MODULARITY AND VALUE DISTRIBUTION OF QUANTUM
INVARIANTS OF HYPERBOLIC KNOTS

S. BETTIN AND S. DRAPPEAU

ABSTRACT. We obtain an exact modularity relation for the g-Pochhammer symbol. Using
this formula, we show that Zagier’s modularity conjecture for a knot K essentially reduces
to the arithmeticity conjecture for K. In particular, we show that Zagier’s conjecture holds
for hyperbolic knots K # 7o with at most seven crossings. For K = 4;, we also prove a
complementary reciprocity formula which allows us to prove a law of large numbers for the
values of the colored Jones polynomials at roots of unity. We conjecture a similar formula
holds for all knots and we show that this is the case if one assumes a suitable version of
Zagier’s conjecture.

1. INTRODUCTION

Among knot invariants, the colored Jones polynomials {Jx }n>2 and the Kashaev invari-
ants {(K)n}n>2 are of particular interest, by their relation to quantum field theory, and the
geometry of hyperbolic manifolds [25, 26, 44]. We refer to e.g. [31, 46] for their definitions;
by [31], the two invariants are related by (K)n = Jx n(e*™/N). We refer to [24, 25, 14] for
more results and references on this topic.

The Kashaev invariant is extended to a function on roots of unity by setting, for (h,k) = 1,
Tic0(e2 kY .= Jie 1 (e27h/%). For fixed k, the values (JK,O(ezmh/k))(hyk)zl are simply the
27ri/k)

Galois conjugates of (K)x in Q(e . In the case of K = 44, the simplest hyperbolic knot,

we have explicitly
(1.1) Juo(@) =Y |1-a)(1—¢*)---(1—-q)
r=0

for a root of unity ¢.! In general, Ji o(g) can be written as a multiple series of this kind, with
each addend being a ratio of g-Pochhammer symbols of various indexes. See Section 2.4 for
some more examples and the precise definition of Jx (¢) in the cases we will consider.

The volume conjecture [26] predicts that for any hyperbolic knot K,

_ log|(K)n|  Vol(K)
1.2 1 =
(1.2) A o

)

where Vol(K) is the hyperbolic volume of the complement of K. This is motivated by the anal-
ogy between the usual dilogarithm, which measures volumes of tetrahedra in the hyperbolic
space, and the quantum dilogarithm, which are the building blocks of Kashaev’s invariant.
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A generalization for non-hyperbolic knots was formulated in [31, section 5], with the vol-
ume Vol(K) being replaced by a suitable multiple of the Gromov simplicial volumes of the
complement of K.

This conjecture was extended in [22] and implicitly in [18] to a full asymptotic expansion,
referred to as the arithmeticity conjecture in [12], whereas the corresponding question for the
imaginary part of the logarithm is conjectured to involve the Chern-Simons invariant cs(K)
of K [32, 22]. The arithmeticity conjecture has been proved for all knots with up to seven
crossings in [2, 35, 37, 36]. We refer to [16, 34, 33, 30, 27] and the references therein for more
results and information on the volume conjecture.

In [47], Zagier studies several examples of what is called “quantum modular forms”. Mo-
tivated by extensive numerical computations, he predicts that Jk ¢ satisfies an approximate
modularity property which relates, in the limit as z — oo among rationals of bounded denom-
inator, Jk o(e?™ae+b)/(c2+d)y with Jy o(z) for any (¢4) € SL(2,Z). The constants involved
are also considered from an algebraic point of view, and are expected to belong to simple
algebraic extensions of the invariant trace field Fx of the knot (see e.g. [29, Chapter 3] for the
definition). More specifically, given a hyperbolic knot K, the following conjecture is made (cf.
also [19] and [15] where the coefficients in the series are analysed in detail).

Conjecture 1 (Zagier’s modularity conjecture for K). For all v € SLy(Z) such that® o :=
v(o0) € Q, there exist Cx(a) € C and a sequence (D n(c))n>0 of complex numbers such
that, for all M € N and z € Q, with x — oo, there holds

(1.3)
Trole(v(2))) _ (2m\3/2 jYougziests) ., oV M L 2mi
Teolet@) = (1) Cte)( 30 Dreale™+O(), = oy,

0<n<M

where e(x) := 2™ and the implied constant depends at most on o, on the denominator of
and on M. Moreover, if Fi o := Fi(e(a)), then:

o Ok () is a product of rational powers of elements of Fi qo;
o Dinla) € Fg o forn > 0.

In the case K = 4;, Garoufalidis and Zagier [20] announced a proof of Theorem 1, and also
numerically investigated the conjecture for other knots. The case of the 4; knot is special and
rather simpler than that of other knots, due to the fact that in this case all the summands in
the definition (1.1) of Ju, ¢ are positive. One can then use Laplace’s method to extract the
asymptotic expansion (1.3). In general, this positivity is not present and there is a remarkable
amount of cancellation between the terms of the series. Indeed, Jko(e(1/N)) is typically
exponentially smaller than the largest summands in its definition, and this prevents one from
applying a direct estimation based on Laplace’s method. We circumvent this serious obstacle
by obtaining a new modularity relation, with a precise description of the holomorphic and
periodic behaviour of the error terms, for the ¢g-Pochhammer symbol. This symbol is of
crucial importance in the theory of ¢-series and often appears in the theory of modular forms
and combinatorics (see for example [7] and references therein). For r € Z>, it is defined as

T

(1.4) (@ =JJ-¢), qeC

Jj=1

2In what follows, a matrix in SL(2,R) acts on C by homography.
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When |¢| < 1, one can also take r = +o00 and obtain the Dedekind 7-function, an important
example of a (half-integral weight) modular form defined as n(z) = e(2/24)(e(z))oo, with
e(z) := €?™*. As such, 7 satisfies the relation

n(v2) = x(N(ez + (=), v=(2}) € SL2,2),
for a certain “multiplier system” x (see [23, Section 2.8]). This modularity relation can be
naturally extended to the partial product at root of unities. Indeed, denoting with den(«) the
reduced denominator of a € Q, in Theorem 6 below we show that for « € Q, 1 < r < den(ya)
we have

(1.5) e(3g)(e(ya))r = x(7) e(53) (e(@)) ¥y (e, 7)

for some 1 < 7’ < den(a) and where (o, 7) is an explicit function with suitable holomor-
phicity properties. We refer to Section 2 for the precise formulation of this reciprocity formula
which we believe to be of independent interest. With this new tool, we can reduce Zagier’s
modularity conjecture to a slightly modified form of the arithmeticity conjecture, thus show-
ing that the two conjectures are “morally equivalent”. In particular, we are able to prove the
conjecture for all hyperbolic knots K # 7o with at most seven crossings, since for these the
arithmeticity conjecture is known by works of Andersen and Hansen [2] (in the case K = 4;),
Ohtsuki [35, 36] (in the case K = 59 and with 7 crossings) and Ohtsuki and Yokota [37] (in
the case of 6 crossings). We recall that the fields Fx, F o were defined just before and in
Conjecture 1.

Theorem 1. Let K # 75 be a hyperbolic knot with at most 7 crossings. Then Conjecture 1
holds for K. The constant Ck(«) has the shape

(1.6) Ck(a) = e(% s(a))cl/K/QA}(/fa&;(l/Q’

where c is the denominator of a, Ax.o € Fi .o, VK € Z, and 0 € Fi, vk is given in Figure 4
below and s(«) is the Dedekind sum (see (2.4)).

Remark 1. By the works [38, 35, 37, 36], the number :|:2i5;(1 can be interpreted as the
conjugate of a twisted Reidemeister torsion of K. Our method gives the constant term Cg -
D as an explicit product of algebraic numbers; in Remark 6 in Section 3 we give as examples
its value in the cases of K = 47 and K = 5.

Remark 2. Recently, Calegari, Garoufalidis and Zagier [12] made a more precise conjecture
on O (a), predicting it naturally factors as pux g. - ex (@)/¢/\/3x, where c is the denominator
of o, g g is a 8c root of unity, ex () is a unit of Fi, and 0x € Fx. We do not at present
have such a precise description of C'x(a). This would presumably require a fine understanding
of the congruence sums (3.7).

By the work of Ohtsuki [36], the arithmeticity conjecture is known also for K = 79 and we
expect that our method would give Theorem 1 also in this case. However, the proof of this
case is more involved, so we decided to exclude this case for simplicity. In any case, we want
to stress again that the scope of our work is more general and suggests that any proof of the
arithmeticity conjecture should be adaptable into a proof of the modularity conjecture via the
use of the reciprocity relation (1.5).

The modularity and the volume conjectures likely don’t give the full picture on the sym-
metries of Jx o nor on its values at roots of unity. Indeed, in the case of K = 4; we can show
that Theorem 1 can be complemented by a second reciprocity formula relating X = % with
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X' = %, where the overline indicates the multiplicative inverse modulo the denominator. This
new reciprocity formula involves the “cotangent sum” (which appears also in the main term
in the variation, effective for other ranges of the parameters, of the reciprocity formula given
in Theorem 8 below)

k—1

co(h/k) : Z% (m) (hk) =1,k > 1,

=1

which is itself a quantum modular form [9] and has been widely studied due to its connection to
the Béez-Duarte-Nyman-Beurling criterion for the Riemann hypothesis (see, for example, [5,
3, 4, 43)).

Theorem 2. Let 1 < h < k with (h,k) =1. Then

(1.7) m = exp <V°;<fl): + &(h, k:)>,
where
w9 s =0k 3 e« o) ek ).

1<n<r

This may be compared with (1.3). Note that cs(41) = 0 (see e.g. [13]), so there is no
corresponding contribution on the right-hand side of (1.7).

In this case as well, the reciprocity formula (1.7) stems from a corresponding relation for
the g-Pochhammer symbol (see Theorem 7 below). Notice that, despite not giving a full
asymptotic expansion, (1.7) is completely uniform. In particular, it permits to be successfully
iterated for “typical” roots of unity, allowing us to deduce the following law of large numbers
for log J4, 0.

