 1. Global graph of H41 and H∗41

1.1. Outline of the paper and sketch of the proofs. Theorem 1 and Theorem 2 are both
based on two new relations for the q-Pochhammer symbol, given in Theorems 6 (cf. (1.5))
and 7. These relations are proved in Section 2 and both make use of the Abel-Plana sum-
mation formula [1, p.23], [40, p.408], [39, Chapter 8.3.1], which is a form of Euler-Maclaurin
summation with an explicit form of the error term. In the case of Theorem 6, one starts by
dividing the product in the definition (1.4) of (e(γα))r into appropriate intervals and congru-
ence classes. One then take the logarithm and apply the summation formula to the resulting
sum of the function log(1− e(z)). As this function is close to a primitive of π cot(πz), which
has poles at integers, then through a residue computation one eventually arrives to the dual
object (e(α))r′ . In the case of Theorem 7, the reciprocity relation for the q-Pochhammer

symbol relates h
k and k

h . In this case one starts by applying the simple relation h
k ≡ −

k
h +

1
hk (mod 1). After some initial manipulations, one is lead to consider sums of the function
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Figure 2. Graph of H41 and H∗41 around x = 0.485

log(1 − cot(πξ) tan(πξz)) + cot(πξ) tan(πξz) for some choices of ξ ∈ (0, 1/2). This is again
performed using Abel-Plana summation formula followed by a careful analysis, with particular
care needed in the reassembling of various main terms.

In both our reciprocity relations for the q-Pochhammer symbol, we show that the error terms
extend to holomorphic functions of controlled growth. This is crucial for the applications to
the modularity relations for the Kashaev invariant for knots other than 41.

Once the reciprocity formulas for the q-Pochhammer symbol are established, the proofs
of Theorem 1 and Theorem 2, given in Section 3 and 4 respectively, follow in similar ways.
We first split the sums in the definition of the Kashaev invariant into congruence classes
(and suitable intervals) and apply the reciprocity relations, reducing the problem to that of
estimating certain sums of exponentials of linear combinations of dilogarithms. These sums
are very similar to the ones one needs to consider for the the volume conjecture with only two
relevant differences: the variables of summation range over some convex space rather than
some larger cubic regions, and inside the exponential we have also some new error terms. For
all the knots we consider the first difference is easily treated since, as shown in Lemma 10,
the neglected terms are much smaller than the main terms (for other knots, such as 72, this
is no longer true and some of these neglected terms could be large, however we expect that
a treatment as in [36, Section 8] could be used to show that the sum of these terms is in
fact still small). In the case of Theorem 1, the second difference is also surpassed thanks
the holomorphicity of the error terms mentioned above, since the complex analytic methods
of [35, 37, 36], using Poisson summation and the saddle-point method, go through essentially
unchanged. In the case of Theorem 2, while we still have the holomorphicity of the error terms,
the fact that the errors are not o(1) forces us to use positivity to avoid possible cancellations
in the main terms, thus restricting the applicability to the 41 knot only.

Theorems 3, 4 and 5 are proved in Section 5 and all use the reciprocity formulas (1.3)
and (1.7) (the latter being more crucial) in conjunction with the recent work [10] on the
distribution of Σ(α). The difference between the reciprocity relations (1.3) and (1.7) can
be better understood in terms of the continued fraction expansions [0; b1, . . . , bm] of h/k (for
simplicity we assume m odd). Indeed, (1.3) relates the values of J41,0 at e([0; b1, . . . , bm])
and at e([0; b`, . . . , bm]) provided that b` → ∞ for some ` ∈ {1, . . . ,m} with all the other bi
bounded, whereas (1.7) relates the values of J41,0 at e([0; b1, . . . , bm]) and at e([0; b1, . . . , bm−1])
provided that bm →∞ and that the other bi are not too large (for example log(bi) = o(bm) for
all i < m would suffice). Because of its uniformity, (1.7) can be successfully iterated removing
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each time the last convergent bm from J41,0(e([0; b1, . . . , bm])). We keep doing so untill we
reach the last step for which we need to apply (1.3). In this process, we pick up a main term

of Vol(41)
2π bm at each step and thus arrive to (1.9). Equation (1.10) then follows by the law of

large numbers for Σ(α) established in [10].
Theorem 4 follows a similar line, with the difference that in this case the previous argu-

ment and Conjecture 2 give that logJ41,0(e(α))− Vol(41)
2π Σ(α) can be well approximated by a

differentiable function. The theorem then follows invoking again [10].
Finally, Theorem 5 follows via a simple argument from Theorem 8, a version of Theorem 2

which becomes useful when there is a middle partial quotient which is extremely large.
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Notation

Given D ⊂ R and f : D → R, we write ‖f‖∞,D := supt∈D |f(t)|. Also, given t ∈ R, we
write ‖t‖ := dist(t,Z) and {t} := t− btc, where btc is the integer part of t. Given a property
P , we define 1P (or 1(P )) to be 1 if the property P is satisfied and 0 otherwise.

We use throughout the Landau notation f = O(g) to mean that there is an implicit con-
stant C > 0 such that |f | ≤ Cg in the common domain of f and g. We also write f � g with
the same meaning. All the implicit constants of the error terms are understood to be uniform
in the various parameters unless otherwise indicated.

2. Two reciprocity formulae for the q-Pochhammer symbol

2.1. Abel-Plana’s summation formula. Our argument is based on the Abel-Plana sum-
mation formula.

We denote by γε the following integration contour.

γε

ε

−iε

Lemma 1. Let α, β, β′ ∈ R with α ≤ β < β′. Let f be an analytic function on a neighborhood
of U := {z ∈ C | α ≤ Re(z) ≤ β′} \ {α, β}. Assume that the following holds :

(1) f(z) is holomorphic at β if β is an integer, and otherwise f(z) = o(|z−β|−1) as z → β
with z ∈ U ,
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(2) f(x± iy) = o(e2πy/y2) as y → +∞, uniformly in x ∈ [α, β],
(3) f is integrable on (α, β).

Then we have ∑
α<n≤β

f(n) =

∫ β

α
f(t)dt− C(f, α) + C(f, β),(2.1)

where

C(f, α) := lim
ε→0+

(
− i
∫
γε

f(α+ it)dt

e(−α)e2πt − 1
+ i

∫
γε

f(α− it)dt
e(α)e2πt − 1

)
.

Proof. The arguments in [39, Chapter 8, eq. (3.01)] are readily adapted. �

For k ∈ Z≥0, k 6= 1, let B̃k(t) = Bk({t}) where {t} is the fractional part of t and Bk is the

k-th Bernoulli polynomial, and let B̃1(t) = B1({t}) for t /∈ Z and B̃1(n) = 0 for n ∈ Z. We
require the following computation.

Lemma 2. For ` ∈ Z≥0 and v ∈ [0, 1), we have∫ ∞
0

Im

(
(−it)`

e(v)e2πt − 1

)
dt =

(−1)`B̃`+1(v)

2(`+ 1)
.

Moreover, for all ω ∈ Cr (−∞, 1], we have∫ ∞
0

dt

ωe2πt − 1
=
−1

2π
log(1− ω−1)

with log being the principal determination.

Proof. The second claim is easy to prove by expanding the fraction as a power series in ω,
first for ω ∈ (1,∞], and then by analytic continuation. To show the first claim, first we note
that for ` = 0, v = 0, the fraction is a real number, and both sides evaluate to 0. We may
therefore assume that ` ≥ 1 or v 6= 0. Then∫ ∞

0
Im

(
(−it)`

e(v)e2πt − 1

)
dt =

1

(2π)`+1
Im

(
e(−v)(−i)`

∫ ∞
0

t`e−tdt

1− e(−v)e−t

)
=

`!

(2π)`+1
Im

(
(−i)`

∑
n≥1

e(−nv)

n`+1

)
by [21, eq. (3.411.6)]. We write Im ((−i)` e(−nv)) = (−1)`+1 cos(2πnv − π

2 (` + 1)), and
conclude by the Fourier expansion of Bernoulli polynomials [21, eq. (9.622.1)]. �

2.2. First reciprocity formula for the q-Pochhammer symbol. We fix the notations

as follows. Let N, d ≥ 1 be coprime. Let α = p/q in reduced form, and γ =
(
p −q
q p

)
for

some (p, q) satisfying pp+ qq = 1. Throughout the rest of Section 2.2, all error terms will be
allowed to depend on d and γ (but not on N). We write h = Np− dq, k = Nq + dp, so that

x =
N

d
, γ(x) =

Np− dq
Nq + dp

=
h

k
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and notice that this implies that (h, k) = 1 (since (h, k) divides pk − qh = d and (d, (h, k)) =
(p, q) = 1) and

h

k
=
p

q
− d

kq
,(2.2)

d

kq
+

k

dq
=
N

d
− h

k
+
p+ p

q
.(2.3)

We also recall from [23, p.45] that the Dedekind sum s(α) is defined by

(2.4) s(α) = s(p, q) :=

q−1∑
n=1

n

q

((
pn

q

))
, where ((x)) = {x} − 1

2 ,

For z ∈ (C \ R) ∪ (0, 1), we let

(2.5) f(z) := log(1− e(z))

taking the determination which is real on the positive imaginary axis. Notice that with this
choice we have

f(z) = f(1− z) + πi(2z − 1);(2.6)

f(1 + z) = f(z), if Im(z) > 0; f(1 + z)− f(z) = 2πi, if Im(z) < 0;(2.7)

f(z) = log(2 sin(πz)) + iπ(z − 1
2) if z ∈ (0, 1).(2.8)

Moreover, if t ∈ (0, 1), expanding the logarithm in its Taylor series

(2.9)

q∑
g=1

f
(g − t

q

)
= −

q∑
g=1

∞∑
m=1

e(−tm/q) e(mg/q)

m
=

∞∑
m=1

e(−mt)
m

= f(1− t)

and the same formula holds for t ∈ (C \ R) ∪ (0, 1) by analytic continuation. Finally, for λ ∈
(C \ R) ∪ (0, 1), we let

(2.10) L(λ) =

∫ λ

0
f(1− t)dt− πi

12
.

The function L is holomorphic in (C \ R) ∪ (0, 1). Note that the dilogarithm Li2(z) :=

−
∫ z
0

log(1−u)
u du satisfies Li2(1) = π2/6, so that whenever Im(λ) < 0,

L(λ) =

∫ λ

0
f(1− t)dt− πi

12
=

1

2πi

∫ 1

e(−λ)
log(1− z)dz

z
+

Li2(1)

2πi
=

Li2(e(−λ))

2πi
.

Before stating the main theorem of this section, we define

(2.11) Hκ(u, v) := lim
ε→0+

(
i

∫
γε

f(u− itκ)dt

e(v)e2πt − 1
− i
∫
γε

f(u+ itκ)dt

e(−v)e2πt − 1

)
for κ > 0, u ∈ [0, 1], v ∈ R/Z. Notice that if v 6∈ Z we have

(2.12) Hκ(u, v) = i

∫ ∞
0

(
f(u− itκ)

e(v)e2πt − 1
− f(u+ itκ)

e(−v)e2πt − 1

)
dt,

whereas if v ∈ Z and 0 < u < 1 then

(2.13) Hκ(u, 0) = −1

2
f(u) + i

∫ ∞
0

f(u− itκ)− f(u+ itκ)

e2πt − 1
dt,
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as can seen by isolating the contribution of the two circular paths, which are both πi/2 times
the residue at 0.

Theorem 6. For 1 ≤ r < k, letting L := brd/kc, and λ = {rd/k}, we have

(e(γx))r e(γx24 )

(e(x))L e( x24)
= exp

(
πi(p+ p)

12q
− πi s(p, q)− πi

4
+

1

2
log

k

d
+

k

qd
L(λ) + Er(λ, d/k)

)
,

where s is the Dedekind sum [23, p.45] and for λ ∈ [0, 1), κ > 0 and, for s ∈ Z/qZ,

Es(λ, κ) := −Hκ

(〈ps〉 − λ
q

, 0
)
−

q∑
g=1

g 6≡ps (mod q)

i

∫ ∞
0

(
f(g−λq − itκ)

e(gp−sq )e2πt − 1
−

f(g−λq + itκ)

e(−gp−s
q )e2πt − 1

)
dt,

(2.14)

with 〈n〉 indicating the representative of n (mod q) in [1, q]. Moreover, for all s (mod q)
and κ ∈ (0, 1], the function λ 7→ Es(λ, κ) is defined and holomorphic in the strip {Re(λ) ∈
[0, 1)}, and

Es(λ, κ)� |log|1− λ||+ log(1/κ)(2.15)

uniformly for Re(λ) ∈ [0, 1) and Im(λ)� 1.

Remark 4. If λ ∈ (0, 1) or if s 6≡ 0 (mod q) by (2.13) we can write Eλ as

Es(λ, κ) :=
1

2
f
(〈ps〉 − λ

q

)
−

q∑
g=1

i

∫ ∞
0

(
f(g−λq − itκ)

e(gp−sq )e2πt − 1
−

f(g−λq + itκ)

e(−gp−s
q )e2πt − 1

)
dt.(2.16)

We remark that if (q, d) = 1 (i.e. (k, d) = 1), one cannot have {rd/k} = 0.

Remark 5. Notice that by (2.3) we have e(γx24 )/e( x24) · exp(−πi(p+p)
12q ) = exp(−πi

12( dkq + k
dq )).

In order to prove Theorem 6, we require some properties of the function Hκ(u, v).

Lemma 3. We have :

(1) Hκ(1− u,−v) +Hκ(u, v) = −2πiB1(u)B̃1(v) + πiκB̃2(v) for v /∈ Z,
(2) Hκ(1, v)−Hκ(0, v) = f({−v}) for v /∈ Z,

(3) Hκ(1, 0) = − log(κ)
2 − πi

4 + πiκ
12 .

Proof. Let v /∈ Z. By (2.6), Lemma 2 and (2.8) we have

Hκ(1− u,−v) +Hκ(u, v) = i

∫ ∞
0

(
f(1− u− itκ)

e(−v)e2πt − 1
− f(1− u+ itκ)

e(v)e2πt − 1

)
dt+

+ i

∫ ∞
0

(
f(u− itκ)

e(v)e2πt − 1
− f(u+ itκ)

e(−v)e2πt − 1

)
dt

= −
∫ ∞
0

(
(1− 2u)π − 2πitκ

e(−v)e2πt − 1
− (1− 2u)π + 2πitκ

e(v)e2πt − 1

)
dt

= 2πi(1− 2u) Im

∫ ∞
0

dt

e(v)e2πt − 1
− 4πiκ Im

∫ ∞
0

−itdt
e(v)e2πt − 1

= −2πiB1(u)B̃1(v) + πiκB̃2(v).
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Also, by (2.7), we have

Hκ(1, v)−Hκ(0, v) = i

∫ ∞
0

(
f(1− itκ)

e(v)e2πt − 1
− f(1 + itκ)

e(−v)e2πt − 1

)
dt+

+ i

∫ ∞
0

(
f(−itκ)

e(v)e2πt − 1
− f(itκ)

e(−v)e2πt − 1

)
dt

= −
∫ ∞
0

2π

e(v)e2πt − 1
dt = f({−v}).

Finally, by (2.6) and (2.7) as ε→ 0+ we have

i

∫
γε

f(1− itκ)dt

e2πt − 1
− i
∫
γε

f(1 + itκ)dt

e2πt − 1

= i

∫
γε

f(itκ)dt

e2πt − 1
− i
∫
γε

f(itκ)dt

e2πt − 1
−
∫
γε

πdt

e2πt − 1
+

∫ ∞
0

2πitκdt

e2πt − 1
+ o(1).

The last two integrals can be easily computed and contribute− iπ
4 + log(2πε)

2 and πiκ
12 respectively.

The contributions of the interval (ε,∞) in the first two integral cancel out. Thus, since
f(itκ) = log(2πtκ) + o(1) as |t| → 0 with −π/2 < arg t < π/2, we have that the first two
integral contribute

i

∫
Cε

log(2πtκ)dt

e2πt − 1
= − log(2πεκ)

2
+ o(1)

where Cε is the semicircle centered at the origin going from −iε to iε counter-clockwise. We
then have

Hκ(1, 0) = − log κ

2
− iπ

4
+
πiκ

12
.

�

Lemma 4. Let 0 < κ ≤ 1,Re(u) ∈ [0, 1], v ∈ R/Z with u 6= 0, 1, and A ≥ 1. Then

Hκ(u, v) = − log|u|+Ov,A(log(2/κ))

uniformly in u, κ with Im(u) ≤ A.

Proof. The case v /∈ Z, Re(u) ∈ [0, 1] is an easy consequence of the bound

f(x+ it)� |t|+ | log |t||, (x ∈ [0, 1], t ∈ R 6=0).(2.17)

Now assume v ∈ Z and Re(u) ∈ (0, 1/2]. We recall (2.13). By (2.17) the contribution to the
integral from the interval [2A,∞) is O(log(2/κ)). Next, we write

I(u, κ) := i

∫ 2A

0

f(u− itκ)− f(u+ itκ)

e2πt − 1
dt = −πi

∫ 2A

0

∫ u+itκ

u−itκ
(cot(πz) + i)dz

dt

e2πt − 1
.

Note that cot(πz) = 1/(πz)+O(1) uniformly for Re(z) ∈ [0, 1/2], and that 1
e2πt−1 = 1

2πt+O(1)
for t > 0. Therefore,

I(u, κ) =
1

2πi

∫ 2A

0

∫ u+itκ

u−itκ

dz

z

dt

t
+OA(log(2/κ)).

Changing variables z ← |u|z and t← t|u|/κ, we get

I(u, κ) =
1

2πi

∫ 2Aκ/|u|

0

∫ u′+it

u′−it

dz

z

dt

t
+OA(log(2/κ)),
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where |u′| = 1. For t ≤ 1/2, we may bound the z-integral by O(t), while for t ≥ 2, we

have
∫ u′+it
u′−it

dz
z = πi+O(1/t). We deduce

I(u, κ) =
1

2πi

∫ 2

1/2

∫ u′+it

u′−it

dz

z

dt

t
+OA(log(2/κ))− 1

2
log|u|.

The double integral here is bounded independently of u′, and so finally

I(u, κ) = OA(log(2/κ))− 1

2
log|u|.

We deduce Hκ(u, 0) = − log|u| + OA(log(2/κ)) for 0 ≤ Re(u) ≤ 1/2, u 6= 0. On the other
hand, by computations similar to Lemma 3, we get

Hκ(1− u, 0) +Hκ(u, 0) = −f(u)− πi

2
(2u− 1)− πiκ

6
,

from which we get the claimed behaviour for all u. �

Proof of Theorem 6. For 0 ≤ ` ≤ L, let r` = `k/d. We split (e(γx))r as (e(γx))r =
∏L
`=0 P

L
` ,

where for 0 ≤ ` < L,

PL` =
∏

r`<n≤r`+1

(
1− e

(
nh

k

))
and PLL =

∏
r`<n≤r

(
1− e

(
nh

k

))
.

First we focus on the case 0 ≤ ` < L. By (2.2) and by periodicity we have

PL` =
∏

r`<n≤r`+1

(
1− e

(
np

q
− nd

kq

))
=

q∏
a=1

∏
r`−a
q

<m≤
r`+1−a

q

(
1− e

(
ap

q
− d(a+mq)

kq

))

=

q∏
a=1

∏
r`−a
q

<m≤
r`+1−a

q

(
1− e

(
ga
q
− d(a+mq)

kq

))
,

where ga is the representative of the class pa (mod q) contained in [`+ 1, `+ q], so that in the
last line each e( ) is computed at a number in (0, 1). It follows that we can write

PL` = exp

( q∑
a=1

∑
r`−a
q

<m≤
r`+1−a

q

f

(
ga
q
− d(a+mq)

kq

))
.

Also, we notice that 0 < ga
q −

dr`+1

kq < 1 whenever
r`+1−a

q is an integer. We can then apply

Abel-Plana formula in the form of Lemma 1, whose conditions are easily verified. Note that

q∑
a=1

∫ r`+1−a
q

r`−a
q

f
(ga
q
− d(a+ tq)

kq

)
dt =

k

qd

q∑
a=1

∫ `+1

`
f
(ga
q
− t

q

)
dt

=
k

qd

q∑
g=1

∫ 1

0
f
(g − t

q

)
dt =

k

qd

∫ 1

0
f(1− t)dt = 0

by (2.9). Therefore, by Lemma 1, Equation (2.11) and the definition of r`,

PL` = exp

( q∑
a=1

Hd/k

(ga
q
− `

q
,
a

q
− `k

qd

)
−

q∑
a=1

Hd/k

(ga
q
− `+ 1

q
,
a

q
− (`+ 1)k

qd

))
.
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Now, k
qd = N

d + p
q and 1 ≤ ga − ` ≤ q with pa ≡ ga (mod q), thus by a change of variable and

multiplying this equality over 0 ≤ ` < L, we get

L−1∏
`=0

PL` = exp

( L−1∑
`=0

( q∑
g=1

Hd/k

(g
q
,
gp

q
− `N

d

)
−

q−1∑
g=0

Hd/k

(g
q
,
gp

q
− (`+ 1)N

d

)))

= exp

( L−1∑
`=0

(
Hd/k

(
1,−`N

d

)
−Hd/k

(
0,−(`+ 1)N

d

))
(2.18)

+

q−1∑
g=1

(
Hd/k

(g
q
,
gp

q

)
−Hd/k

(g
q
,
gp

q
− LN

d

)))
.

We treat PLL in the same way. First,

PLL = exp

( q∑
a=1

∑
rL−a
q

<m≤ r−a
q

f
(ga
q
− d(a+mq)

kq

))
.

Note that by (2.9) and (2.10)

q∑
a=1

∫ (r−a)/q

(rL−a)/q
f
(ga
q
− d(a+ qt)

kq

)
dt =

k

qd

q∑
a=1

∫ L+λ

L
f
(ga
q
− t

q

)
dt

=
k

qd

∫ λ

0
f(1− t)dt =

k

qd
L(λ) +

πik

12qd

where we recall that λ = {rd/k}. Applying Lemma 1, we therefore find

(2.19) PLL = exp

(
k

qd
L(λ) +

πik

12qd
+

q∑
g=1

(
Hd/k

(g
q
,
gp

q
− LN

d

)
−Hd/k

(g − λ
q

,
gp− r
q

)))
.

Multiplying the equalities (2.18) and (2.19) and recalling that (e(γx))r =
∏L
`=0 P

L
` , we obtain

(e(γx))r = exp

(
k

qd
L(λ) +

πik

12qd
+

q−1∑
g=1

Hd/k

(g
q
,
gp

q

)
−

q∑
g=1

Hd/k

(g − λ
q

,
gp− r
q

)
+

+Hd/k(1, 0) +
∑

1≤`≤L

(
Hd/k(1,− `N

d )−Hd/k(0,− `N
d )
))

.

By Lemma 3 (1) we have

q−1∑
g=1

Hd/k

(g
q
,
gp

q

)
= −πi

q−1∑
g=1

B̃1

(g
q

)
B̃1

(gp
q

)
+
πid

2k

q−1∑
g=1

B̃2

(g
q

)
= −πi s(p, q) +

πid

12kq
− πid

12k
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since
∑q−1

g=0B2(g/q) = 1
6q and B2(0) = 1/6. Also, by Lemma 3 (3) and (2) we have Hd/k(1, 0) =

log(k/d)
2 − πi

4 + πid
12k and∑

1≤`≤L

(
Hd/k(1,− `N

d )−Hd/k(0,− `N
d )
)

=
∑

1≤`≤L
f({`N/d}).

Thus,

(e(γx))r = (e(N/d))L exp

(
k

qd
L(λ) +

1

2
log

k

d
−

q∑
g=1

Hd/k

(g − λ
q

,
gp− r
q

)
+

− πi s(p, q)− πi

4
+

πid

12kq
+

πik

12qd

)
.