Theorem 3. For o € QN (0, 1) with simple continued fraction expansion

1
a=[0;b1,...,b] = [——
bot

where by,...,b._1 > 1 and b, > 1, and let

r(a):=r, Y(a) := Zbg.
/=1

There is a function €1 : Ry — Ry with e1(x) = 0 as x — 0, such that for all « € QN (0, 1),

(19) log i, ofe(0)) = (1+0ex (r(@)/2(0))) ) Y2 (@),

In particular, there is a function €3 : N — Ry with e3(N) — 0 as N — oo, such that for all
roots of unity q of order n < N, with at most eo(N)N? exceptions, one has

(1.10) log J1,,0(q) = (1+ O(e2(N))) 7173 VO;(M

as N — oo.

log nloglogn
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Equation (1.10) can be seen as a version of the volume conjecture (1.2) for typical roots
of unity. Indeed, the volume conjecture provides the asymptotic behavior of log J4, o at the
root of unity e(1/N), whereas our result gives the asymptotic for almost all roots of unity
of denominator < N. Notice then in both cases the leading constant involves the hyperbolic
volume Vol(4,), but the size of Jy, ¢ changes dramatically.

Equation (1.9) is stronger than (1.10), which will be readily deduced by [10], and gives an
asymptotic formula in most cases, e.g. when « is restricted to rational numbers with bounded
r(a) as the denominator of o goes to infinity. In particular, it generalises the volume conjec-
ture, which corresponds to the case &« = 1/N = [0; N]. It is very likely that the assumption
Y(a)/r(ar) — oo cannot be removed in general. Indeed, if for example «,, = F,_1/F, with
F,, the n-th Fibonacci number so that ¥(ay) = r(ay) +1 = n — 1, then Theorem 1.9 would
give log Ju, o(e(an)) ~ Cn, with C = %ﬁl) ~ 0.323..., whereas numerically it appears that
F(ay,) grows like C'n, for C" &~ 1.1 (cf. also [47, Figure 6]).

Our proof of Theorems 3 depends crucially on the positivity of the summands in (1.1)
which is missing if K # 4;. Nonetheless, we expect a similar result holds for all hyperbolic
knots. Also, since ¥(«) is distributed according to a stable law [10], we expect the same to
hold for log | Jk o(e(a))| for any hyperbolic knot K. Stable distributions are attractors for
independent and identically distributed random variables with variance non necessarily finite.
In our case, the relevant stable law is S1(£,1,0), with density function ¢ — fi(c;£,1,0) =

3= fR —ztc 6|t|+ 2“0g|t|dt [41]

Conjecture 2. Let K be a hyperbolic knot. There exists a constant D € R such that for
any interval [a,b] C R there holds

onl-fa v | (S0

b
= / fi(zx; g, 1,0)dx + o(1)

as N — oo, where Qy is the set of roots of unity of order < N. In particular, there exists a
function € : N — Ry with e(N) = 0 as N — oo, such that

log | 7c0(a)] = (1-+ O(e(N))) 2 o )

for all roots of unity q of order n < N, with at most e(N)N? exceptions.

12
— 7TgloglogN—DK> € [a,b]}’
(1.11)

lognloglogn

In [47] Zagier discusses the continuity with respect to the real topology of
Hy, (h/k) = log | T, o(e(h/k))| —1og |Tu, 0(e(k/h))]

and suggests that H, is discontinuous but C* from the right and the left at non-zero rationals?
and continuous but not differentiable as one approaches irrational numbers. Using Lebesgue’s
integrability condition and [10], one can easily show that this continuity condition together
with a suitable continuity condition at zero implies Conjecture 2.

Theorem 4. Let K be a hyperbolic knot. Assume the following:

3This continuity property at rationals follows from the modularity conjecture but only when approaching a
rational h/k = [0;b1,...,b,;] with fractions essentially of the form [0;b1,...,b,, N] with N — oo; and not, for
example, with [0;b1, ..., br, N1, N2] with both N1, N2 € N going to infinity.
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o Hi(h/k) := log|Jko(e(h/k))| —log|Tko(e(k/h))| has a limit as h/k tends to any
positive irrational number,
e Hi(h/k) — VOI(K)% — 3log(k/h) is uniformly bounded.

21
. . Ny — Hyi(1/t)—
Then Conjecture 2 holds with D = ! ;3/f§g2 + wvgf(K) 01 x( /ﬂ—t

being extended to R~q by taking limits over the rationals.

Vol (K)

2nt—dt, the function Hg

Remark 3. One could replace the second assumption in Theorem 4 with the assumption that
Hg(h/k) — VO%;K)% — 3log(k/h) is left and right continuous as h/k approaches any rational
number.

In the case of torus knots, the invariant Jk o can still be constructed and a formula of
type (1.3) is expected to hold with Vol(K) replaced by 0. In this situation, the works [6, 10]
log| Tk 0@l ocomes distributed according to a Gaussian law. In this case

Viogn

however, the conditions of Theorem 4 are not sufficient to conclude.
In view of Theorem 2, it is natural to wonder if also the function H}, (h/k) := log| Tk o(e(h/k))|—

log |74, o(e(k/h))| could be regular at irrational points (cf. Figures 1 and 2). We can answer
this question in the negative in the case of K = 4;.

would suggest that

Theorem 5. For all x € [0,1] we have limsup,_, .+ ,cq |Hj (y)| = +o0.

20 20
15 15
10 - 10 |
5+ 51
| | | Y — | | | Y —
0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

FIGURE 1. Global graph of Hy, and Hj

1.1. Outline of the paper and sketch of the proofs. Theorem 1 and Theorem 2 are both
based on two new relations for the g-Pochhammer symbol, given in Theorems 6 (cf. (1.5))
and 7. These relations are proved in Section 2 and both make use of the Abel-Plana sum-
mation formula [1, p.23], [40, p.408], [39, Chapter 8.3.1], which is a form of Euler-Maclaurin
summation with an explicit form of the error term. In the case of Theorem 6, one starts by
dividing the product in the definition (1.4) of (e(y«)), into appropriate intervals and congru-
ence classes. One then take the logarithm and apply the summation formula to the resulting
sum of the function log(1 — e(z)). As this function is close to a primitive of 7 cot(rz), which
has poles at integers, then through a residue computation one eventually arrives to the dual

object (e()),». In the case of Theorem 7, the reciprocity relation for the g-Pochhammer

symbol relates % and % In this case one starts by applying the simple relation % = —% +

ﬁ (mod 1). After some initial manipulations, one is lead to consider sums of the function
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FIGURE 2. Graph of Hy, and Hj around x = (0.485

log(1 — cot(w€) tan(n€z)) + cot(w€) tan(w€z) for some choices of £ € (0,1/2). This is again
performed using Abel-Plana summation formula followed by a careful analysis, with particular
care needed in the reassembling of various main terms.

In both our reciprocity relations for the g-Pochhammer symbol, we show that the error terms
extend to holomorphic functions of controlled growth. This is crucial for the applications to
the modularity relations for the Kashaev invariant for knots other than 4;.

Once the reciprocity formulas for the g-Pochhammer symbol are established, the proofs
of Theorem 1 and Theorem 2, given in Section 3 and 4 respectively, follow in similar ways.
We first split the sums in the definition of the Kashaev invariant into congruence classes
(and suitable intervals) and apply the reciprocity relations, reducing the problem to that of
estimating certain sums of exponentials of linear combinations of dilogarithms. These sums
are very similar to the ones one needs to consider for the the volume conjecture with only two
relevant differences: the variables of summation range over some convex space rather than
some larger cubic regions, and inside the exponential we have also some new error terms. For
all the knots we consider the first difference is easily treated since, as shown in Lemma 10,
the neglected terms are much smaller than the main terms (for other knots, such as 72, this
is no longer true and some of these neglected terms could be large, however we expect that
a treatment as in [36, Section 8] could be used to show that the sum of these terms is in
fact still small). In the case of Theorem 1, the second difference is also surpassed thanks
the holomorphicity of the error terms mentioned above, since the complex analytic methods
of [35, 37, 36], using Poisson summation and the saddle-point method, go through essentially
unchanged. In the case of Theorem 2, while we still have the holomorphicity of the error terms,
the fact that the errors are not o(1) forces us to use positivity to avoid possible cancellations
in the main terms, thus restricting the applicability to the 4; knot only.

Theorems 3, 4 and 5 are proved in Section 5 and all use the reciprocity formulas (1.3)
and (1.7) (the latter being more crucial) in conjunction with the recent work [10] on the
distribution of ¥(«). The difference between the reciprocity relations (1.3) and (1.7) can
be better understood in terms of the continued fraction expansions [0;b1, ..., by,] of h/k (for
simplicity we assume m odd). Indeed, (1.3) relates the values of Ji, 0 at e([0;01,...,b0n])
and at e([0; by, ...,by]) provided that by — oo for some ¢ € {1,...,m} with all the other b;
bounded, whereas (1.7) relates the values of Jy, o at e([0; b1, ..., bp]) and at e([0; b1, ..., bym—1])
provided that b,, — oo and that the other b; are not too large (for example log(b;) = o(by,) for
all i < m would suffice). Because of its uniformity, (1.7) can be successfully iterated removing
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each time the last convergent by, from Ju, o(e([0;b1,...,bn])). We keep doing so untill we
reach the last step for which we need to apply ( In thls process, we pick up a main term
.9

1.3).
of Yl - at each step and thus arrive to (1.9). Equation (1.10) then follows by the law of

2
large Eumbers for ¥(«) established in [10].

Theorem 4 follows a similar line, with the difference that in this case the previous argu-
ment and Conjecture 2 give that log J4, o(e()) — %E(a) can be well approximated by a
differentiable function. The theorem then follows invoking again [10].

Finally, Theorem 5 follows via a simple argument from Theorem 8, a version of Theorem 2

which becomes useful when there is a middle partial quotient which is extremely large.
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NOTATION

Given D C R and f : D — R, we write || f|lco,p := sup;cp |f(t)|. Also, given t € R, we
write ||¢]| := dist(¢,Z) and {t} := ¢ — [t], where [¢] is the integer part of ¢. Given a property
P, we define 1p (or 1(P)) to be 1 if the property P is satisfied and 0 otherwise.

We use throughout the Landau notation f = O(g) to mean that there is an implicit con-
stant C' > 0 such that |f| < C'g in the common domain of f and g. We also write f < g with
the same meaning. All the implicit constants of the error terms are understood to be uniform
in the various parameters unless otherwise indicated.

2. TWO RECIPROCITY FORMULAE FOR THE ¢-POCHHAMMER SYMBOL

2.1. Abel-Plana’s summation formula. Our argument is based on the Abel-Plana sum-
mation formula.
We denote by ~. the following integration contour.

6 >

2
—1e

Lemma 1. Let o, 3,8 € R witha < 3 < 3. Let f be an analytic function on a neighborhood
of U:={z€C|a<Re(z) <p}\{a,B}. Assume that the following holds :
(1) f(z) is holomorphic at B if 3 is an integer, and otherwise f(z) = o(|z—B|™1) as z — B
with z € U,



MODULARITY AND DISTRIBUTION OF QUANTUM KNOTS INVARIANTS 9

(2) f(x+iy) = o(e*™/y?) as y — +oo, uniformly in x € |a, ],
(3) f is integrable on (a, 3).