By (2.3) and (2.12) we then obtain the claimed result. The bound (2.15) follows by Lemma 4.
�

2.3. Sums of cotangents. In this section and the next, we introduce the following extension
of the Landau O-symbol. Let D1 ⊂ D2 ⊂ C be two sets given by the context, and g : D2 → R+.
We will write

(2.20) f(z) = Oz(p1,p2,... )(g(z)) (z ∈ D1)

whenever, for any fixed choice of the parameters p1, p2, . . . , there exists a function ϕ holo-
morphic on D2, which satisfies ϕ(z) = f(z) for z ∈ D1, and |ϕ(z)| � g(z) for z ∈ D2, the
implied constant being uniform in the parameters p1, p2, . . . . The additional information is
the holomorphic behaviour in z, which may become useful when studying knots other than 41.
However we stress that, in the present work, a later obstacle (possible cancellation of main
terms) imposes the restriction K = 41, and in this case, we do not require holomorphicity of
error terms.

Lemma 5. For 0 < α < 1
2 , we have

cot(πα) tan(παx) ≤ x (0 < x ≤ 1),(2.21)

x(1− (2α)2) < cot(πα) tan(παx) ≤ Oε(x) (0 < x ≤ 1
α(12 − ε)).(2.22)

Proof. Assume 0 < x ≤ 1
α(12 − ε). The function x 7→ tan(xλ)

x is increasing on (0, π2λ) for
all λ > 0. It follows that πα ≤ tan(παx)/x ≤ Oε(α), while tan(παx)/x ≤ tan(πα) if x ≤ 1.
Thus, it suffices to show the bounds

1− (2α)2 < πα cot(πα), tan(πα) cot(πα) ≤ 1, α cot(πα)� 1.

The second is trivial, while the third follows from elementary properties of cot. For the first,

we note that by the Taylor expansion of cot [21, 1.411.7], we have φ(α) := 1−πα cot(πα)
α2 =∑

j≥0 cjα
2j for α ∈ (0, 1), where cj > 0. In particular φ is increasing, and we conclude

by φ(12) = 4. �

Lemma 6. Let ε > 0. For 0 < α ≤ 1
2 − ε and |Re(αz)| ≤ 1

2 − ε we have

1− cot(πα) tan(παz) = (1− z)
(
1 +Oε(α

2(|z|2 + |z|))
)
.

Proof. If |z| ≤ 1/2, expanding in Taylor series we obtain

cot(πα) tan(παz) = cot(πα)παz(1 +O(α2|z|2)) = z(1 +O(α2))(1 +O(α2|z|2))
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and the claimed result follows. If |z| ≥ 1/2, we observe that the left hand side is equal to
cot(πα)(tan(πα)− tan(παz)) and so, since cot(πα)πα = 1 +Oε(α

2), we are required to show
that

(2.23)
tan(παz)− tan(πα)

πα(z − 1)
=

1

αz − α

∫ αz

α

dv

cos(πv)2
= 1 +Oε(|αz|2).

This follows for |Im(αz)| ≤ 1 by the estimate cos(πv)2 = exp{Oε(|v|2)} for |Re(v)| ≤ 1
2 − ε

and |Im(v)| ≤ 1. If |Im(αz)| > 1, then both the ratio 1
αz−α and the integral are bounded,

since |cos(πv)| � eπ| Im(v)|, so that (2.23) holds in this case as well. �

Lemma 7. Let α ∈ R with 0 < |α| < 1/2, and

Dα := {z ∈ C | −13|α| < Re(z) < 1}.

Then, taking the determination of the logarithm which is real on the real axis, the function
given by

ψα(z) := log(1− cot(πα) tan(παz)) + cot(πα) tan(παz)(2.24)

is holomorphic on Dα, where it satisfies

ψα(z)� |z|2 + |z|| log(1− z)|, Im(ψα(z))� |z|2,(2.25)

ψα(z) = log(1− z) + z +Oε((|z|2 + |z|3)|α|2) if |α| ≤ 1
2 − ε.(2.26)

Proof. We can assume α ∈ (0, 1/2), since ψα is even in α. For |Re(z)| < 1
2α , let gα(z) :=

cot(πα) tan(παz). Since, for z = x+ iy, we have

tan(παz) =
tan(παx)(1− tanh2(παy)) + i tanh(παy)(1 + tan2(παx))

1 + tan2(παx) tanh2(παy)
,(2.27)

we deduce, for x, y real and |x| ≤ 1,

|Re(gα(z))| ≤ |cot(πα) tan(παx)| ≤ |x|.(2.28)

by Lemma 5. Moreover, if x ≤ 0, then Re(gα(z)) ≤ 0. Using (2.27) and the lower bound (2.22),
we obtain |Re(gα(z))| � cot(πα) tan(πα|x|)�ε |x|. Thus, there exists cε > 0 such that

(2.29) Re(1− gα(z)) ≥ min(1− x, 1− cεx).

In particular, the function z 7→ ψα(z) = log(1−gα(z))+gα(z) is well-defined and holomorphic
in Dα, and moreover Im(log(1− gα(z))) < π/2.

We observe that if αy → ±∞ (and so z → ∞), then gα(z) ∼ ±i cot(πα) uniformly in x,
so that ψα(z) � 1/α � |z| and (2.25)-(2.26) follow trivially. Thus, we can assume αy � 1.
Also, by (2.27) and Lemma 5 we obtain

| Im(gα(z))| � | cot(πα)|
(
| tan(πxα)|+ | tanh(παy)|)� |x|+ |y| � |z|.(2.30)

In particular, recalling (2.28), we have gα(z)� |z|.
Now, assume α ≤ 1

2 − ε. By (2.27), and since αy � 1, we have

| Im(gα(z))| ≥ | cot(πα) tanh(παy)| �ε |y|.
By (2.29), it then follows that |1 − gα(z)| �ε min(1 − x, 1 − cεx) + |y| �ε |1 − z|, and so

|uα(z)| �ε 1 for uα(z) := 1−gα(z)
1−z . Thus,

log(uα(z)) = uα(z)− 1 +Oε(|uα(z)− 1|2) = z − gα(z) + z(uα(z)− 1) +Oε(|uα(z)− 1|2)

and so (2.26) follows since uα(z)− 1 = Oε(α
2(|z|2 + |z|)) by Lemma 6 (and since αz � 1).
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We now move to (2.25). Since gα(z) � |z|, then if |z| < δ with δ > 0 sufficiently small,
then by Taylor expansion one trivially has that (2.25) holds for |z| < δ. By the assumption
|αy| � 1 we have that (2.26) implies (2.25) for |z| ≥ δ and α ≤ 1

2 − ε. It follows that we can
also assume α� 1 (and so also |z| � α|z| � 1).

Finally, we observe that under the above assumptions we have that (2.27) implies also

Re(1− gα(z)) ≥ 1− x(1− tanh2(παy))� 1− x+ y2 � |1− z|2 (x ≥ 0),

which inequality Re(1 − gα(z)) � |1− z|2 is also trivially true if x < 0. The bound (2.26)

follows since gα(z) � |z|, Im(log(1 − gα(z))) < π/2, and log(1 − w) + w � min{|w|2, |w| +
log|1− w|} for w ∈ Cr [1,∞). �

Lemma 8. Let γ ≤ δ and let a ∈ N with γ ≤ a − 1
2 ≤ δ. Let g(z) be holomorphic on a

neighborhood of γ ≤ Re(z) ≤ δ, where it satisfies |g(z)| ≤ C1|z|m+C2 for some m,C1, C2 ≥ 0.
Then, with z = r, we have

r∑
n=a

g(n) = Or(g,a)(C1((|a|+ |z|)m+1 + 1) + C2(|a|+ |z|+ 1)), (r ∈ Z ∩ [a, δ])

using the notation (2.20) with D2 = {z, γ + 1
2 ≤ Re(z) ≤ δ}.

Proof. We apply Lemma 1 with α = a− 1
2 , β = r − 1

2 , we find

r−1∑
n=a

g(n) =

∫ r− 1
2

a− 1
2

g(z)dz − i
∫ ∞
0

g(a− 1
2 + it)− g(a− 1

2 − it)− g(r − 1
2 + it) + g(r − 1

2 − it)
e2πt + 1

dt,

Denoting by ϕ(r)−g(r) the right hand side, we immediately see that ϕ extend to a holomorphic
function in γ + 1

2 ≤ Re(z) ≤ δ and that ϕ(z) � C1((|a| + |z|)m+1 + 1) + C2(|a| + |z| + 1) in
this strip. �

Lemma 9. Let (h, k) = 1, 3 ≤ h < k and r0 ∈ Z/hZ. Then for all 0 ≤ r < k with r ≡
r0 (mod h), writing z = r/k, we have∑

0≤n≤r
h-n

(
log

(
1− cot

(πnk
h

)
tan

(πn
hk

))
+ cot

(πnk
h

)
tan

(πn
hk

))
=
k

h

(πi(z2 − z)
2

+ L(z) +
πi

12
+ z log(2πz/e)

)
+Oz(h,k,r0)((1 + |log(1− z)|+ |z|4)(1 + k/h2 + log(k/h))),

using the notation (2.20) with D2 = {z ∈ C, 0 ≤ Re(z) < 1}. Moreover, the error term |log(1− z)|
can be omitted if z ∈ [0, 1− h

k (1− { r0−kh })].

Proof. In this proof, the notation O will stand for Oz(k,h,r0) relative to the set D2 = {z,Re(z) ∈
[0, 1)}. We divide the sum into congruence classes n ≡ `k (mod h), |`| < h/2, where the possi-
ble term ` = h/2 is excluded since the summand is zero in this case. With the notation (2.24),
we write the sum to be computed as∑

0<|`|<h/2

S(`), S(`) :=
∑

0<n≤r
n≡`k (mod h)

ψ`/h

( n
k`

)
.
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We consider each ` separately. We first consider ` 6= 1. Let δ` := { r0−k`h }, and

α` =

⌈
−k`
h

⌉
− 1

2
, β`(r) :=

⌊
r − k`
h

⌋
+

1

2
=
r − k`
h

+
1

2
− δ`.

Then by Lemma 1, we have

S(`) =
∑

α`<m≤β`(r)

ψ`/h(1 + hm
k` ) = I + C(α`)− C(β`(r)),

where

I :=

∫ β`(r)

α`

ψ`/h(1 + ht
k`)dt, C(γ) := 2

∫ ∞
0

Im(ψ`/h(1 + h
k`(γ + it)))dt

e2πt + 1
.

Note that β`(r) = r−r0
h + β`(r0), the right-hand side of which depends holomorphically on r.

Splitting the integral as
∫ (z−`)k/h
−k`/h +

∫ −k`/h
α`

+
∫ β`(r)
(z−`)k/h with z = r/k, we get

I =
k

h

∫ z

0
ψ`/h(t/`)dt+

∫ 0

α`+
k`
h

ψ`/h(htk`)dt+

∫ 1
2
−δ`

0
ψ`/h( z` + ht

k`)dt

=
k

h

∫ z

0
ψ`/h(t/`)dt+O

(1+|z|2
`2

)
,

by Lemma 7.
Next, we have

C(β`(r)) =
1

2i

∑
±
±
∫ ∞
0

ψ`/h

(z
`

+
h

k`

(1

2
− δ`

)
± i th

k`

) dt

e2πt + 1
.

This also defines a holomorphic function of z for Re(z) ∈ [0, 1), by Lemma 7. Since ` 6= 1, it

is bounded by O( |z|
2+1
`2

).
Grouping the above discussion, we deduce for ` 6= 1 the estimate

(2.31) S(`) =
k

h

∫ z

0
ψ`/h(t/`)dt+O

(1 + |z|2

`2

)
.

Consider now the case ` = 1. We recall the notation δ` from above. Since h ≥ 3, by (2.26)
and Lemma 8 we have

(2.32) S(1) = O( k
h3

(|z|4 + 1)) +
∑

0<n≤r
n≡k (mod h)

(n
k

+ log
(

1− n

k

))
.

Let a ∈ {1, . . . , h} satisfy a ≡ k (mod h), q = k−a
h and g =

⌊
r−a
h

⌋
= r−a

h − δ1. In the sum, the

integer m = k−n
h runs through Z ∩ [q − g, q], so that∑

0<n≤r
n≡k (mod h)

log
(

1− n

k

)
= (g + 1) log

(h
k

)
+ log

Γ(q + 1)

Γ(q − g)

=

∫ g+1

0

(
log
(h
k

)
+

Γ′

Γ
(q + 1− v)

)
dv

=

∫ g+1

0

(
log
(h
k

(q + 1− v)
)
− 1

q + 1− v
−
∫ ∞
0

{s}ds
(s+ q + 1− v)2

)
dv
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by Stirling’s formula [42, Theorem II.0.12]. First, setting t = (v−1)h+a
k , we have∫ g+1

0
log
(h
k

(q + 1− v)
)

dv =
k

h

∫ z

0
log(1− t)dt+

k

h

[ ∫ 0

a−h
k

+

∫ z−h
k
δ1

z

]
log(1− t)dt

=
k

h

∫ z

0
log(1− t)dt+O(|log(1− z)|+ log(1 + k/h)).

Secondly, we have∫ g+1

0

dv

q + 1− v
= log

(
1− z +

h

k
δ1

)
− log

(
1 +

h− a
k

)
= O(|log(1− z)|+ log(1 + k/h)).

Note that in both cases, as well as in the following computations, the error term |log(1− z)|
can be omitted if z ∈ [0, 1− h

k (1− δ1)] (which is the case when z = r/k). Finally,∫ g+1

0

∫ ∞
0

{s}ds
(s+ q + 1− v)2

dv =

∫ ∞
0

{s}(g + 1)ds

(s+ q − g)(s+ q + 1)

=

∫ ∞
0
{s}

1 + k
hz −

a
h − δ1

(s+ k
h(1− z) + δ1)(s+ k−a

h + 1)
ds

= O(log(1 + k/h) + log(1 + |z|)).

We turn to the contribution of the term n/k in (2.32). By a direct computation, we find∑
0<n≤r

n≡k (mod h)

n

k
− k

h

∫ z

0
tdt = z(12 − δ1) + 1− h

2k ( ah + δ1)(
a
h + 1− δ1) = O(|z|+ 1).

On the other hand, we note that by (2.26),∫ z

0
(t+ log(1− t))dt =

∫ z

0
ψ1/h(t)dt+O

(1 + |z|4

h2

)
.

Grouping the above estimates, we deduce

(2.33) S(1) =
k

h

∫ z

0
ψ1/h(t)dt+O

(
(1 + k

h3
+ log(k/h))(1 + |z|4 + |log(1− z)|)

)
.

We now sum the estimates (2.31), (2.33) over `, getting∑
0<|`|<h/2

S(`) =
k

h

∫ z

0

∑
0<|`|<h2/3

ψ`/h(t/`)dt+O((1 + k
h3

+ log(k/h))(1 + |z|4 + |log(1− z)|)).

The main term is evaluated by (2.26) (for |`| ≤ h/3) and (2.25) (for h/3 < |`| < h/2) as∑
0<|`|≤h/2

∫ z

0
ψ`/h(t/`)dt =

∑
0<|`|≤h/3

(∫ z

0
(log(1− t/`) + t/`)dt+O

(1 + |z|4

h2

))
+O

(1 + |z|3

h

)
=

∑
0<`<h/3

∫ z

0
log(1− t2/`2)dt+O

(1 + |z|4

h

)
=
∑
`>0

∫ z

0
log(1− t2/`2)dt+O

(1 + |z|4

h

)
.
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For −1 ≤ t ≤ 1 we have
∏∞
`=1(1− t2/`2) = sin(πt)

πt . Moreover, for 0 ≤ z < 1 we have∫ z

0
log(2 sin(πt))dt =

∫ z

0
log(−ieπit(1− e−2πit))dt =

πi(z2 − z)
2

+

∫ z

0
log(1− e−2πit)dt

=
πi(z2 − z)

2
+ L(z) +

πi

12
,

by (2.10). Collecting the previous estimates, we conclude that∑
0<|`|<h/2

S(`) =
k

h

(πi(z2 − z)
2

+ L(z) +
πi

12
+ z log(2πz/e)

)
+O

((
1 +

k

h2
+ log(k/h)

)
(1 + |z|4 + |log(1− z)|)

)
,

as claimed. �

2.4. Second reciprocity formula for the q-Pochhammer symbol.

Theorem 7. Let 4 ≤ h < k with (h, k) = 1 and r0 ∈ {0, . . . , h − 1}. Let 0 ≤ r < k with
r ≡ r0 (mod h). We have

(e(−h/k))r e(− h
24k )

(e(k/h))r0 e( k
24h)

= exp

(
k

h
L(r/k)− π

k

∑
1≤n≤r0

cot
(
π
nk

h

)n
h

+
π

k

⌊ r
h

⌋
c0

(k
h

)
+Ozh,k,r0

(
(1 + |z|4 + |log(z(1− z))|)

(
1 + log

(k
h

)
+

k

h2

)))
where z = r/k, using the notation (2.20) with domain D2 = {z 6= 0,Re(z) ∈ [0, 1)}. Moreover,

the term |log(z(1− z))| can be omitted if z ∈ [ r0k , 1−
h
k (1− { r0−kh })].

Proof. In this proof, the notation O will stand for Ozh,k,r0 with respect to the domain D2 =

{z 6= 0,Re(z) ∈ [0, 1)}. Applying the identity h
k + k

h ≡
1
hk (mod 1) we have

(e
(
−h/k

)
)r =

r∏
n=1

(
1− e

(
nk

h
− n

hk

))
= P ·

r∏
n=1
h-n

(
1− e

(
nk

h
− n

hk

))

where P :=
∏br/hc
n=1

(
1− e(−n

k )
)
. Note that for x, y ∈ C, we have

1− e(y − x) =
1

2
(1 + e(−x))

(
1− e(y)

)
(1− tan(πx) cot(πy)).

Thus, since
∏h−1
n=1(1− e(nkh )) = h, we have

(e
(
−h/k

)
)r = (e

(
k/h

)
)r0 h

br/hc · P ·M · L,(2.34)

where

M =

r∏
n=1
h-n

1 + e(− n
hk )

2
, L =

r∏
n=1
h-n

(
1− cot

(πnk
h

)
tan

(πn
hk

))
.
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First, we examine M. We have

M = exp

(
−

r∑
n=1
h-n

πin

hk
+

r∑
n=1
h-n

log
(

cos
(πn
hk

)))
.

We split the second sum as
∑

1≤n≤r −
∑

1≤n≤r−r0, h|n. For any ε > 0 we have log(cos(πwhk ))�ε

( |w|hk )2 for |Re(w/(hk))| ≤ (1− ε)/2 and so applying Lemma 8 we obtain, with z = r/k,

M = exp

(
−

r∑
n=1
h-n

πin

hk
+

k

h2
O(|z|3 + 1)

))
= exp

(
− πi(r2 + r)

2hk
+

k

h2
O(|z|3 + 1)

)
.(2.35)

We then move to P = exp(logP). Taking the determination which is real on the negative

imaginary axis, we have that log(1−e(−w)2πiw ) is holomorphic and Oε(|w|) for |Re(w)| < 1 − ε.
Thus, by Lemma 8,

P = exp

( ∑
1≤n≤(r−r0)/h

log
(

2πi
n

k

)
+

k

h2
O(|z|2 + 1)

)

= exp

(
log Γ

(
1 +

r − r0
h

)
+
r − r0
h

log
2πi

k
+

k

h2
O(|z|2 + 1)

)
.

Write log(Γ(1+w)) = (w+1/2) log(w+1)−w+E1(w) with E1 holomorphic and O(| log(w+1)|)
on Re(w) > −1. Abbreviating temporarily q = r−r0

h , it follows that

P = exp

((1

2
+ q
)

log(1 + q) + q log
2πi

ke
+ E1(1 + q) +

k

h2
O(|z|2 + 1)

)
= exp

(
r

h
log
(2πir

ke

)
−
⌊ r
h

⌋
log h+O((1 + log(k/h) + k

h2
)(1 + |z|2 + |log(z)|)

)
,(2.36)

since (1

2
− r0
h

)
log
(kz + h− r0

h

)
+
kz

h
log
(

1 +
h− r0
kz

)
+

− r0
h

log
2πih

ke
+ E1

(kz + h− r0
h

)
= O(|z|+ |log(z)|).

Note that the terms |log(z)| can be omitted if z ∈ [ r0k , 1).

It remains to study L. By Lemma 5 we have | tan(πnhk ) cot(π nkh )| < 1 and so we can write
L = exp(logL) with the principal determination. First, we consider∑

1≤n≤r
h-n

tan
(
π
n

hk

)
cot
(
π
nk

h

)
=
∑

1≤n≤r
h-n

πn

hk
cot
(
π
nk

h

)
+
∑

1≤n≤r
h-n

E2
( n
hk

)
cot
(
π
nk

h

)
,

where E2(z) := tan(πz)−πz. Clearly, E2(z) is holomorphic and Oε(|z|2) in |Re(z)| < (1−ε)/2.
Thus, dividing in congruence classes modulo h, the second summand above is

O
(

(1 + |z|3)
h∑
`=1

1

`

k

h2

)
= O

(
(1 + |z|3)k log h

h2

)
.
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Also, ∑
1≤n≤r
h-n

cot
(
π
nk

h

)πn
hk

=
∑

1≤n≤r0

cot
(
π
nk

h

)πn
hk

+

br/hc∑
`=1

∑
1≤n<h

cot
(
π
nk

h

)π(n+ `h)

hk

=
π

k

∑
1≤n≤r0

cot
(
π
nk

h

)n
h
−
⌊ r
h

⌋π
k
c0

(k
h

)
since

∑h−1
n=1 cot(π nh ) = 0. Thus, by Lemma 9 we have

L = exp

(
πi(r2 − rk)

2kh
+
k

h

(
L(r/k) +

πi

12
+
r

k
log
(2πr

ke

))
+

+
π

k

∑
1≤n≤r0

cot
(
π
nk

h

)n
h
− π

k

⌊ r
h

⌋
c0

(k
h

)
+O

((
1 +

k

h2
+ log(k/h)

)
(1 + |z|4 + | log(1− z)|)

))
,

where the error term |log(1− z)| can be omitted if z ∈ [0, 1 − h
k (1 − { r0−kh })]. The theorem

then follows by (2.34), (2.35) and (2.36), since h
24k = O(1). �

3. Proof of Theorem 1

Throughout the rest of the section, K will denote any hyperbolic knot K 6= 72 with at most
7 crossings.

We will use the same notation as in Section 2.2. In particular, all error terms will be allowed
to depend on d and γ.

For n ∈ N≥0 and α = h
k ∈ Q, with (h, k) = 1, we let

[α]n := k−1/2(e(α))n′ ,(3.1)

where n′ ≡ n (mod k), 0 ≤ n′ < k.
There exist m,m1, . . . ,m4 ∈ N, ι, υ ∈ Z and linear functions `i,j(r) =

∑m
u=1 κi,j(u)ru with

κi,j ∈ {0,±1} such that

JK(x) = denom(x)ι e(υx)
∑*

0≤r1,...,rm<k

∏m1
j=1[x]`1,j(r)

∏m2
j=1 [x]`2,i(r)∏m3

j=1[x]`3,j(r)
∏m4
j=1 [x]`4,j(r)

(3.2)

= denom(x)ι e(υx)
∑*

0≤r1,...,rm<k
ΠK

(
[x]`i,j(r)

)
,

where
∑* indicates that the sum is restricted to the terms with 0 ≤ `i,j(r) < k and, here and

what follows, we put

ΠK

(
zi,j
)

=

∏m1
j=1 z1,j

∏m2
j=1 z2,j∏m3

j=1 z3,j
∏m4
j=1 z4,j

.

The Kashaev invariants for the knots under consideration has been given for example in [35,
37, 36]. In all these cases, m+ 3 coincides with the number of crossings of K, moreover

ι =
3−m

2
, m1 +m2 +m3 +m4 = 3m− 1,
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and the values of mi, `i,j are as in Figure 3, where we used the formula [α]n[α]denom(α)−n = 1
to write the Kashaev invariants given in [35, 37, 36] as in (3.2). Finally, different variants of
the definition of the Kashaev invariant lead to slightly different values for υ (cf. [35, p.677
footnote 4] and [45]). In the context of the modularity conjecture it is natural to always take
υ = 0, which we shall do in the following. This choice will lead to the expression (1.3) for
the reciprocity formula, as conjectured by Zagier. Using (2.3) one can then easily deduce the
suitable modified reciprocity formula corresponding to other choices of υ.