Then we have

2.1) w= [ it + .,
a<n<ﬁ
where
, fla+it)dt / fla—at)dt
=i -
Clf ) vt ( Z/E e(—a)e?mt — 1 e(a)e?mt — 1
Proof. The arguments in [39, Chapter 8, eq. (3.01)] are readily adapted. O

For k € Z>o, k # 1, let By(t) = By ({t}) where {t} is the fractional part of ¢ and By, is the
k-th Bernoulli polynomial, and let By(t) = Bi({t}) for t ¢ Z and By(n) = 0 for n € Z. We
require the following computation.

Lemma 2. For { € Z>o and v € [0,1), we have

> (—it)* (=)' Bra(v)
/0 tm (e(v)ezm - 1>dt 20 +1)

Moreover, for all w € C \ (—o0, 1], we have

/0 P glog(l —w )

with log being the principal determination.

Proof. The second claim is easy to prove by expanding the fraction as a power series in w,
first for w € (1, 00|, and then by analytic continuation. To show the first claim, first we note
that for £ = 0, v = 0, the fraction is a real number, and both sides evaluate to 0. We may
therefore assume that ¢ > 1 or v # 0. Then

14 . e(—nv
:CMVHHHO—NEZ(QH)>

n>1

by [21, eq. (3.411.6)]. We write Im ((—i)‘e(—nv)) = (=1)*cos(2mnv — Z(¢ + 1)), and
conclude by the Fourier expansion of Bernoulli polynomials [21, eq. (9.622.1)]. O

2.2. First reciprocity formula for the ¢-Pochhammer symbol. We fix the notations

q P
some (P, q) satisfying pp + qg = 1. Throughout the rest of Section 2.2, all error terms will be
allowed to depend on d and 7 (but not on N). We write h = Np — dq, k = Ngq + dp, so that

N Npcf h

=g Y@= Nqg+dp k

as follows. Let N,d > 1 be coprime. Let o = p/q in reduced form, and vy = (p 16) for
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and notice that this implies that (h, k) = 1 (since (h, k) divides pk — gh = d and (d, (h,k)) =
(p,q) = 1) and

h p d
2.2 -2 _
(22) =i
d k N h +Dp
(2.3) e L a3

kq  dq d k q
We also recall from [23, p.45] that the Dedekind sum s(«) is defined by

(2.4 o) =s(0) = S () where (@) = (o) - 4

n=1

For z € (C\R)U (0,1), we let
(2.5) f(z) :=log(1l —e(2))

taking the determination which is real on the positive imaginary axis. Notice that with this
choice we have

(2.6) f(z) =f(1—2)+mi(22 —1);

(2.7)  f(1+2) =f(»), if Im(z) > 0; f(1+ 2) — f(z) = 2mi, if Im(z) < 0;
(2.8)  f(z) =log(2sin(nz)) + im(z — 3) if z € (0, 1).

Moreover, if t € (0,1), expanding the logarithm in its Taylor series

(29) Zf(gq_t> Z Z tm/q mg/Q) _ Z e<_7nmt) _ f(l _ t)

g=1m=1 m=1

and the same formula holds for ¢t € (C\ R) U (0, 1) by analytic continuation. Finally, for A €
(C\R)U (0,1), we let

(2.10) /fl—tdt—

The function £ is holomorphic in (C\ R) U (0,1). Note that the dilogarithm Lis(z) :=
— Iz W du satisfies Lia(1) = 7r2/6, so that whenever Im(\) < 0,

0
/ f(1 —1t) dt— m_ 1 1 log(1 — z)% + Liz(1) = Li2(e(_)\)).

211 Jo(—y) z 2 2mi

Before stating the main theorem of this section, we define

fu—zt/-edt fu+zt/<dt>

(2.11) Hy(u,v) := lim < c(0) —1 o2

e—07t
for kK > 0,u € [0,1],v € R/Z. Notice that if v € Z we have
e — it it
(2.12) H,(u,v) —i/ (ef(“ itr) __flutitr) 1>dt,
0

(/U)eQﬂ”t -1 e(_v)e%rt _

whereas if v € Z and 0 < v < 1 then

(2.13) H,(u,0) = —*f / fu — zt:%t—_f(lu + Zm)dt,
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as can seen by isolating the contribution of the two circular paths, which are both 7i/2 times
the residue at 0.

Theorem 6. For 1 <r <k, letting L := |rd/k|, and A = {rd/k}, we have

(e(ya))r e(54) <m’(p+p) , Mo 1k k

T oz — €Xp —mis(p,q) — — + zlog = + — £(N) + & (N, d/k) ),
(e elz) g PO TRl g N SRR

where s is the Dedekind sum [23, p.45] and for A € [0,1), k > 0 and, for s € Z/qZ,

(2.14)
T2 —itr) F(E2 + itr)
Es(A k) = _H“(<p Z / < s e%f 1 e(—g”z_s;?’i - 1>dt’

ESE (mod q)

with (n) indicating the representative of n (mod q) in [1,q]. Moreover, for all s (mod q)
and k € (0,1], the function A\ — Es(\, k) is defined and holomorphic in the strip {Re(\) €
0,1)}, and

(2.15) Es(\, k) < |log|1 — \|| + log(1/k)
uniformly for Re(\) € [0,1) and Im(\) < 1.
Remark 4. If A € (0,1) or if s Z 0 (mod ¢) by (2.13) we can write £ as

1 2 — jtk) (=2 4 itk)
(216) gs(A,H) = §f< Z / < gp s eQﬂ-t 1 B e(_é)e%ﬂf o 1>dt
q

We remark that if (¢,d) =1 (i.e. (k, d) = 1), one cannot have {rd/k} = 0.

Remark 5. Notice that by (2.3) we have e(37)/e(57) - exp(—%ﬁ) = exp(—%(k% + £9).

In order to prove Theorem 6, we require some properties of the function Hy(u,v).
Lemma 3. We have :
(1) Ho(1 —u, —v) + H (u,v) = —27miBy (u) By (v) + ik Ba(v) for v ¢ Z,

(2) Hi(1,0) — H(0,0) = f({~v}) for v ¢ Z,
(3) Hy(1,0) = —1os) _ mi 4 =in

Proof. Let v ¢ Z. By (2.6), Lemma 2 and (2.8) we have

fl —u—itk) f(l —u+itk)

H.(1—u,— H,( dt

(1—u,—v) + /0 (e( v)e?™ —1  e(v)e?™ — 1 ) *
[ flu—itk) f(u +itk)

dt

i 0 <e (v)e2mt — 1 e(—v)e2m — 1
o0 (1 - Zu ym—2mitk (1 —2u)w + 27Tit/€
27t o 2wt _ dt
0 )e 1 e(v)e
—atdt
mi(1 — 2u) Im/ ezﬂt — 4Amik Im/ ) =1

= —27iB; (u)B (v )—f—ﬂ'mBg( )



12 S. BETTIN AND S. DRAPPEAU

Also, by (2.7), we have
H,(1,v) — Ha(0,v) = Z/ (ez(l —itk)  §(1 +itk) )dt+
0

v)e2 ™ —1  e(—v)e?™ —1
. f(—its) fitk)
* 2/0 (e(v)ezm -1 e(—v)e*t — 1>dt

—— [ et = 1o

Finally, by (2.6) and (2.7) as ¢ — 0" we have
[ —dte)dt [+ ite)de
t e e27rt 1 eQ7rt -1
flitk)dt f(itk)dt mdt  omitkdt
7627rt_1_z ’Teme_l_ 7627rt_1+ 0 627rt_1+0(1)'

The last two integrals can be easily computed and contribute — ’Z 4+ == log(%g) and 7”” respectively.
The contributions of the interval (g,00) in the first two integral cancel out Thus, since
f(itk) = log(2mtk) + o(1) as |t| — 0 with —7/2 < argt < 7/2, we have that the first two
integral contribute

et — 1 ;o)

where C; is the semicircle centered at the origin going from —ie to e counter-clockwise. We
then have

Z/ log(27tk)dt _ log(2mek)
C.

logk im  mik

A(LO) === =T+1

Lemma 4. Let 0 < k < 1,Re(u) € [0,1],v € R/Z with uw # 0,1, and A > 1. Then
H,.(u,v) = —log|u| + Oy, a(log(2/k))

uniformly in u, k with Im(u) < A.

Proof. The case v ¢ Z, Re(u) € [0, 1] is an easy consequence of the bound

(2.17) f(x +it) < [t| + [log|t]], (z€0,1],t € Ryp).

Now assume v € Z and Re(u) € (0,1/2]. We recall (2.13). By (2.17) the contribution to the
integral from the interval [24, 00) is O(log(2/k)). Next, we write

2A ; 2A  putits
—itK) — t dt
I(u, k) := 2/ Hlu = itr) f(u—i—z ) dt = m/ / (cot(mz) +1)dz
0 u—

27t 2nt 1"
e itk e 1

Note that cot(mz) = 1/(mz)+O(1) uniformly for Re(z) € [0,1/2], and that —=r— = 5 +O(1)

for ¢t > 0. Therefore,
2A utitk dz dt
I(ur) = o / / ZZ 4 0a(log2/x)).

itk

Changing variables z < |u|z and t «+ t|u|/k, we get

2AR/|u|l  pu’+it dz dt
Iu,n) = 5 / / Z S+ Oallon(2/m))
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where ]u’| = 1. For t < 1/2, we may bound the z-integral by O(t), while for t > 2, we
have [” Hitde — i 4 O(1/t). We deduce

it 2z

it R

w4z dt 1
—— + O4(log(2 — =1 .
Hwn) = o [ L + 0a(log(2/x)) — 3 loglu
The double integral here is bounded independently of «’, and so finally

I(u,) = Oa(108(2/)) — 3 Toglul.