K (mj)1≤j≤4 `i,j = `i,j(r)
41 (1, 1, 0, 0) `1,1 = `2,1 = r

52 (0, 1, 2, 2)
`2,1 = r1 + r2, `3,1 = r1 + r2
`3,2 = `4,1 = r2, `4,2 = r1

61 (0, 2, 3, 3)
`2,1 = r1 + r2, `2,2 = r1 + r2 + r3
`3,1 = r1, `3,2 = r1 + r2, `3,3 = r1 + r2 + r3
`4,1 = r1, `4,2 = r2, `4,3 = r3

62 (2, 1, 2, 3)
`1,1 = r1, `1,2 = r2 + r3, `2,1 = r1
`3,1 = `4,1 = r2, `3,2 = r3, `4,2 = r1 − r2, `4,3 = r2 + r3

63 (1, 1, 3, 3)
`1,1 = `2,1 = r2, `3,1 = `4,1 = r1
`3,2 = `4,2 = r3, `3,3 = r2 − r3, `4,3 = r2 − r1

73 (2, 3, 3, 3)
`1,1 = `2,1 = r2, `1,2 = r2 − r1
`2,2 = `3,1 = r2 − r3, `2,3 = `3,2 = r2 − r3 − r4, `3,3 = r1
`4,1 = r2 − r1, `4,2 = r3, `4,3 = r4

74 (3, 0, 4, 4)

`1,1 = `4,1 = r1 + r2, `1,2 = r2 + r3
`1,3 = `4,2 = r3 + r4
`3,1 = r1, `3,2 = `4,3 = r2
`3,3 = `4,4 = r3, `3,4 = r4

75 (2, 2, 3, 4)

`1,1 = `2,1 = r3, `1,2 = `4,1 = r3 − r4
`2,2 = `3,1 = r2, `3,2 = `4,2 = r1, `3,3 = r4
`4,3 = r2 − r1
`4,4 = r3 − r2

76 (2, 1, 4, 4)
`1,1 = `4,1 = r2, `1,2 = r3 + r4
`2,1 = r2 + r3, `3,1 = `4,2 = r1, `3,2 = r2 − r1
`3,3 = `4,3 = r3, `3,4 = `4,4 = r4.

77 (2, 1, 4, 4)
`1,1 = r1 + r2, `1,2 = r3 + r4
`2,1 = r2 + r3, ∀j ∈ {1, 2, 3, 4}, `3,j = `4,j = rj

Figure 3. Parameters of the Kashaev invariants

We divide the sum over r restricting the ri into congruence classes modulo q and in intervals
of length k/d:

JK(γx) = denom(γx)
3−m

2

∑
L∈{0,...,d−1}m

∑
s (mod q)

JK(γ, x;L, s)(3.3)
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where, for L = (L1, . . . , Lm) ∈ Zm≥0, s = (s1, . . . , sm) ∈ (Z/qZ)m we write

JK(γ, x;L, s) =
∑*

0≤r1,...,rm<k,
brid/kc=Li, ∀i

ri≡si (mod q), ∀i

ΠK

(
[γx]`i,j(r)

)
.

By Theorem 6 and Remark 5, we have

[γx]r = [x]brd/kcA(p, q)Φr({rd/k}),
where for s ∈ Z/qZ, λ ∈ [0, 1), we define

A(p, q) = e
(
− s(p, q)

2
− 1

8

)
,

Φs(λ) = exp

(
k

qd

(
L(λ) +

πi

12

)
+

πid

12kq
+ Es(λ, d/k)

)
.(3.4)

It follows that

JK(γ, x;L, s) = A(p, q)m1+m4−m2−m3
∑*

0≤r1,...,rm<k,
brid/kc=Li, ∀i

ri≡si (mod q), ∀i

ΠK

(
[x]b`i,j(r)d/kcΦ`i,j(s)({`i,j(r)d/k})

)
.

Now, let λi = {rid/k}. The next lemma shows that the contribution of the terms for which
`i,j(λ) /∈ [0, 1) for some i, j is negligible.

Lemma 10. There exists δ > 0 such that∣∣∣∣ΠK

(
exp

(
L(`i,j(λ))

))∣∣∣∣ ≤ exp
(Vol(K)

2π
− δ
)

whenever `i,j(λ) /∈ [0, 1) for some i, j.

We postpone the proof of Lemma 10 to Section 3.1. Since [x]r � 1 for 0 ≤ r < d,
applying (2.15) and the above lemma we obtain

JK(γ, x;L, s) = A(p, q)m1+m4−m2−m3ΠK

(
[x]`i,j(L)

)
J ∗K(γ, x;L, s) +

+O

(
kO(1) exp

((Vol(K)

2π
− δ
) k
qd

))
,

(3.5)

where

J ∗K(γ, x;L, s) =
∑*

0≤r1,...,rm<k,
brid/kc=Li, ∀i

ri≡si (mod q), ∀i,
`i,j(λ)∈[0,1) ∀i,j

ΠK

(
Φ`i,j(s)({`i,j(r)d/k})

)
.

We notice that the condition 0 ≤ `i,j(r) < k, which is implicit in the summation
∑∗, can

be written as 0 ≤ `i,j(L) + `i,j(λ) < d and so, since `i,j(λ) ∈ [0, 1), it is equivalent to
0 ≤ `i,j(L) < d. Assuming that L satisfies this condition, J ∗K(γ, x;L, s) can be then rewritten
as

J ∗K(γ, x;L, s) =
∑

0≤ri−Lik/d<k/d ∀i,
ri≡si (mod q), ∀i,

0≤`i,j(r−kL/d)<k/d ∀i,j

ΠK

(
Φ`i,j(s)({`i,j(r)d/k})

)
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where we used {`i,j(r)d/k} = `i,j(rd/k − L) to rewrite the summation conditions. This sum
is essentially the same sum which arises when taking d = 1, γ = ( 0 1

−1 0 ), i.e. the conjugate
of the sum arising in the volume conjecture. The only difference in the general case is that
r is summed over a box with sides of length k/d and along arithmetic progressions modulo
q. For fixed d, q these restrictions are negligible from the analytical point of view, and the
works [35, 37, 36] can be adapted. For z ∈ (Cr R) ∪ (0, 1), define

ψ1(z) := f(z), ψ2(z) := f(1− z), ψ3(z) := −f(z), ψ4(z) := −f(1− z),

and let µ = (µ1, . . . , µm) be the solution described in [35, §5.1], [37, §3.3, §4.3, §5.3] [36,
§3.3, §4.3, §5.3, §6.3, §7.3] (conjugated to agree with our definition of JK) to the system of
equations

4∑
i=1

m1∑
j=1

κi,j(u)ψi(1− `i,j(µ)) = 0, ∀u ∈ {1, . . . ,m}(3.6)

satisfying 0 < Re(`i,j(µ)) < 1 for all i, j. We write

νi := exp(µi), ν
1/q
i := exp(µi/q).

It is known [35, 37, 36] that Q(ν) = FK , the trace field of K. It will be useful to denote

FK,q := Q(e(1/q),ν), F̃K,q := Q(e(1/q),ν1/q).

The following lemma will be proven in Section 3.2.

Lemma 11. Let L ∈ {0, . . . , d− 1}m, s ∈ (Z/qZ)m with 0 ≤ `i,j(L) < d for all i, j. Then for
all N ≥ 0, we have

J ∗K(x;L, s) =
1

D1/2

(2πik

qd

)m/2
exp

(Vol(K)− i cs(K)

2π

k

qd
+ C(s)

)( N∑
n=0

ωs,n

(2πiqd

k

)n
+O

(qd
k

)N+1)
,

where 0 6= D ∈ FK , ωs,0 := 1 and

C(s) :=
4∑
i=1

mi∑
j=1

Ci,j(s), Ci,j(s) :=

q∑
g=1

B1

(〈gp− `i,j(s)〉
q

)
ψi

(g − `i,j(µ)

q

)
(3.7)

where B1 is the 1-st Bernoulli polynomial. Moreover, for all n ≥ 1, ωs,n ∈ F̃K,q, and for

all σ ∈ Gal(F̃K,q/FK,q), we have σ(ωs,n) = ωs−pu,n if σ is given by

σ(ν
1/q
i ) = ν

1/q
i e(ui/q) (1 ≤ i ≤ m)(3.8)

for some u1, . . . , um ∈ Z.

Applying Lemma 11, by (3.3) and (3.5), and recalling the condition 0 ≤ `i,j(L) < d for
all i, j, we obtain

JK(γx)

JK(x)
=
A(p, q)m1+m4−m2−m3

D1/2

(k
d

) 3
2
e(−m/8)q−m/2 exp

(Vol(K)− i cs(K)

2π

k

qd

)
×

∑
s (mod q)

exp(C(s))
( N∑
n=0

ωs,n

(2πiqd

k

)n
+O

(1

k

)N+1)
,

for all N ≥ 0.
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Now, 6q s(p, q) is an integer, so A(p, q) is a 24q root of unity, and letting νK = −m1−m4 +
m2 +m3, we have νK ≡ m+ 1 (mod 2). We deduce

e
(νK

2
s(p, q) +

ν −m
8

)
= ±e

(νK
2
s(p, q) +

1

8

)
ω,

where ω ∈ {1, i} is independent of α and νK is as in the following table.

K 41 51 61 62 63 73 74 75 76 77
νK 0 1 2 −2 0 1 −3 −1 −1 −1

Figure 4. Values of νK

Keeping track of the factor i implicit in 2π
~ = −i kdq , the proof of Theorem 1 follows from

the following lemma, upon possibly multiplying the value of D by −1.

Lemma 12. There exists 0 6= U ∈ FK such that defining

Sn := U1/2
∑

s (mod q)

exp(C(s))ωs,n, n ∈ N≥0,

we have Sqn ∈ FK,q for all n ≥ 0. If moreover Sn 6= 0, then for all n′ ≥ 0 we have S−1n Sn′ ∈
FK,q.

Note that in Theorems 2.2 and 2.6 of [15], similar computations are carried out for coeffi-
cients of power series constructed by a different process, which are conjectured to match those
in the modularity conjecture.

Proof. For x ∈ (−1, 1) we have B1(〈x〉) = x− 1
2 + 1x≤0. Thus,

Ci,j(s) =

q∑
g=1

B1

(〈g − `i,j(s)〉
q

)
ψi

(〈gp〉 − `i,j(µ)

q

)

=

〈`i,j(s)〉∑
g=1

ψi

(〈gp〉 − `i,j(µ)

q

)
+

q∑
g=1

ψi

(〈gp〉 − `i,j(µ)

q

)(g
q
− 〈`i,j(s)〉

q
− 1

2

)

=

〈`i,j(s)〉∑
g=1

ψi

(〈gp〉 − `i,j(µ)

q

)
+

q∑
g=1

ψi

(〈gp〉 − `i,j(µ)

q

)g
q
− ψi(1− `i,j(µ))

(〈`i,j(s)〉
q

+
1

2

)
where in the last equality we used (2.9). Then,

Ci,j(s) = Di,j(s) +
1

q
D′i,j − ψi(1− `i,j(µ))

(`i,j(s)
q

+
1

2

)
,(3.9)

with

Di,j(s) :=

〈`i,j(s)〉∑
g=1

ψi

(〈gp〉 − `i,j(µ)

q

)
+ ψi(1− `i,j(µ))

`i,j(s)− 〈`i,j(s)〉
q

,(3.10)

D′i,j :=

q∑
g=1

ψi

(〈gp〉 − `i,j(µ)

q

)
g.(3.11)
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It follows that

∑
s (mod q)

exp(C(s))ωs,n = exp
(1

q

4∑
i=1

mi∑
j=1

D′i,j −
1

2
E
) ∑
s (mod q)

exp
( 4∑
i=1

mi∑
j=1

Di,j(s)
)
ωs,n

(3.12)

where we used that, by (3.6),

E = 2
4∑
i=1

mi∑
j=1

ψi(1− `i,j(µ))
(`i,j(s)

q
+

1

2

)
=

4∑
i=1

mi∑
j=1

ψi(1− `i,j(µ))

is independent of s. In particular, writing U = exp(E), by the definition of ψi, (3.10)-(3.11)

and Lemma 11, we have Sqn ∈ F̃K,q. The extension F̃K,q/FK,q is Galois and Gal(F̃K,q/FK,q)
consists of automorphisms of the form (3.8). Thus, it suffices to show that Sqn is invariant
under any such automorphism σ. Now, by Lemma 11,

σ
(
Sqn
)

= exp
(1

q

4∑
i=1

mi∑
j=1

D′
σ
i,j

) ∑
s (mod q)

exp
( 4∑
i=1

mi∑
j=1

Dσ
i,j(s)

)
ωs−pu,n

where

Dσ
i,j(s) :=

〈`i,j(s)〉∑
g=1

ψi

(〈gp− `i,j(u)〉 − `i,j(µ)

q

)
− ψi(1− `i,j(µ))

`i,j(s)− 〈`i,j(s)〉
q

,(3.13)

(D′i,j)
σ :=

q∑
g=1

ψi

(〈gp− `i,j(u)〉 − `i,j(µ)

q

)
g.