We deduce H,(u,0) = —log|u| + Oa(log(2/k)) for 0 < Re(u) < 1/2, u # 0. On the other
hand, by computations similar to Lemma 3, we get

Hiy(1 = 0,0) + Hy(,0) = —f(u) = (20— 1) = =,
from which we get the claimed behaviour for all u. O

Proof of Theorem 6. For 0 < ¢ < L, let ry = ¢k/d. We split (e(yx)), as (e(yx)), = Hﬁ:o pPL,
where for 0 < /¢ < L,

e I () e T (o)

re<n<rpq1 re<n<r

First we focus on the case 0 < ¢ < L. By (2.2) and by periodicity we have

e T () I T (o2 tem)

re<n<rpy1 a= lrg a. ’Fg+1 a

I (o),

7'£+1 —a
- q
where g, is the representative of the class pa (mod ¢) contained in [£+ 1, ¢+ g], so that in the
last line each e( ) is computed at a number in (0,1). It follows that we can write

re(E 5 ()

a=1 7‘ a
rgqa< 4+1

Also, we notice that 0 < %2 — d%“ < 1 whenever % is an integer. We can then apply
Abel-Plana formula in the form of Lemma 1, whose conditions are easily verified. Note that

r[+1 a

Z/ %W>dt:LZ/e+lf(ggq)dt

:qu/ dt /fl—t

by (2.9). Therefore, by Lemma 1, Equation (2.11) and the definition of ry,

- 9o U a Lk . 9o {+1 a {41k
p e (S mun(f 40 ) - St (G - S -
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Now, q% = + 2 and 1 < g, — £ < q with pa = g, (mod q), thus by a change of variable and

multiplying this equahty over 0 </ < L, we get

=0 9=0
(218) = exp (Iz_:l (Hd/k (1, —%) - Hd/k (07 _(é—i—dl)N))
£=0
a—1 LN
=X (5 5) - (5.7 -5)))

Note that by (2.9) and (2.10)

r— a)/q a d(a—l—qt) k q L+ Ja ¢
Z/T kg )it = qdaz::/L f<§7§)dt

L— a)/q

where we recall that A = {rd/k}. Applying Lemma 1, we therefore find

(2.19) PE =exp k WLk i( (Q @_ﬂ)_H <g_>\ 9@—7“))
Multiplying the equalities (2.18) and (2.19) and recalling that (e(yx)), = HeL:o PE, we obtain
(e(yz)), = ex k‘ mk: +Z (g gp)i:H (g—)\ gﬁ—r>+
L) )r p qd 12 d d/k 2 d/k . g

+ Hayi(1,0) Z (Hd/k ) — Hgy (0, _eilv)))
1<(<L

By Lemma 3 (1) we have

> (4. 2) = (2)5(2) + 5 5 0n(2)

mid _ L’Ld
12kq 12k

= —WiS(p, Q) +
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since ZZ;(I) Ba(g/q) = qu and By(0) = 1/6. Also, by Lemma 3 (3) and (2) we have Hy;,(1,0) =

log(k/d iz Ly
> (Hap(1, =55 = Hypn(0,-45)) = >° f({eN/d}).
1<¢<L 1<¢<L
Thus,
k 1 k I g—A gp—r
(elr2))s = (/D) exp 200+ glon g =3 A (P2 ) +
— mis( )_li+wid+ﬂik
TS D) = T 1ok T 12¢d )

By (2.3) and (2.12) we then obtain the claimed result. The bound (2.15) follows by Lemma 4.
(|

2.3. Sums of cotangents. In this section and the next, we introduce the following extension
of the Landau O-symbol. Let D1 C Dy C C be two sets given by the context, and g : Dy — R
We will write

(2.20) f(2) = Of, p,.(9(2) (2 € D)

whenever, for any fixed choice of the parameters pi,po,..., there exists a function ¢ holo-
morphic on Dy, which satisfies ¢(z) = f(2) for z € Dy, and |¢(z)| < g(z) for z € Dy, the
implied constant being uniform in the parameters pi,po,.... The additional information is
the holomorphic behaviour in z, which may become useful when studying knots other than 4;.
However we stress that, in the present work, a later obstacle (possible cancellation of main
terms) imposes the restriction K = 44, and in this case, we do not require holomorphicity of
error terms.

Lemma 5. For0 < a < %, we have
(2.21) cot(ma) tan(rax) < x b<z<1
(2.22) z(1 — (2a)?) < cot(ra) tan(rax) < O.(x) O<z<ii-o

1 tan(z))

Proof. Assume 0 < z < (5 —¢). The function # — ==~ is increasing on (0, 55) for
all A > 0. It follows that ma < tan(max)/z < O-(«), while tan(raz)/x < tan(ra) if o < 1.
Thus, it suffices to show the bounds

1

N

1 - (20)% < macot(ma), tan(ma) cot(rar) < 1, acot(ma) < 1.
The second is trivial, while the third follows from elementary properties of cot. For the first,

we note that by the Taylor expansion of cot [21, 1.411.7], we have ¢(a) := =recot(ra) _

. a2
>_i>0 cja® for a € (0,1), where ¢; > 0. In particular ¢ is increasing, and we conclude

by (;5(%) =4. g
Lemma 6. Let ¢ > 0. For 0 < a < 3 —e and |Re(az)| < 1 — & we have
1 — cot(ma) tan(raz) = (1 — 2) (1 + O-(a?(|2[* + |2]))).
Proof. 1If |z] < 1/2, expanding in Taylor series we obtain
cot(ma) tan(raz) = cot(ra)maz(1 4+ O(a?|z]?)) = 2(1 + O(a?))(1 + O(a?|z]*))
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and the claimed result follows. If |z] > 1/2, we observe that the left hand side is equal to
cot(ma)(tan(ma) — tan(waz)) and so, since cot(ra)ma = 1 + O (a?), we are required to show
that

(2.23) = =1+ 0.(|az).

Ta(z — 1) az — 2

tan(mraz) — tan(ma) 1 /O‘Z dv
o cos(mv)

This follows for |Im(cz)| < 1 by the estimate cos(mv)2 = exp{O([v|*)} for |Re(v)| < i-¢

and |Im(v)| < 1. If [Im(ez)| > 1, then both the ratio —1— and the integral are bounded,

since |cos(mv)| > €™ ™)l 5o that (2.23) holds in this case as well. O

Lemma 7. Let « € R with 0 < |a] < 1/2, and
Da::{z€C|ﬁO{|<Re(z)<1}.

Then, taking the determination of the logarithm which is real on the real axis, the function
given by

(2.24) Yo (2) = log(1 — cot(mar) tan(maz)) + cot(mar) tan(maz)

s holomorphic on D,, where it satisfies

(2.25) Ya(2) < |27+ |2l log(1 = 2)|,  Im(a(2)) < [2I%

(2.26) Ya(z) =log(l —2) + 2z + OE((|Z’2 + ]2\3)\04\2) if la| < % — €.

Proof. We can assume o € (0,1/2), since 1, is even in a. For [Re(2)| < &, let ga(z) =

cot(ra) tan(mwaz). Since, for z = x + iy, we have

tan(max)(1 — tanh?(may)) + i tanh(ray)(1 + tan?(rax))
1 + tan?(rax) tanh? (ray)

(2.27) tan(maz) =

I

we deduce, for x,y real and |z| <1,

(2.28) |Re(ga(2))| < |cot(ra) tan(max)| < |z|.

by Lemma 5. Moreover, if x < 0, then Re(gq(2)) < 0. Using (2.27) and the lower bound (2.22),
we obtain |Re(gq(z))| > cot(ma) tan(mwa|z|) >¢ |z|. Thus, there exists ¢. > 0 such that
(2.29) Re(l — go(2)) > min(1 — z,1 — c.x).

In particular, the function z — 14 (2) = log(1 — g (2)) + ga(2) is well-defined and holomorphic
in D, and moreover Im(log(1 — go(2))) < 7/2.

We observe that if ay — oo (and so z — 00), then go(z) ~ %icot(ma) uniformly in z,
so that ¥,(z) < 1/a < |z] and (2.25)-(2.26) follow trivially. Thus, we can assume ay < 1.
Also, by (2.27) and Lemma 5 we obtain

(2.30) | Im(ga(2))] < |C0t(7ra)|(| tan(mza)| + |tanh(ray)|) < |z| + |y| < |z|.

In particular, recalling (2.28), we have g,(z) < |z|.
Now, assume a < % —e. By (2.27), and since ay < 1, we have

[Im(ga(2))| = | cot(ma) tanh(ray)| > |y
By (2.29), it then follows that |1 — go(2)| >, min(1 — 2,1 — c.z) + |y| >. |1 — 2|, and so
[ua(2)] > 1 for us(z) = %“Z(z). Thus,
log(ta(2)) = ta(2) = 1+ Oc(|ua(2) = 1°) = 2z = ga(2) + 2(ua(2) = 1) + Oc(|ua(z) — 1?)
and so (2.26) follows since uq(2) — 1 = O.(a?(|z|? + |2])) by Lemma 6 (and since az < 1).
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We now move to (2.25). Since gq(z) < |z|, then if |z| < § with § > 0 sufficiently small,
then by Taylor expansion one trivially has that (2.25) holds for |z| < §. By the assumption
lay| < 1 we have that (2.26) implies (2.25) for 2| > 6 and a < § — . It follows that we can
also assume a > 1 (and so also |z| < a|z| < 1).

Finally, we observe that under the above assumptions we have that (2.27) implies also

Re(l — ga(2)) > 1 —z(1 — tanh?®(ray)) > 1 -z + > > |1 — 2|? (x >0),

which inequality Re(1 — go(2)) > |1 — z|? is also trivially true if 2 < 0. The bound (2.26)
follows since go(z) < |z|, Im(log(1 — gu(2))) < 7/2, and log(1 — w) + w < min{|w|?, |w| +
log|1l — wl|} for w € C N\ [1, 00). O

Lemma 8. Let v < 6 and let a € N with v < a Let g(z) be holomorphic on a

-1 <y
5 < 0.
neighborhood of v < Re(z) < 0, where it satisfies |g(z)| < Ci|z|™+ Cy for some m,Cq,Coy > 0.
Then, with z = r, we have

> 9(n) = Of o (Ci((la] + =)™+ +1) + Cal|al + |2] + 1)), (r€Znla,d))

using the notation (2.20) with Dy = {z, v+ % < Re(z) < d}.

Proof. We apply Lemma 1 with a =a — %, B=r— %, we find

r—1 _1 1 . 1 . 1 . 1 .
p [ gla—5+it) —gla—5 —it) —g(r — 5 +it) + g(r — 5 —it)
> g(n) = / g(z)dz — l/o 2 ! o 2 2 dt,

T
Denoting by ¢(r)—g(r) the right hand side, we immediately see that ¢ extend to a holomorphic
function in v + 3 < Re(z) < § and that ¢(z) < C1((Ja] + |2[)™"! + 1) + Co(lal + |2 + 1) in
this strip. ]

Lemma 9. Let (h,k) = 1,3 < h < k and r9 € Z/hZ. Then for all 0 < r < k with r =
ro (mod h), writing z = r/k, we have

> (1o (1 cot (T tan (1) ) <ot (25 e (1)

mi(2? — 2 T
= h<(2) + £(2) + 12 + zlog(27rz/e)>

+ O g (1 + log(1 = 2)| + [2[) (1 + k/h? + log(k/h))),

using the notation (2.20) with Dy = {z € C,0 < Re(z) < 1}. Moreover, the error term |log(1 — z)]
can be omitted if z € [0,1 — (1 — {Togk})].