The same computation as above gives

Dσ
i,j(s) +

1

q
D′

σ
i,j − ψi(1− `i,j(µ))

(`i,j(s)
q

+
1

2

)
= Cσi,j(s)(3.14)

where

Cσi,j(s) :=

q∑
g=1

B1

(〈g − `i,j(s)〉
q

)
ψi

(〈gp− `i,j(u)〉 − `i,j(µ)

q

)
(3.15)

so that one finds

σ
(
Sqn
)

= exp(−qE/2)

( ∑
s (mod q)

exp

( 4∑
i=1

mi∑
j=1

Cσi,j(s)

)
ωs−pu,n

)q
.

By the change of variables g → g + p`i,j(u) one obtains Cσi,j(s) = C(s − pu), so that, after

the change of variables s→ s+ pu, one obtains σ(Sqn) = Sqn, and so Sqn ∈ FK,q, as desired.
Now, assume Sn′ 6= 0. By (3.12) we have

S−1n Sn′ =

( ∑
s (mod q)

exp
( 4∑
i=1

mi∑
j=1

Di,j(s)
)
ωs,n

)−1 ∑
s (mod q)

exp
( 4∑
i=1

mi∑
j=1

Di,j(s)
)
ωs,n′ .

and so S−1n Sn′ ∈ F̃K,q. Moreover, given an automorphism σ as in (3.8), one shows as above
that σ(S−1n Sn′) = S−1n Sn′ and so S−1n Sn′ ∈ FK,q. �
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Remark 6. The constant term in Theorem 1 can be worked out from the arguments above
as an explicit product of algebraic numbers. In the case K = 41, we obtain

C41(α)D41,0(α) = cδ
−1/2
41

Λ
1/c
41,α

,

δ41 = i
√

3,

Λ
1/c
41,α

=
( c∏
g=1

|ωg|2g/c
) c∑
r=1

r∏
g=1

|ωg|2,

where ωg = 1− e(gα− 5
6c). In the case of K = 52, let τ ≈ 0.665 + 0.562i solve τ3 − τ + 1 = 0,

and let µ1 ≈ 0.224+0.045i and µ2 ≈ 0.164−0.067i be such that e(µ1) = τ2 and e(µ2) = τ2+τ .
Then

C52(α)D52,0(α) = e
(s(α)

2

)
c1/2δ

−1/2
52

Λ
1/c
52,α

,

δ52 = 3τ − 2τ2,

Λ
1/c
52,α

= e
(
µ1
c+ 1

2c

)( c∏
g=1

ω−g/cg ϑ−2g/cg

)
×

×
c∑

r1,r2=1

e
(µ1(r1 + r2) + µ2r1

c
+
r1
2
− α

2
r1(1 + r1 + 2r2)

)( r1∏
g=1

ω−1g

)( r2∏
g=1

ϑ−2g

)
,

where ωg = 1 − e(−gα + µ1
c ) and ϑg = 1 − e(gα − µ2

c ), and the logarithms are taken with
principal determination. Note that F52 = Q(τ) (see [35]).

3.1. Proof of Lemma 10. For λ ∈ R, let Λ denote the Lobachevsky function

Λ(λ) := −Re
(
L(λ)

)
= −

∫ {λ}
0

log(2 sin(πt))dt.

where the last equality follows by (2.8) and (2.10). Note that Λ is 1-periodic and odd. We
need to bound

WK(λ) := −
2∑
i=1

mi∑
j=1

Λ(`i,j(λ)) +

4∑
i=3

mi∑
j=1

Λ(`i,j(λ))

for all λ ∈ [0, 1)m such that `i,j(λ) 6∈ [0, 1) for some (i, j). Define

M = Λ(1/6) ∈ [0.16, 0.162].

We will require the following simple inequalities: for α, β ∈ [0, 1],

|Λ(α)| ≤M,(3.16)

Λ(α) ≤ 0, (α ≥ 1
2),(3.17)

2(Λ(α) + Λ(β))− Λ(α+ β) ≤ 4Λ(14) < 0.59, (α+ β ≤ 1),(3.18)

2(Λ(α) + Λ(β))− Λ(α+ β) ≤M, (α+ β ≥ 1).(3.19)

2(Λ(α) + Λ(β))− Λ(α+ β) ≤ 0.45, (α+ β ≤ 1, and α ≥ 1
2).(3.20)

Λ(α)− Λ(β) ≤ 0.23, (α ≤ 1
2 ≤ β, and β ≤ 2α),(3.21)
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The bound (3.21) is proved by optimizing at β = min(56 , 2α). The maximum is achieved at

a point α where ρ = sin(πα) solves ρ(1 − ρ2) = 1
8 . Similarly, the bound (3.20) is proved by

maximizing at α for which ρ = cos(πα) solves ρ = 2(1− ρ2).
We consider the situation case by case; in each case, we work under the extra assumption

that for some (i, j), we have `i,j(λ) 6∈ [0, 1).

• Case K = 52. We have

WK(λ) = Λ(λ1) + 2Λ(λ2).

A bound of 2M ≤ Vol(K)
2π − 0.12 is enough. Assume λ1 + λ2 ≥ 1. Then λi ≥ 1

2 for
some i ∈ {1, 2}, so that using (3.16) and (3.17), we get

WK(λ) ≤ 2M

• Case K = 61. We have

WK(λ) = 2Λ(λ1) + Λ(λ2) + Λ(λ3).

A bound of 3M ≤ Vol(K)
2π − 0.01 is enough. Thus, by (3.17), we may assume λi ≤ 1

2

for all i ∈ {1, 2, 3}. Assume λ1 + λ2 + λ3 ≥ 1. Then by concavity of Λ on [0, 12 ],

we have WK(λ) ≤ 2Λ(λ1) + 2Λ(12(λ2 + λ3)). The bound (3.21) can then be applied

with (α, β) = (12(λ2 + λ3), 1 − λ1), and yields WK(λ) ≤ 0.46 ≤ 3M . We find in all
cases

WK(λ) ≤ 3M.

• Case K = 62. We have

WK(λ) = −2Λ(λ1) + 2Λ(λ2) + Λ(λ3) + Λ(λ1 − λ2).

A bound of 4M ≤ Vol(K)
2π − 0.05 is enough. Because of (3.17), we may assume λ1 >

1
2

and λ2 ≤ 1
2 . Then the case λ1 ≤ λ2 is excluded, and we may assume λ2 + λ3 ≥ 1.

Then λ3 ≥ 1
2 , and so by (3.17) and (3.18) (with (α, β) = (1 − λ1, λ2)), we ob-

tain WK(λ) ≤ 4Λ(14). We obtain in all cases

WK(λ) ≤ 4M.

• Case K = 63. We have

WK(λ) = −2Λ(λ2) + 2Λ(λ1) + 2Λ(λ3) + Λ(λ2 − λ3) + Λ(λ2 − λ1).

A bound of 5M ≤ Vol(K)
2π − 0.09 is enough. By symmetry, we may assume λ2 ≤ λ3.

Suppose first λ2 ≥ 1
2 . Then λ2−λ3 ∈ [−1

2 , 0], so by (3.17), Λ(λ2−λ3) ≤ 0 and Λ(λ3) ≤
0. We deduce WK(λ) ≤ 5M by (3.16). Suppose on the other hand that λ2 <

1
2 . If λ3 ≥

1
2 , then by (3.18)-(3.19) with (α, β) = (λ1, 1−λ2), we find WK(λ) ≤ 4Λ(14)+M ≤ 5M .

If, finally, λ3 <
1
2 , then by (3.17) we have Λ(λ2 − λ3) ≤ 0, so that WK(λ) ≤ 5M . In

all cases, we find

WK(λ) ≤ 5M.

• Case K = 73. We have

WK(λ) = −2Λ(λ2) + Λ(λ1) + Λ(λ3) + Λ(λ4).
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A bound of 4M ≤ Vol(K)
2π −0.08 is enough. Thus, by (3.17), we may assume λj <

1
2 for

all j ∈ {1, 3, 4}, and λ2 >
1
2 . Assume that λ2 ≤ λ3 + λ4. By (3.17) and the concavity

of Λ on [0, 12 ], we have

WK(λ) ≤ −2Λ(λ2) + Λ(λ3) + Λ(λ4) +M ≤ 2
(

Λ
(λ3 + λ4

2

)
− Λ(λ2)

)
+M.

By (3.21) with β = 1
2(λ3 + λ4), we obtain WK(λ) ≤ 0.46 +M ≤ 4M . We deduce that

in all cases,

WK(λ) ≤ 4M.

• Case K = 74. We have

WK(λ) = −Λ(λ2 + λ3) + Λ(λ1) + 2Λ(λ2) + 2Λ(λ3) + Λ(λ4).

A bound of 5M ≤ Vol(K)
2π − 0.01 is enough. By (3.17) and (3.16) we may assume

without loss of generality λ2, λ3 <
1
2 . Moreover, by (3.18) (note that 0.59 ≤ 4M), we

always have WK(λ) ≤ 4M + Λ(λ1) + Λ(λ4), and so we may assume λ1, λ4 <
1
2 as well.

But then, neither of the cases λi + λj ≥ 1 can occur for (i, j) ∈ {(1, 2), (2, 3), (3, 4)}.
We find in all cases that

WK(λ) ≤ 5M.

• Case K = 75. We have

WK(λ) = −2Λ(λ3) + 2Λ(λ1) + Λ(λ4) + Λ(λ2 − λ1) + Λ(λ3 − λ2).

A bound of 6M ≤ Vol(K)
2π − 0.05 is enough. We may assume λ3 >

1
2 and λ1, λ4 <

1
2 .

Then the case λ3 ≤ λ4 is excluded. Assume next λ2 ≤ λ1. Then λ2 − λ1 ∈ (−1
2 , 0], so

that Λ(λ2 − λ1) ≤ 0. Similarly, if λ3 ≤ λ2, then λ2 >
1
2 , and Λ(λ3 − λ2) ≤ 0. In all

cases, we find by (3.16) and (3.17) that

WK(λ) ≤ 6M.

• Case K = 76. We have

WK(λ) = −Λ(λ3 + λ4)− Λ(λ2 + λ3) + 2Λ(λ1) + Λ(λ2 − λ1) + 2Λ(λ3) + 2Λ(λ4).

A bound of 0.45 + 4M ≤ Vol(K)
2π − 0.03 is enough; note that 0.59 + 3M < 0.45 + 4M .

In particular, we may assume that λ1 < 1
2 , since otherwise, by (3.17) and (3.18)-

(3.19), we get WK(λ) ≤ 0.59 + 2M . Assume first λ3 + λ4 ≥ 1. Then by (3.19), we
obtain WK(λ) ≤ 5M , which is acceptable. Next, assume that λ2 + λ3 ≥ 1. If λ3 ≤ 1

2 ,

then λ2 + λ3 ∈ [1, 32 ] and by (3.19) we have WK(λ) ≤ 0.59 + 3M . If on the other

hand λ3 >
1
2 , then by (3.20), we get WK(λ) ≤ 0.45+4M . Both bounds are acceptable.

Finally, assume that λ2 ≤ λ1. Then λ2 − λ1 ∈ (−1
2 , 0], and so Λ(λ2 − λ1) ≤ 0, and we

again obtain WK(λ) ≤ 0.59 + 3M . We find in all cases that

WK(λ) ≤ 0.45 + 4M.

• Case K = 77. We have

WK(λ) = 2(Λ(λ1) + Λ(λ2) + Λ(λ3) + Λ(λ4))− Λ(λ1 + λ2)− Λ(λ2 + λ3)− Λ(λ3 + λ4).

Assume λi + λj ≥ 1 for some (i, j) ∈ {(1, 2), (2, 3), (3, 4)}. Then by (3.19) and (3.16),
we have

WK(λ) ≤ 7M ≤ Vol(K)

2π
− 0.08.
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Summarizing the above, we find that in all cases considered for K, there holds

(3.22) EK := sup{WK(λ) | λ ∈ [0, 1)n, ∃i, j, `i,j(λ) /∈ [0, 1)} ≤ VolK

2π
− 0.01.

This proves Lemma 10.

Remark 7. The analogue of Lemma 10 for the knot 72 is false as stated. It is likely that
this obstacle can be lifted by processing the contour integral arguments underlying Lemma 11
more carefully (see [36, Remark 8.1]). For sake of clarity, and since our main point is rather
to stress how the modularity conjecture can be reduced to the arithmeticity conjecture, we
chose to omit the case K = 72.

3.2. Proof of Lemma 11.

Remark 8. We have L(λ) = −L(1−λ) for λ ∈ [0, 1) and f(z) = f(1−z) for z ∈ (C\R)∪(0, 1).
In particular we can write the conjugates of Φr(λ) and gd(λ) given in (3.4) and (2.16) ((2.14)
if λ = 0) as

Φr(λ) = exp

(
− k

qd

(
L(1− λ) +

πi

12

)
− πid

12kq
+ E∗r (λ, d/k)

)
E∗r (λ, d/k) :=

1

2
f
(q − 〈pr〉+ λ

q

)
+

q∑
g=1

i

∫ ∞
0

(
f( q−g+λq − idtk )

e(−gp−r
q )e2πt − 1

−
f( q−g+λq + idtk )

e(gp−rq )e2πt − 1

)
dt, (λ 6= 0)

and E∗r (0, d/k) = Er(0, d/k). In particular, we can extend Φr(λ) to a holomorphic function
of λ in the strip 0 < Re(λ) < 1.

In the following lemmas we give some properties of the expansion of Er and E∗r .

Lemma 13. Assume Re(λ) ∈ (ε, 1 − ε) with ε ∈ (0, 1/2) and let s ∈ Z/qZ. Then, for all
M ≥ 0 uniformly in λ we have

Es(λ, d/k) =
M∑
`=0

(qd
k

)`
Es,`(λ) +Oε

(qd
k

)M+1
, E∗s (λ, d/k) =

M∑
`=0

(qd
k

)`
E∗s,`(λ) +Oε

(qd
k

)M+1
,

(3.23)

where

E0,`(λ) :=

q∑
g=1

f
(g − λ

q

)
B1

(〈gp− s〉
q

)
, E∗0,`(λ) :=

q∑
g=1

f
(g − λ

q

)
B1

(〈gp− s〉
q

)
,

Es,`(λ) :=
(−1)`

q`(`+ 1)!

q∑
g=1

f(`)
(g − λ

q

)
B̃`+1

(gp− s
q

)
, ` ≥ 1,

E∗s,`(λ) :=
(−1)`

q`(`+ 1)!

q∑
g=1

f(`)
(1− g + λ

q

)
B̃`+1

(gp− s
q

)
, ` ≥ 1.

Proof. For Re(λ) ∈ (ε, 1− ε) we have infg∈Z ‖g−λq ‖ �ε 1. Thus, since

f′(z) = π(cot(πz) + i), f(ν)(z) = (−1)ν−1(ν − 1)!
∑
n∈Z

1

(z − n)ν
, (z /∈ Z, ν ≥ 2),

we have that f(ν)(g−λ+itq ) �q,ν,ε (1 + |t|ε) for all ν ≥ 0, t ∈ R. The Lemma then follows

immediately by expanding in Taylor series and applying Lemma 2. �
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Lemma 14. Assume Re(λ̃) ∈ (0, 1) and let s ∈ Z/qZ. Let hs,` be either Es,` or E∗s,`. Then,

for all `,M ≥ 0, and all λ in a neighborhood of λ̃, we have

hs,`(λ) =
M∑
v=0

(2πi)`+vCs,`,v(λ̃)(λ− λ̃)v +O(|λ− λ̃|M+1),(3.24)

where, for (v, `) = (0, 0),

C0,0(λ̃) =

q∑
g=1

f
(g − λ̃

q

)
B1

(〈gp− s〉
q

)
, if hs,` = Es,`(3.25)

C0,0(λ̃) =

q∑
g=1

f
(q − g + λ̃

q

)
B1

(〈gp− s〉
q

)
, if hs,` = E∗s,`.(3.26)

Moreover, for (v, `) 6= (0, 0) we have Cs,`,v(λ̃) ∈ Q(e(1q ), e( λ̃q )); also if

σ ∈ Gal
(
Q(e(1q ), e( λ̃q ))/Q(e(1q ), e(λ̃))

)
is such that σ(e(λ̃/q)) = e((̃λ+ u)/q) for some u ∈ {0, . . . , q − 1}, then

σ(Cs,`,v(λ̃)) = Cs−up,`,v(λ̃).(3.27)

Proof. The equations (3.24)-(3.26) follow immediately by Taylor expansion. Moreover, if ` ≥ 1,
v ≥ 0 and hr,` = Er,` then

Cr,`,v(λ̃) =
(−1)`

q`(`+ 1)!

1

qvv!

q∑
g=1

(2πi)`+vf(`+v)
(g − λ̃

q

)
B̃`+1

(gp− r
q

)
,

so that Cr,`,v(λ̃) ∈ Q(e(1q ), e( λ̃q )) since f′(z) = π(cot(πz) + i) = 2i
1−e(−z) and (3.27) follows by

the change of variables g → g + j. The case ` = 0, v ≥ 1 and the analogous property for Ẽr,`
can be proven in the same way. �

Proof of Lemma 11. As mentioned in the introduction, for the knots under consideration,
the asymptotic expansion stated in Lemma 11 will be essentially reduced to a proof of the
asymptotic expansion in the volume conjecture for those knots. Thus, we shall frequently refer
to [35, 37, 36] where this asymptotic expansion was proven for hyperbolic knots with 5, 6 and
7 crossings. The case of the knot 41 is easier, since there is a dominant critical point on (0, 1),
and the method of stationary phase can be applied, similarly as in the proof of Theorem 2
below. Thus, we will focus here on the case K 6= 41. Recall also that we assume K 6= 72.

By Remark 8, for 0 ≤ `i,j(L) < d we can write J∗K as

J ∗K(x;L, s) =
∑

rd/k−L∈D,
ri≡si (mod q), ∀i

exp
( k
qd
Vs,d/k(dr/k −L)

)
,

where D = {n ∈ [0, 1)m | `i,j(n) ∈ [0, 1)∀i, j},

Vs,κ(n) := V̂ (n) + qκ
(
Us,κ(n) +

πi(m1 +m4 −m2 −m3)

12q
κ
)
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and

V̂ (n) =

m1∑
j=1

(
L(`1,j(n)) +

πi

12

)
−

m2∑
j=1

(
L(1− `2,j(n)) +

πi

12

)
−

m3∑
j=1

(
L(`3,j(n)) +

πi

12

)
+

m4∑
j=1

(
L(1− `4,j(n)) +

πi

12

)
,

Us,κ(n) =

m1∑
j=1

Es(`1,j(n), κ) +

m2∑
j=1

E∗s(`2,j(n), κ)−
m3∑
j=1

Es(`3,j(n), κ)−
m4∑
j=1

E∗s(`4,j(n), κ).

The function V̂ (n) coincides, up to conjugation, with the limiting value of the potential
function of the hyperbolic structure of the knot complement given in [35, (10)], [37, p.297,

p.308, p.322] and [36, p.12, p.26, p.38, p.50, p.63]. We remark that the expressions for V̂
given there differ from the one we have here, however it is easy to see that the two expressions
actually coincide upon using the dilogarithm identity (or the formula (2.6))

L(1− λ) + L(λ) = −πiB2(λ).

In [35, Lemma 2.1], [37, §3.2, §4.2, §5.2] and [36, §3.2, §4.2, §5.2, §6.2, §7.2] it was shown that

for all knots under consideration Re(V̂ ) is smaller than Vol(K)
2π on the boundary of D. More

precisely, there exists a domain D′ ⊂ D with dist(D′, ∂D) > 0 such that Re(V̂ (n)) < Vol(K)
2π −δ′

for all n ∈ D \ D′ and some δ′ > 0. Thus, by (2.15), we have

J ∗K(γ, x;L, s) =
∑

rd/k−L∈D′,
ri≡si (mod q), ∀i

exp
( k
qd
Vs,d/k(dr/k −L)

)
+O

(
km exp

((Vol(K)

2π
− δ′

) k
qd

))
.

We now apply Poisson summation formula in the form of [35, Proposition 4.6] (with k/d
playing the role of N of [35]). Note that our sum are restricted to arithmetic progressions
modulo q; since q is fixed, this does not affect the argument. By [35, Lemma 5.1], [37, Lemma

3.4, 4.3 and 5.2] and [36, Lemma 3.2, 4.2, 5.2, 6.2 and 7.2] we have that V̂ (n)− Vol(K)
2π satisfies

the conditions (41)-(42) of [35, Proposition 4.6] and by [35, Remark 4.8] and Lemma 13 we

can apply Proposition 4.6 of [35] to Vs,L,d/k(n) rather than V̂ (n). We find

J ∗K(γ, x;L, s) =
( k
qd

)m ∫∫
D′

exp
( k
qd
Vs,d/k(z)

)
dz +O

(
exp

((Vol(K)

2π
− δ′′

) k
qd

))
,(3.28)

for some δ′′ > 0, where the extra factor q−m comes from the restriction to the congruence
classes. One can then apply the saddle point method in the form of [35, Proposition 3.5 and
Remark 3.6] as done in [35, p.705-706 and §5.2] (cf. also [46]), [37, p.297 and §3.5; p.309 and
§4.5; p.47 and §5.5] and [36, p.13 and §3.5; p.26 and §4.5; p.39 and §5.5; p.50 and §6.5; p.64
and §7.5]. Notice that both Vs,d/k(z) and the corresponding functions studied in these papers

converge uniformly to V̂ , so the same computations apply. We then find that for all N ≥ 1
the first summand on the right of (3.28) is equal to(2πk

qd

)m/2 1

det(−Hess)1/2
exp

( k
qd
V̂ (µ) + C(s)

)(
1 +

N∑
n=1

ωs,n
(2πiqd

k

)n
+O

( 1

kN+1

))
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where µ is a critical point of V̂ (z) (and thus satisfies (3.6)) with 0 < Re(`i,j(µ)) < 1 for

all i, j, such that V̂ (µ) = Vol(K)−i cs(K)
2π and Hess is the Hesse matrix of V̂ at µ. In particular,

det(−Hess) ∈ (πi)mFK . By Lemma 14 the coefficients ωs,n are in F̃K,q for all n ≥ 1 and if
σ is as in (3.8), then σ(ωs,n) = ωs−pu,n. Finally, by (3.25)-(3.26) we have that C(s) is as
in (3.7). �

4. Proof of Theorems 2

We proceed in a similar way as in the proof of Theorem 1. For x = h/k, with (h, k) = 1 and
1 ≤ h < k, we write J41(x) as in (3.2) and we divide the sum into congruence classes modulo
h, that is we write

J41(h/k) = k
3−m

2

∑
0≤s≤h−1

J41(h/k; s)(4.1)

where, for 0 ≤ s ≤ h− 1, we write

J41(h/k; s) =
∑

0≤r<k,
r≡s (mod h)

|[h/k]r|2.(4.2)

with [·]r as in (3.1). We apply Theorem 7, which for 0 ≤ s < h, s ≡ r (mod h), gives

|[h/k]r|2 = |[k/h]s|2Φ†s(r/k) exp
(
− 2πr

hk
c0(k/h) + E†s (r/k)

)
(4.3)

for some E†s (r/k) satisfying |E†s (r/k)| � E(h, k) for all 0 ≤ r < k, where

E(h, k) := 1 + log
k

h
+

k

h2
+ max
r′=0,...,h−1

∣∣∣ ∑
1≤n≤r′

cot
(
π
nk

h

) n
hk

∣∣∣,
(note that if 0 ≤ r0 < h with r0 ≡ r (mod q), then r

k ∈ [ r0k , 1−
h
k (1−{ r0−kh })]), and where for

λ ∈ [0, 1], we define

Φ†s(λ) = exp

(
2
k

h
Re
(
L(λ)

))
= exp

(
k

h

∫ λ

0
log(4 sin(πt)2) dt

)
,

by (2.8) and (2.10). By positivity, it follows that

J41(h/k; s) = exp
(
O(E(h, k) + |c0(k/h)|/h)

)
|[k/h]s|2

∑
0≤r<k

r≡s (mod h)

Φ†s(r/k).(4.4)

Now, the function λ→
∫ λ
0 log(4 sin(πt)2) dt is continuous on [0, 1] and it has a unique maximum

in this interval, located at λ = 5/6. Moreover, it can be expanded in a neighborhood of this
point as ∫ λ

0
log(4 sin(πt)2)dt =

Vol(41)

2π
− π
√

3(λ− 5
6)2 +O(|λ− 5

6 |
3).(4.5)

since
∫ 5/6
0 log(4 sin(πt)2)dt = Vol(41)

2π . It follows that

∑
0≤r<k

r≡s (mod h)

Φ†s(r/k) =

√
k

h
√

3
exp

(Vol(41)

2π

k

h

)
(1 +O(h/k)) = exp

(Vol(41)

2π

k

h
+O(log(1 + k/h))

)
,

(4.6)
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where the first step is justified in a standard way [17, p.517], e.g. by smoothly restricting the
sum to the terms where r/k is in a neighborhood of 5/6, using (4.5) and applying the Poisson
summation formula. The second step instead follows immediately by positivity.