Proof. In this proof, the notation O will stand for OF, ,, ., relative to the set Dy = {z, Re(z) €
[0,1)}. We divide the sum into congruence classes n = ¢k (mod h), |¢| < h/2, where the possi-
ble term ¢ = h/2 is excluded since the summand is zero in this case. With the notation (2.24),
we write the sum to be computed as

>oosw, s0= Y w():

0<|f|<h/2 O0<n<r
n=(k (mod h)
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We consider each ¢ separately. We first consider ¢ # 1. Let 0, := {Lhkg}, and

—kl 1 r—k{ 1 r—k¢ 1
O‘f_[hw_z’ W)'—{ n J+2— pota o

Then by Lemma 1, we have

SO = Y (LK) =1+ Clar) = C(Be(r)),

ap<m<Be(r)
where
Be(r) > Tm(¢hy/n (1 + L5 (y + it)))dt
I:= / Gon(L+ )dt,  Cly) = 2/0 / emki 1 '
oy

Note that B(r) = “5" + Be(ro), the right-hand side of which depends holomorphically on 7.

Splitting the integral as fi;/éf)f:/h + fo;kg/h + f(ﬁzﬂ(gk/h with z = r/k, we get

k z 0 %7&
T=g [ eantrodes [ vgnaee [* v+ e
0 Oé[‘f’f 0
_ h/o un(t/0dt + O(EL),

by Lemma 7.
Next, we have

1 00 z h/1 th dt
C(MT))_zigi/o von (5 + (3 = 0) £ i) 1

This also defines a holomorphic function of z for Re(z) € [0,1), by Lemma 7. Since ¢ # 1, it
2
is bounded by O(ZL}L).

02
Grouping the above discussion, we deduce for £ # 1 the estimate
k [ 1+ |z
(2.31) S0) = h/ Yo/ (t/0)dt + (9( €2| | )
0

Consider now the case £ = 1. We recall the notation d, from above. Since h > 3, by (2.26)
and Lemma 8 we have

(2.32) S =0 )+ Y (% +log (1 - %))
n=k (mod h)

Let a € {1,...,h} satisfy a = k (mod h), g = k;ha and g = | 52| = 5% — 6. In the sum, the

integer m = ]“_T" runs through Z N [q — g, ¢|, so that

Z log (1_%) = (g+1)log (Z)—Hogm

0<n<r
= /0g+1 (log (%) + IF‘,(q—F 1 —v))dv

n=k (mod h)
g+l h 1 o {s}ds
= log (—(¢g+1— - = d
/0 (Og(k(q “)) g+1—v /0 (5+q+1—v)2) !
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by Stirling’s formula [42, Theorem I1.0.12]. First, setting ¢ = m we have

g+1 h k 27761
/ ]Og((q+1_v)>dvz/logl—tdt+ / / logl—t)d
0 k h

_k / log(1 —t)dt + O([log(1 — 2)| + log(1 + k/h)).

B Jo
Secondly, we have
gt du h h—a
/0 o R (1 i 251) —log (1 + T> = O(Jlog(1 — 2)| + log(1 + k/h)).

Note that in both cases, as well as in the following computations, the error term [log(1 — z)|
can be omitted if z € [0,1 — %(1 — 01)] (which is the case when z = r/k). Finally,

/9+1 /OO {s}ds do — /Oo {s}(g+ 1)ds
0 0o (s+qg+1-v)? o (8+qg—g)(s+q+1)
/ 1+ 5224
{} L E

ds
El—z)+01)(s+ 52 +1)
= O(log(1 + k:/h) +log(1 + |2])).
We turn to the contribution of the term n/k in (2.32). By a direct computation, we find
n k [* “ “
3 k—h/ bt = 25— 61) + 1 — 2(2+61)(2 +1—8) = O(2] + 1).
0<n<r 0
n=k (mod h)
On the other hand, we note that by (2.26),

14 |z*

/Oz(t—l—log(l—t))dt:/()zwl/h(t)dt—i—(?( . )

Grouping the above estimates, we deduce

(2.33) S(1) = :/0 Yip()dt + O((1+ £ +log(k/h)) (1 + |2 + [log(1 — 2)])).

We now sum the estimates (2.31), (2.33) over ¢, getting

>, s / > bynt/0Odt + O((1 + #5 +log(k/h))(1 + |2]" + [log(1 — 2)|)).
0<|l|<h/2 0<|t|<h?/3
The main term is evaluated by (2.26) (for |¢| < h/3) and (2.25) (for h/3 < |¢| < h/2) as

> / Yen(t/Odt =y </Oz(log(1 —t/0) +t/£)dt+0(1‘;f‘4)> +o<1+h’23)

0<|¢|<h/2 0<|¢|<h/3

- ¥ /log —2/2)dt + O h")

0<t<h/3

—Z/ logl—t2/€2)dt+(’)( +h| &l ).

£>0
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For —1 <t <1 we have [[p2,(1 —t2/¢?) = % Moreover, for 0 < z < 1 we have

z z ] 02 o '
/ log(2sin(nt))dt = / log(—ie™ (1 — e 2™))dt = 7”('222) + / log(1 — e~ ™) d¢
0 0 0

_ mi(z? - z) )
= 5 + £(2) + L
by (2.10). Collecting the previous estimates, we conclude that

mi(2? — 2
Z S() = Z(H + £(2) + 24 zlog(sz/e))

2 12
0<|l|<h/2
k
+ o((1 tost log(k:/h)> (1+|2* + [log(1 — z)\)),

as claimed. 0

2.4. Second reciprocity formula for the g-Pochhammer symbol.

Theorem 7. Let 4 < h < k with (h,k) =1 and rg € {0,...,h —1}. Let 0 < r < k with
r=rp (mod h). We have

(= /K))r o) i min
CEDES) —ew (G20 -7 5 ot (v) 74 |7 (5)

1<n<rg

+ Oh ko ((1 + |2|* + [log(z(1 — z))’)<1 +log (%) n }Z)))

where z = r/k, using the notation (2.20) with domain Dy = {z # 0,Re(z) € [0,1)}. Moreover,
the term |log(z(1 — z))| can be omitted if z € [%2,1 — 2(1 — {0k k})]

Proof. In this proof, the notation O will stand for OF, k. With respect to the domain Dy =
{z # 0,Re(2) € [0,1)}. Applying the identity £ + % = ;L (mod 1) we have

ey =TT (1-e(5 - 55)) =7 H (1( i)

n=1
where P := Hwh (1 —e(—%)). Note that for z,y € C, we have

l—e(ly—2a)= 1(1 +e(—2))(1 — e(y)) (1 — tan(rz) cot(my)).

2
Thus, since Hz;i(l - e("%)) = h, we have
(e

(2.34) (<B/K))r = (e(B/h)rg H/M P M- £,
where
T l4e(—5) k

<

i
—
—-

; L=

<1 — cot (%nk) tan (ZZ))

>3

=4
—

>3

=
—_
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First, we examine M. We have
M = exp (— ZT:T;LZ: +Zr:log (cos (ZZ)))
=1

We split the second sum as 1<, <, — > 1 <p<r—po, pjpn- For any € > 0 we have log(cos(7z)) <
(|w|) for |Re(w/(hk))| < (1 —¢€)/2 and so applying Lemma 8 we obtain, with z = r/k,

m’n k mi(r? —|—r)
2.35 - -5 1) - _ I rr 1
23 M=o (-3 SR + g0l ) ) = e (- TG 4 o + 1)
h?n
We then move to P = exp(log 73) Taking the determination which is real on the negative
imaginary axis, we have that log(15 3 (wa)) is holomorphic and O.(|w|) for |Re(w)| < 1 — e.

Thus, by Lemma 8,

Poon( Y wg(emt)+ o0+ )

1<n<(r—ro)/h
211

:mpo%FO+T;m>+T;mbgk—% OWP+U>

Write log(I'(14+w)) = (w+1/2) log(w+1) —w+&; (w) with £ holomorphic and O(|log(w+1)|)
on Re(w) > —1. Abbreviating temporarily ¢ = 5", it follows that

1 271 k
P =exp <<2 + q) log(1 + q) + qlog o +&(1+q)+ ﬁO(MQ + 1))

(2.36) =exp <2 log (2227") — [%J log h + O((1 + log(k/h) + ,Tkg)(l + 22 + llog(z)])>,

since

(5 ) 1ow (=) + e (14 22) +

2mih kz+h—ro\
— M log T + £ ) = O(J2] + [log(2)]).

Note that the terms |log(z)| can be omitted if z € [%2,1).

It remains to study £. By Lemma 5 we have |tan(37) cot(m5 )\ < 1 and so we can write
L = exp(log £) with the principal determination. First, we cons1der

> an(r)eo () = ¥ T () + X a(p)en (),

1<n<r Sn< AYOS
hin hin f

where E(z) := tan(rz) —mz. Clearly, £3(2) is holomorphic and O¢(|z|?) in | Re(2)| < (1—¢)/2.
Thus, dividing in congruence classes modulo h, the second summand above is

o1+ SELANR(IRDLL 10}
=1
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Also
S ()R S (RS 5w ()
_h?n_r SNsTro n<h
(- )
since En pcot(my) = 0. Thus, by Lemma 9 we have
o (U s+ s ()
R TN

+O((1+}’;+10g(k;/h))(1+|zy4+\log(1—Z)|))>,

where the error term [log(1 — z)| can be omitted if z € [0,1 — %(1 - {%})] The theorem
then follows by (2.34), (2.35) and (2.36), since 51 = O(1). O

3. PROOF OF THEOREM 1

Throughout the rest of the section, K will denote any hyperbolic knot K # 72 with at most
7 crossings.

We will use the same notation as in Section 2.2. In particular, all error terms will be allowed
to depend on d and .