By (4.1), (4.4) and (4.6) we then find

J41(h/k) = J41(k/h) exp(O(E(h, k) + |c0(k/h)|/h)),(4.7)

as desired.
With a similar argument we can prove the following theorem, which deals with the case

where the dominating term on the right hand side of (4.3) is exp(−2πr
hk c0(k/h)).

Theorem 8. Let 1 ≤ h ≤ k with (h, k) = 1 and assume c0(k/h) < 0. Then,

log |J41,0
(

e
(
h/k

))
| = log |J41,0

(
e
(
k/h

))
| − 2π

h
c0
(
k/h

)
+O

(k
h

+ max
0≤r′<h

∣∣∣ ∑
1≤n≤r′

cot
(
π
nk

h

) n
hk

∣∣∣).
(4.8)

To prove (4.8) first we observe we can assume k > 2h since otherwise the result is trivial.

Also, we observe that, bounding trivially Φ†s, one can write (4.3) as

|[h/k]r|2 = |[k/h]s|2 exp
(
− 2πr

hk
c0(k/h) +O(E(h, k) + k/h)

)
and so

J41(h/k; s) = exp
(
O(E(h, k) + k/h)

)
|[k/h]s|2

∑
0≤r<k

r≡s (mod h)

exp
(
− 2πr

hk
c0(k/h)

)
.

Now, if x ≥ 0, we have
∑

0≤n≤m enx = emx+O(m), and thus if x is large the sum is roughly

dominated by the last term. Then for c0(k/h) < 0, we have∑
0≤r<k

r≡s (mod h)

exp
(
− 2πr

hk
c0(k/h)

)
= exp

(
− 2πr′

hk
c0(k/h) +O(k/h)

)
where r′ is the maximum integer satisfying 0 ≤ r′ < k with r′ ≡ s (mod h). Then, k − h ≤
r′ < k and so in particular r′

hkc0(k/h) = 1
hc0(k/h) +O( 1k |c0(k/h)|) and the result follows.

5. Proof of Theorem 3

Before starting, we state some basic properties of continued fractions (see [28] for a ref-
erence). Given h/k ∈ Q ∩ (0, 1) with h, k ∈ N, (h, k) = 1, we denote by [0; b1, . . . , br] the
continued fraction expansion of h/k. Then for 0 ≤ s ≤ r the convergents of h/k are the
fractions [0; b1, . . . , bs] = us

vs
with (us, vs) = 1 (as usual u0/v0 = 0/1, v−1 := 0, u−1 := 1);

the vs are called the partial quotients. The partial quotients satisfy the bounds vs � 2−s/2,
vr−s � k2−s/2 for 0 ≤ s ≤ r, and vs/vs−1 ≤ bs + 1 for 1 ≤ s ≤ r. Also, r � log k. For all

1 ≤ s ≤ r we have vsus−1 − vs−1us = (−1)s and so vs−1

vs
≡ (−1)s+1 us

vs
(mod 1). Moreover, if

1 ≤ h′ ≤ k is such that h′ ≡ (−1)r+1h (mod k), then the Euclid algorithm on h′ and k can be
written as

(5.1)
vr = k, vr−1 = h′,

v`+1 = b`+1v` + v`−1, ` = 0, . . . , r − 1.

The following technical result, proved in [11], will be needed in the proof of Theorem 3.
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Lemma 15 ([11, Theorem 1]). Let 1 ≤ h < k with (h, k) = 1. Let v0, . . . , vr be the partial
quotients of h/k. Then uniformly for 1 ≤ c ≤ k, we have∑

1≤n≤c
cot
(
π
nh

k

)n
k
�

r−1∑
m=0

vm+1 log(vm+1/vm) + k.

Proof of Theorem 3. Since J is even, applying repeatedly the reciprocity formula (1.7) and
the recurrence relation (5.1), we see that for all 0 ≤ s ≤ r

logJ41,0(e(h/k)) = logJ41,0(e(vr−1/vr)) = C
r∑

`=s+1

(
v`
v`−1

+ E(v`−1/v`)

)
+ logJ41,0(e(vs−1/vs)),

with C = Vol(41)
2π and E satisfying (1.8). Now, by Lemma 15

r∑
`=1

max
r′=0,...,v`−1−1

∣∣∣ ∑
1≤n≤r′

cot
(
π
nv`−2
v`−1

) n

v2`−1

∣∣∣� r∑
`=1

`−2∑
m=0

vm+1

v`−1
log(vm+1/vm) + r,

since
v`−2

v`−1
= (−1)`

u`−1

v`−1
(mod 1) and so its partial quotients are v0 . . . , v`−1. The second sum

is O(1), whereas changing the order of summation and using v`−1−n � v`−12
−n/2, for n ≥ 0,

we obtain
r∑
`=1

`−2∑
m=0

vm+1

v`−1
log(vm+1/vm)�

r−2∑
m=0

r∑
`=m+2

2(m−`)/2 log(vm+1/vm)�
r−2∑
m=0

log(vm+1/vm).

Now, we fix an ε > 1/k and we take s to be the least integer in {1, . . . , r} such that vs ≥ 1/ε

and notice that, since vm � 2m/2, we have s = Oε(1). Then, the above computations and (1.8)
give

logJ41,0(e(h/k)) =
r∑

`=s+1

v`
v`−1

(C +O(
√
ε)) +

r∑
`=1

O(log(v`/v`−1)) + logJ41,0(e(±us/vs)).

since vs−1

vs
= ±us

vs
(mod 1) for ±1 := (−1)s−1. Now, if s ≥ 1, we have ±us/vs = γ(bs), where

γ := (
±us−1 us−2
±vs−1 vs−2

) ∈ SL(2,Z). Notice that by definition of s all entries of γ are bounded by

1/ε. Thus, by Theorem 1, we have

logJ41,0(e(±us/vs)) = Cbs +O(log bs) +Oε(1) = C
s∑
`=1

b` +O(log bs) +Oε(1),

since s, v`−1 = Oε(1) and so also b` = Oε(1) for all ` ≤ s− 1. Then, since v`/v`−1 = b` +O(1)
we find

logJ41,0(e(h/k)) = (C +O(
√
ε))

r∑
`=1

(b` +O(log b`)) +O(r) +Oε(1).

Finally, we observe that b` +O(log b`) = b`(1 +O(
√
ε)) +O(1/ε). Thus,

logJ41,0(e(h/k)) = (C +O(
√
ε))

r∑
`=1

b` +Oε(r) = Σ(h/k)

(
C +O(

√
ε) +Oε

(
r(h/k)

Σ(h/k)

))
.

By hypothesis r(h/k)/Σ(h/k) → 0 and so (1.9) follows by letting ε → 0+ sufficiently slowly.
Equation (1.10) then follows immediately from [10, Corollary 1.4]. �
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Proof of Theorem 4. We extendHK to a function on R>0 by settingHK(x) := limy→x,y∈QHK(y)
for all x 6∈ R>0 \ Q. By hypothesis HK(x) is well defined and it is easy to prove that HK is

continuous on R \ Q. Then, setting ψ(x) := HK(x) − Vol(K)
2π

1
x −

3
2 log(1/x), for x > 0, and

ψ(0) = 0, we have that ψ(x) is bounded and continuous almost everywhere on [0, 1]. Thus,
by Lebesgue’s integrability condition, ψ is Riemann-integrable on [0, 1]. In particular, for all
ε > 0 there exist a differentiable function ψε : [0, 1]→ R such that ‖ψ − ψε‖∞,[0,1] ≤ ε.

By definition logJK,0(e(h/k)) − logJ41,0(e(k/h)) = ψ(h/k) + Vol(K)
2π

k
h + 3

2 log(k/h). Thus,
proceeding as in the proof of Theorem 3 using this formula instead of Theorem 2, we obtain

logJ41,0(e
(
h/k

)
) =

r∑
`=1

(
Vol(K)

2π

v`
v`−1

+
3

2
log(v`/v`−1) + ψ(v`−1/v`)

)
= φε(h/k) +O(ε log k),

where

φε(h/k) :=
r∑
`=1

(
Vol(K)

2π

v`
v`−1

+
3

2
log(v`/v`−1) + ψε(v`−1/v`)

)
.

Letting T (x) = {1/x} for x ∈ (0, 1], we note that for 2 ≤ s ≤ r, we have vs−1

vs
= T r−s(h′/k),

whereas v0
v1

= T r−1(h′/k) + 1b1=1 (the contribution of 1b1=1 being negligible). We apply [10]

(Theorem 1.3 with λ = 1, complemented by Theorem 1.2 with γ(x) = {1/x}), and obtain
that the estimate (1.11) holds with logJ41,0(e(h/k)) replaced by φε(h/k) and

DK =
1− γ0 − log 2

12/π2
+

3π

Vol(K)
+

24

πVol(K)

∫ 1

0

ψε(1/x)dx

1 + x
,

and with an error term oε(N
2). The result then follows by letting ε → 0+ sufficiently slowly

with respect to N , and making the change of variables h/k → h′/k on the left hand side
of (1.11). �

Proof of Corollary 5. We prove the result in the case where x ∈ [0, 1] \Q and for y → x−, the
other cases being analogous. Let x = [0; b1, b2, . . . ] and let h/k = [0; b1, b2, . . . , b2n, X, Y ] for
some X,Y ∈ N>0. Then, h/k → x− as n → ∞, uniformly in X > b2n+1 and Y . We have
k/h ≡ [0; b2, . . . , b2n, X, Y ] (mod 1) and so by [8, (1.2)-(1.3) and Lemma 4]

1

h
c0(k/h) =

1

π

2n+1∑
`=1

(−1)` log(v`−1/v`)

v`−1
+O(n)

uniformly in X,Y , where vi denotes the partial quotient of [0; b2, . . . , b2n, X, Y ]. Now, let
B = 2+max1≤i≤2n bi. Then, for ` < 2n, we have v`/v`−1 < B, whereas v2n/v2n−1 = X+O(1)
and v2n+1/v2n = Y + O(1). Also, v2n = Xv2n−1 + v2n−2 and v2n−2 ≤ v2n−1 ≤ B2n−1. It
follows, that

π

h
c0(k/h) =

log Y

Xv2n−1 + v2n−2
− logX

v2n−1
+O(n logB) = − logX

v2n−1
(1 + o(1))

as n,X, Y → ∞ under the constraint Y nB2n = o(logX). By (4.8) and [11, Theorem 1] we
then have

H∗41(h/k) = − logX

v2n−1
(1 + o(1))(1 +O(1/Y )) +O

(
Y +

logX

Y v2n−1

)
and this goes to −∞ as n,X, Y →∞ with Y nB2n = o(logX). �
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