For n € N>p and a = % € Q, with (h, k) =1, we let

(3.1) [a], == k72 (e(@)),
where n’ =n (mod k), 0 < n’ < k.
There exist m,my,...,mq € N, ¢,v € Z and linear functions ¢; ;(r) = > " | k; j(u)r, with

ki j € {0,£1} such that
o T e o T2 [2)y
(3.2) Jk (x) = denom(z)" e(vx) Zn - —
0<T‘1,-Zﬂ“m<k T2 @l ;) TT520 (2],

= denom(z)" e(vr) Z* 1157 (M&,j(r))’

0<ry,...rm<k

where Z* indicates that the sum is restricted to the terms with 0 < 4; ;(r) < k and, here and
what follows, we put

H}n:ll <15 H?Zl 22,5
H;‘nzgl 23,3 H;n=41 245

The Kashaev invariants for the knots under consideration has been given for example in [35,
37, 36]. In all these cases, m + 3 coincides with the number of crossings of K, moreover

g (2) =

3—m
L:T, mi +mo +m3g+my =3Im—1,



and the values of m;, (; j are as in Figure 3, where we used the formula [a],[@]qenom(a)—n = 1
to write the Kashaev invariants given in [35, 37, 36] as in (3.2). Finally, different variants of
the definition of the Kashaev invariant lead to slightly different values for v (cf. [35, p.677
footnote 4] and [45]). In the context of the modularity conjecture it is natural to always take
v = 0, which we shall do in the following. This choice will lead to the expression (1.3) for
the reciprocity formula, as conjectured by Zagier. Using (2.3) one can then easily deduce the
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suitable modified reciprocity formula corresponding to other choices of v.

K| (mj)icj<a | bij =Lij(r)
41 (1,1,0,0) | lyy=4Log =7
lop=711+12, {31 =71+T12
52| (0,1,2.2) lso="ly1 =19, lyp=Tm
lon =11+12, flap=1r1+12+73
61 (O, 2,3, 3) 53,1 =17, 53’2 =1y +ro, 53,3 =71 +71ro+173
lip =11, Llaoa=1r2, lyz=r13
bip=r1, lig=ro+r3 Lla1=11
6 2,1,2,3 ’ ’ ’ ’ ’
2| ( ) l31="Ly41 =19, {l32=r3, Lyog=11—r9, Li3=12+r3
big=1"lo1 =19, (31=1"031=r11
65| (1,1,3,3 1=b21 =72, 31 =1,
3| ( ) l30=1"L40 =13, {33=1r0—713, L43=12—171
big="la1 =19, Llip=1r2—11
73| (2,3,3,3) | lop=1"031=r0—13, lozg=Ul30=19—13—74, Ll33=11
lyy=1r9—11, Lyo=r3, Li3=14
big=Ll1=r1+1r, lig=r2+73
U3 =1L =13+T14
7a| (3,0,4.4) l31 =11, {32 ="»33="r2
l33="L44=13, [l34=1y4
bip=1"la1 =13 Llip=1"L41=1r3—714
boo=1"l31 =19, [l32=1"»10=11, (33=14
75 (27 2, 3, 4) 6473 _ r277 Tl ) } )
lyg =13 — 12
b1 =10y =12, lia=r3+714
Te | (2,1,4,4) | Loy =ro+ry, Ll31="Lia=11, Ll32=12—11
l33 =1L43 =13, [l34=">14="4.
bip=ri+ry, lo=r3+714
7 2,1,4,4 ’ ’ :
7 ( ) fz’l =179+ 13, V] S {1,2,3,4}, 63,]' = £4’j =7T;

We divide the sum over 7 restricting the r; into congruence classes modulo ¢ and in intervals

of length k/d:

(3.3)

FIGURE 3. Parameters of the Kashaev invariants

3—m

Jk (yz) = denom(yz) 2

> Y Ix(v,x:L,s)

Le{0,...,d—1}™ s (mod q)
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where, for L = (L1, ..., L) € Z%,, s = (s1,...,5m) € (Z/qZ)™ we write

jK(va;Lﬂs) = Z HK([’YJ“]ZZJ(T))
0<ry,eeyrm <k,
ri=s; (mod q), Vi

By Theorem 6 and Remark 5, we have

vzl = [#] rasw) Alp, ) @r ({rd/k}),
where for s € Z/qZ, A € [0,1), we define

Alp,q) = e( - S(péq) - é)

(3.4) B, () = exp ((Z(sm + %) + ;;ii} + &, d//-c)).

It follows that

*

jK('Yax;L,S) = A(p’ q)m1+m4—m2—m3 Z HK([HJ] Lfi,j(T)d/kJ(I)Ki,j(s)<{£i,j("°)d/k}))-
0<ry,....,rm<k,
lrid/k|=L;, Vi
ri=s; (mod q), Vi
Now, let \; = {r;d/k}. The next lemma shows that the contribution of the terms for which
0;;(X) ¢ [0,1) for some 4, j is negligible.

Lemma 10. There exists 6 > 0 such that
’HK(exp (2(&](}\))))‘ < exp (

whenever ¢; j(X) ¢ [0,1) for some i,j.

Voi(K) B 5)

We postpone the proof of Lemma 10 to Section 3.1. Since [z], < 1 for 0 < r < d,
applying (2.15) and the above lemma we obtain

T (v, x; L, 8) = A(p, q)™ ™3 e ([l , 1)) T (v, 25 Ly 8) +

(3.5) —|—O<k0(1)exp <<V0;(7TK) B 5);&))
where
TitnwiLos)= S (@ ({ls(r)d/kD).

0<ry,..,rm <k,
Lrid/k]=L;, Vi
r;=s; (mod q), Vi,
ém()\)e[o,l) V’i,j
We notice that the condition 0 < ¢; j(r) < k, which is implicit in the summation Y ", can
be written as 0 < {; ;(L) 4+ ¢; j(A) < d and so, since ¢; j(A) € [0,1), it is equivalent to
0 </¥;;(L) < d. Assuming that L satisfies this condition, J} (v, z; L, s) can be then rewritten
as

‘-7[*((7’ z; L, 8) = Z 11575 ((I)Zi,j(s)({fi,j (T)d/k}))
0<r;—L;k/d<k/d V1,
ri=s; (mod q), Vi,
0<t; ;(r—kL/d)<k/d Vi,j
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where we used {¢; j(r)d/k} = {; j(rd/k — L) to rewrite the summation conditions. This sum
is essentially the same sum which arises when taking d = 1, v = (% ), i.e. the conjugate
of the sum arising in the volume conjecture. The only difference in the general case is that
r is summed over a box with sides of length k/d and along arithmetic progressions modulo
q. For fixed d, g these restrictions are negligible from the analytical point of view, and the
works [35, 37, 36] can be adapted. For z € (C~ R)U (0, 1), define

1(2) :==§(2),  a(2) =1 = 2), ¥3(2) :=—f(2), ¢a(z) = —f(1 - 2),

and let g = (u1,...,um) be the solution described in [35, §5.1], [37, §3.3, §4.3, §5.3] [36,
§3.3, §4.3, §5.3, §6.3, §7.3] (conjugated to agree with our definition of Jx) to the system of
equations

4 mq

(3.6) YO k(w1 = lij(p) =0, Vue{l,...,m}

i=1 j=1
satisfying 0 < Re({; ;(p)) < 1 for all 4, j. We write

v; = exp(;), Vz-l/q = exp(pi/q)-

It is known [35, 37, 36] that Q(v) = Fk, the trace field of K. It will be useful to denote
Frq = Q(e(1/q),v), Frq = Q(e(1/q),v"7).

The following lemma will be proven in Section 3.2.
Lemma 11. Let L € {0,...,d —1}", s € (Z/qZ)™ with 0 < ¢; j(L) < d for alli,j. Then for
all N > 0, we have
N

./ 1 2mik\m/2 Vol(K) —ics(K) k 2mwiqd\n gd\ N+1
i = g (B (SISO b ) (S, (0 o
where 0 # D € Fi, wso =1 and

4 m; q — 4 e
B 06 =Y Cls) Cugleyi= o (I (4l
i=1 j=1 g9=1

where By s the 1-st Bernoulli polynomial. Moreover, for all n > 1, ws, € FK,], and for
all 0 € Gal(Fk 4/ FKk.,q), we have 0(wspn) = Ws—pun if 0 is given by

(3.8) o) = v e(u;i/q)  (1<i<m)
for some uy, ..., upm € Z.

Applying Lemma 11, by (3.3) and (3.5), and recalling the condition 0 < ¢; ;(L) < d for
all 4, j, we obtain

Tk (yz) _ Alp,q)™Fm™m2mms kN g /2 Vol(K) —ics(K) k
Tn@) oI (3) elmmi®ya e (S22 222 )

S et (Len () +0(1)").
n=0

s (mod q)

for all N > 0.
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Now, 6¢s(p, ¢q) is an integer, so A(p, q) is a 24q root of unity, and letting v = —mq —myg +
ma + m3, we have vg =m + 1 (mod 2). We deduce

e(VTK s(p,q) + %) i€<?3(p7 q) + ;)W,

where w € {1,4} is independent of « and v is as in the following table.

K [41]51|61]| 62 |63 | 73| 74 75 76 77
vg | 0| 1]2|-2]0|1|-3|]—-1]-1|-1

FIGURE 4. Values of vg

Keeping track of the factor ¢ implicit in 2% = —i= d , the proof of Theorem 1 follows from

the following lemma, upon possibly multiplying the value of ® by —1.
Lemma 12. There exists 0 # U € Fi such that defining

S, = U2 Z exp(C(s))ws n, n € N>,
s (mod q)

we have S} € Fi 4 for all n > 0. If moreover S, # 0, then for all n’ > 0 we have S18, €
Frq.

Note that in Theorems 2.2 and 2.6 of [15], similar computations are carried out for coeffi-
cients of power series constructed by a different process, which are conjectured to match those
in the modularity conjecture.

Proof. For z € (—1,1) we have B;({z)) = 2 — § + 1,<0. Thus,

Cugle) = 3y (L0 a0 (o)~ s

g=1 1 q
(i,5(8))
’ {gp) — ti (1) (gp) = ij(R)\ g _ (Lij(s)) 1
= 2w )+QZW( T )
(4i,5(s) .
_ 1 ¢i<<gp> )*Zd’z( gp) — Lij(p ))Q—%@ ﬁ,g(u))(%”q( )>+;
9=
where in the last equality we used (2.9). Then
(3.9) C;.i(s) = D; .(3)4_11){ (1 — ¢ (H))(M—F})
bJ J q " i 1,] q 5)
with
(li,5(s)) (&) — (0 (s
(3.10) Z 77/1@( gp) — bij(p >> + (1 — ”<N))£w( ) q(em( ))7

(3.11) D= ;@u( ; )g.
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It follows that

(3.12)
4 my; 4 my
Z exp(C(s))ws,n = exp < Z Z ) Z exp (Z Z Dm(s))wsm
s (mod q) i=1 j=1 s (mod q) i=1 j=1
where we used that, by (3.6),
4 m; f 4 m;
B =233 i1~ tis(w)( ’Jq( £3) =301~ b))
=1 j=1 =1 j=1

is independent of s. In particular, writing U = exp(E), by the definition of 1);, (3.10)-(3.11)
and Lemma 11, we have S{ € Fg,. The extension F ,/Fi , is Galois and Gal(Ff ,/Fr )
consists of automorphisms of the form (3.8). Thus, it suffices to show that S is invariant
under any such automorphism o. Now, by Lemma 11,

4 my

a( = exp( ZZD'U ) Z exp (ZZD%(S))Q)S,M,“
=1 j=1 s (mod q) i=1 j=1

where

LD lap— i) — by () £is(s) = (tig(s))
(313) DY) = Do v F2) i1 = b)) 25 RS

g=1

zq:da( gp — lij(u )> Cij(ph ))g.
The same computation as above gives
(3.14) Dgy() + 207, — i1 — by ) (2 4 1) = (o)
where

NN - (g —Li;j(s)) {gp — tij(uw)) — li ()

(3.15) C7(s) '—ZBl( qa )w( j : j )

g=1
so that one finds
o(st) =ep(-aE/2( X e (Do) Jorun )
s (mod q) =1 j=1
By the change of variables g — g + P¢; j(u) one obtains C7;(s) = C(s — pu), so that, after

the change of variables s — s + pu, one obtains o(Sp) = Si, and so S} € Fg 4, as desired.
Now, assume S,y # 0. By (3.12) we have

4 my, —1 4 m;
S1S, = ( Z exp (Z ZDi,j(s))ws’n> Z exp (Z ZDLJ(S))(")S,W'
s (mod q) i=1 j=1 s (mod q) i=1 j=1

and so S; 'S, € F K,q- Moreover, given an automorphism o as in (3.8), one shows as above
that (S, 1S,) = S, 1S, and so S; 15, € Fr 4. O
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Remark 6. The constant term in Theorem 1 can be worked out from the arguments above
as an explicit product of algebraic numbers. In the case K = 41, we obtain

o (a)D4170(oz) = 8, P00
4 = Z\f
i{? - (le 29) S ool
r=1g=1

where wy = 1 —e(ga — &). In the case of K = 5y, let 7 ~ 0.665 + 0.562i solveT —T+1—O

and let py ~ 0.224+40.045i and ji2 ~ 0.164—0.067i be such that e(u1) = 72 and e(u2) = 72 +7.
Then

Cs, (o) D5, () = e( (2 )) 1/25—1/2A1/c

52,0
05, = 37 — 272 ,
C
1/C o C“I’l _ -2
A52,a_e(ul %2 )(gl:[lwg g/clgg g/c>><
y E: M1T1+4?)++QTL+ L 49 fi —1 fiﬁiQ
5 ~ Tl 2r) Wy g )
ri,re=1 g=1 g=1

where wy = 1 —e(—ga + £2) and ¥, = 1 — e(ga — #2), and the logarithms are taken with
principal determination. Note that F5, = Q(7) (see [35]).

3.1. Proof of Lemma 10. For A € R, let A denote the Lobachevsky function

AW = —Re (V) = - /0 M og(@sin(m))dr.

where the last equality follows by (2.8) and (2.10). Note that A is 1-periodic and odd. We
need to bound

2 my 4 my
= =D AL+ DD A (N)
i=1j=1 i=3 j=1

for all X € [0,1)™ such that ¢; j(X) € [0, 1) for some (7,7). Define
M = A(1/6) € [0.16,0.162].

We will require the following simple inequalities: for «, 5 € [0, 1],

(3.16) IA(a)| < M,

(3.17) Aa) <0, (a>13),
(3.18) 2(A(a) + A(B)) — Ala+ B) < 4A(2) < 0.59, (a+B<1),
(3.19) 2(A(a) + A(B)) — Ala+B) < M, (a+B2>1).
(3.20) 2(A(a) + A(B)) — Ala + B) < 0.45, (a+B<1, and a > ).
(3.21) Aa) — A(B) <0.23, (a<l<p, and 8 < 2a),
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The bound (3.21) is proved by optimizing at 8 = mln( ,2a). The maximum is achieved at
a point a where p = sin(ma) solves p(1 — p?) = 8. Similarly, the bound (3.20) is proved by
maximizing at o for which p = cos(wa) solves p = 2(1 — p?).

We consider the situation case by case; in each case, we work under the extra assumption
that for some (,7), we have ¢; ;(X) € [0, 1).

e Case K = 59. We have
Wi (A) = A(A1) + 2A(A2).

A bound of 2M < VOI(K) — 0.12 is enough. Assume Ay + Ao > 1. Then \; > = for
some i € {1,2}, so that using (3.16) and (3.17), we get

Wi(A) < 2M
e Case K = 61. We have
WK()\) = 2A()\1) + A(/\Q) -+ A()\3)

A bound of 3M < VOI( ) _0.01 is enough. Thus, by (3.17), we may assume \; < %
for all i € {1,2,3}. Assume A1+ A2 + A3 > 1. Then by concavity of A on [0, %],
we have Wi (A) < 2A(A1) + 2A(2(A2 + A3)). The bound (3.21) can then be applied
with (o, 8) = (3(A2 + A3),1 — A1), and yields Wx(X) < 0.46 < 3M. We find in all
cases
Wk (X) < 3M.
e Case K = 62. We have
Wir(A) = —2A(A1) + 28(N) + A(A3) + A(A1 — Ao).

A bound of 4M < %ﬁf) — 0.05 is enough. Because of (3.17), we may assume \; > 3
and Ay < % Then the case A1 < Ay is excluded, and we may assume Ay + Az > 1.
Then A3 > 1, and so by (3.17) and (3.18) (with (o, 8) = (1 — A1, A2)), we ob-
tain Wx (X) < 4A(3). We obtain in all cases

Wi (X) < 4M.
e Case K = 63. We have
WK()\) = —2A()\2) + 2A(/\1) + 2A()\3) + A()\Q — Ag) + A(}\Q — )\1)

A bound of 5M < %&K) — 0.09 is enough. By symmetry, we may assume Ao < A3.
Suppose first Ao > 1. Then Ao — A3 € [—3, 0], so by (3.17), A(A2—A3) < 0 and A(A3) <
0. We deduce Wi (X) < 5M by (3.16). Suppose on the other hand that Ay < %. If A3 >
L then by (3.18)-(3.19) with (a, 8) = (A1, 1— ), we find Wi (A) < 4A(3)+M < 5M.
If, finally, A3 < %, then by (3.17) we have A(Xs — A3) < 0, so that Wi (X) < 5M. In
all cases, we find

Wik(X) < 5M.

e Case K = 73. We have
Wik (A) = =2A(A2) + A(A1) + A(A3) + A(Aa).
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A bound of 4M < VOl( ) O 08 is enough. Thus, by (3.17), we may assume \; < % for
all j € {1,3,4}, and )\2 > 2. Assume that Ao < A3+ A\4. By (3.17) and the concavity
of A on [0, %], we have

Wi (A) < =2A(A2) + A(A3) + A(Ag) + M < 2(A<)\3 ; A

) =A%) + M.

By (3.21) with 8 = (A3 + A4), we obtain Wi (X) < 0.46 + M < 4M. We deduce that
in all cases,
Wi (X) < 4M.
e Case K = 74. We have

Wi (A) = —=A(Ag + Ag) + A1) + 2A(Aa) 4+ 2A(A3) + A(Ay).

A bound of 5M < %Srm — 0.01 is enough. By (3.17) and (3.16) we may assume
without loss of generality Ao, A3 < % Moreover, by (3.18) (note that 0.59 < 4M), we
always have Wi (X) < 4M + A(M) + A(A\4), and so we may assume A, Ay < 5 as well.
But then, neither of the cases A\; + A\; > 1 can occur for (4,7) € {(1,2),(2,3),(3,4)}.
We find in all cases that
Wik(X) < 5M.
e Case K = T75. We have

WK()\) = —2A(/\3) + 2A()\1) + A(/\4) + A()\Q — )\1) + A()\g — /\2).

A bound of 6M < VOI( ) 0.05 is enough. We may assume A3 > = and AL, A < %
Then the case A3 < )\4 is excluded. Assume next Ao < A\;. Then )\2 — )\ € (—%, 0], so
that A(A2 — A1) < 0. Similarly, if A3 < Ao, then Ao > 3, and A(A3 — X2) < 0. In all
cases, we find by (3.16) and (3.17) that
Wi (X) < 6M.
e Case K = 7. We have
Wi(A) = =AA3+ Ag) — A2 + A3) + 2A(A1) + A(A2 — A1) + 2A(N3) + 2A(N\g).

A bound of 0.45 + 4M < YUK _ .03 is enough; note that 0.59 + 3M < 0.45 + 4M.
In particular, we may assume that A\; < %, since otherwise, by (3.17) and (3.18)-
(3.19), we get Wi (X) < 0.59 + 2M. Assume first A3 + Ay > 1. Then by (3.19), we
obtain Wi (A) < 5M, which is acceptable. Next, assume that Ag + Az > 1. If A3 < %,
then Ay + A3 € [1,3] and by (3.19) we have Wi (X) < 0.59 + 3M. If on the other
hand A3 > %, then by (3.20), we get Wi (X) < 0.45+4M. Both bounds are acceptable.
Finally, assume that Ay < A1. Then Ay — A\ € (—%,O], and so A(A2 — A1) <0, and we
again obtain Wx () < 0.59 + 3M. We find in all cases that
Wi (A) < 0.45 + 4M.
e Case K = 77. We have
Wi (A) = 2(A(A1) + A(A2) + A(A3) + A(Ag)) — A(AL + A2) — A(A2 + As) — A(As + A4).
1 3),(3

Assume \; + \; > 1 for some (4, ) € {(1,2), (2, ,4)}. Then by (3.19) and (3.16),
we have

WK()\) <TM < Vo I(K)

—0.08.
- - 27



MODULARITY AND DISTRIBUTION OF QUANTUM KNOTS INVARIANTS 31

Summarizing the above, we find that in all cases considered for K, there holds
Vol K

(3.22) Eg = sup{WK()\) ‘ A€ [0, l)n, =R f@j()\) ¢ [0, 1)} < — 0.01.

This proves Lemma 10.

Remark 7. The analogue of Lemma 10 for the knot 75 is false as stated. It is likely that
this obstacle can be lifted by processing the contour integral arguments underlying Lemma 11
more carefully (see [36, Remark 8.1]). For sake of clarity, and since our main point is rather
to stress how the modularity conjecture can be reduced to the arithmeticity conjecture, we
chose to omit the case K = 7.

3.2. Proof of Lemma 11.

Remark 8. We have £()\) = — £(1— ) for A € [0,1) and j(z) = f(1—%) for z € (C\R)U(0, 1).
In particular we can write the conjugates of ®,(\) and g4(\) given in (3.4) and (2.16) ((2.14)
if A\=0) as

3,0 :exp<— q]‘;(sa — A+

vl mid .

q g+>\ -dt) ]c(qu+/\+ldt)

. 1 (pr) —i—)\ G
E (N d/k) = §f< Z / < gp T ethk 1 (gpqqr)e27rt _ 1>dt (A#0)

and £¥(0,d/k) = £-(0,d/k). In partlcular, we can extend @, () to a holomorphic function
of X in the strip 0 < Re()) < 1.

In the following lemmas we give some properties of the expansion of &, and &;.

Lemma 13. Assume Re(\) € (e,1 —¢) with ¢ € (0,1/2) and let s € Z/qZ. Then, for all
M > 0 uniformly in A we have

(3.23)
=35 () 0 0,(3)7 =31 () 00 0.1
£=0 £=0

where

E0s(N) = Zf(g ; A)Bl<<gpq— s>)7 E54(0) = Zf(g;A)Bl<<gp; s>)7

g=1 g=1
2= SO () B (), e
so(A) = ngg i)i ! Zf(€)< I )\)BHl(gpq_ 8)’ f=21

Proof. For Re(\) € (g,1 — €) we have inf ez ||%H >. 1. Thus, since
1
/ _ . v _ v—1
V(z) = m(cot(rz) +1), () = ()" (=1 Gon)y

v )
ne” n)

we have that f(")(#) Lgve (L4 |t]F) for all v > 0, t € R. The Lemma then follows
immediately by expanding in Taylor series and applying Lemma 2. O

(ZgéZv VZQ):
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Lemma 14. Assume Re()\) € (0,1) and let s € Z/qZ. Let hgy be either E ¢ or Esy- Then,
for all £, M > 0, and all X\ in a neighborhood of \, we have

M
(3.24) hee(N) =) (2mi) T Cypu (M)A = X)” + O(IA =AM,
v=0
where, for (v, ) = (0,0),
(3.25) Coo(\) = Zf(g ; A Bl<<gpq— S>), if hep = Esy
g=1
q J— 3 N —
(3.26) Coo(\) = Zf(q z+ )\)Bl<(gpq s>>, if hso = Eqy-
g=1

Moreover, for (v,£) # (0,0) we have Csg,(\) € Q(e(%),e(%)); also if

7 € Gal(Q(e(7).e(3))/Qe(}). e(A)))
is such that o(e(N/q)) = e((A + u)/q) for some u € {0,...,q—1}, then
(3.27) o(Cs00(N) = Co—upw(N).

Proof. The equations (3.24)-(3.26) follow immediately by Taylor expansion. Moreover, if £ > 1,
v >0 and h,p = &, then

q

I\ (—1)4 1 AR (AR 9—5\ P gp —r
Crw(N) = gt (0 + 1)! gvo! ;(27”) f ( q )BHl( q >’

so that Cy.0,(\) € Q(e(é),e(%)) since §'(z) = m(cot(mz) + 1) = 1762(1‘%) and (3.27) follows by

the change of variables g — g + j. The case £ = 0, v > 1 and the analogous property for (er,g
can be proven in the same way. U

Proof of Lemma 11. As mentioned in the introduction, for the knots under consideration,
the asymptotic expansion stated in Lemma 11 will be essentially reduced to a proof of the
asymptotic expansion in the volume conjecture for those knots. Thus, we shall frequently refer
to [35, 37, 36] where this asymptotic expansion was proven for hyperbolic knots with 5,6 and
7 crossings. The case of the knot 4, is easier, since there is a dominant critical point on (0, 1),
and the method of stationary phase can be applied, similarly as in the proof of Theorem 2
below. Thus, we will focus here on the case K # 4;. Recall also that we assume K # 75.
By Remark 8, for 0 < ¢; ;(L) < d we can write Jj; as

% k
jK(x;Las) - Z exp <q7dvs,d/k(dr/k_L)>7
rd/k—LeD,
ri=s; (mod q), Vi

where D = {n € [0,1)™ | £; ;(n) € [0,1) Vi, j},

)

7ri(m1 + my — mo — m3) K,)

Ven(n) = V(n) + qm(UM(n) n 50
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and
) =3 (2ltnm) + =) =3 (20— oy + )
j=1 =
_Z(g(eg,j( 7”)+Z( —laj(n ))+%),
Us o Z Ea(lrj(n). k) + D E(ta(n). k) = Y Eallsj(n).m) = Y E5(Laj(n). k).
j=1 J=1 =t

The function V(n) coincides, up to conjugation, with the limiting value of the potential
function of the hyperbolic structure of the knot complement given in [35, (10)], [37, p.297,
p.308, p.322] and [36, p.12, p.26, p.38, p.50, p.63]. We remark that the expressions for V'
given there differ from the one we have here, however it is easy to see that the two expressions
actually coincide upon using the dilogarithm identity (or the formula (2.6))

(1= X) + £(\) = —miBy(N).

In [35, Lemma 2.1], [37, §3.2, §4.2, §5.2] and [36, §3.2, §4.2, §5.2, §6.2, §7.2] it was shown that
Vol(K)
2

for all knots under consideration Re(V') is smaller than

precisely, there exists a domain D' € D with dist(D’, D) > 0 such that Re(V (n)) <
for all n € D\ D’ and some ¢’ > 0. Thus, by (2.15), we have

on the boundary of D. More
Vol(K) g

Ji(v,z; L, s) = Z exp <qk;lejd/k(d7‘/k—L)> +O<kmexp<(V0;(WK) _6/>q]il>)'
rd/k—LeD/,
ri=s; (mod q), Vi
We now apply Poisson summation formula in the form of [35, Proposition 4.6] (with k/d
playing the role of N of [35]). Note that our sum are restricted to arithmetic progressions
modulo ¢; since g is fixed, this does not affect the argument. By [35, Lemma 5.1], [37, Lemma
3.4, 4.3 and 5.2] and [36, Lemma 3.2, 4.2, 5.2, 6.2 and 7.2] we have that V(n)— %&K) satisfies
the conditions (41)-(42) of [35, Proposition 4.6] and by [35, Remark 4.8] and Lemma 13 we
can apply Proposition 4.6 of [35] to V, r, 4/x(n) rather than V(n) We find

(3.28) Ji(v,2; L, s) qd //,exp Vs,a/k(2 ))dz+0<exp((\b;(7r[()—5”>jd)>,

for some 6” > 0, where the extra factor ¢~ comes from the restriction to the congruence

classes. One can then apply the saddle point method in the form of [35, Proposition 3.5 and
Remark 3.6] as done in [35, p.705-706 and §5.2] (cf. also [46]), [37, p.297 and §3.5; p.309 and
§4.5; p.47 and §5.5] and [36, p.13 and §3.5; p.26 and §4.5; p.39 and §5.5; p.50 and §6.5; p.64
and §7.5]. Notice that both Vj 4/(z) and the corresponding functions studied in these papers

converge uniformly to V, so the same computations apply. We then find that for all N > 1
the first summand on the right of (3.28) is equal to

(2;Tdk>m/2det(— I—lless)l/2 <%V( )+ )(1+Z 2qu> +O(l{:]\}+1>>
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where g is a critical point of V(z) (and thus satisfies (3.6)) with 0 < Re(¢; () < 1 for
all 4, j, such that V(u) = W and Hess is the Hesse matrix of V at . In particular,

det(— Hess) € (i)™ Fx. By Lemma 14 the coefficients ws ,, are in Ff, for all n > 1 and if
o is as in (3.8), then o(wsy,) = wWs—pun- Finally, by (3.25)-(3.26) we have that C(s) is as
n (3.7). O

4. PROOF OF THEOREMS 2

We proceed in a similar way as in the proof of Theorem 1. For = h/k, with (h, k) = 1 and
1 < h <k, we write Jy, (z) as in (3.2) and we divide the sum into congruence classes modulo
h, that is we write

(41) Ty (/) = > Iulb/k;s)

0<s<h—1
where, for 0 < s < h — 1, we write
(4.2) T (h/kis) = Y |[h/k]

0<r<k,

r=s (mod h)

with [-], as in (3.1). We apply Theorem 7, which for 0 < s < h, s =r (mod h), gives
(43) (/K] P = [/ L2l /) exo (— ﬁcowh) +&lo/k)

for some &I (r/k) satisfying |E](r/k)| < E(h, k) for all 0 < r < k, where

k k nk\ n
E(h,k) : —1—|—logh—|—h2 n}aﬁil‘ Z cot (71'?>—,

1<n<r’

(note that if 0 < 7o < h with 7o = r (mod ¢), then § € [, 1 — 2(1 — {ro=F ro=k1y]), and where for
A € [0,1], we define

Bi(\) = exp (2’; Re (2()\))) = exp (: /0A log (4 sin(t)?) dt),

by (2.8) and (2.10). By positivity, it follows that
(44) T, (h/k;s) = exp (O(E(h, k) + |co(R/R)| /W) |[k/R)s[> > @l(r/k).

0<r<k
r=s (mod h)
Now, the function A — fo)\ log(4 sin(mt)?) dt is continuous on [0, 1] and it has a unique maximum
in this interval, located at A = 5/6. Moreover, it can be expanded in a neighborhood of this
point as

(4.5) /0)\ log(4 sin(nt)?)dt = VO;(;Ll) — 73\ — 22+ 0(A=2%).
since f05/6 log(4 sin(rt)?)dt = V°1(41) . It follows that
(4.6)
S al/k) = hf/ﬁ exp (Voé(fl) %) (1+ O(h/k)) = exp (V‘);(fl)’; +0og(1+ k/h))).

0<r<k
r=s (mod h)
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where the first step is justified in a standard way [17, p.517], e.g. by smoothly restricting the
sum to the terms where 7/k is in a neighborhood of 5/6, using (4.5) and applying the Poisson
summation formula. The second step instead follows immediately by positivity.

By (4.1), (4.4) and (4.6) we then find

(4.7) Tuy (h/k) = Ta, (k/h) exp(O(E(h, k) + |eo(k/h)|/h)),

as desired.
With a similar argument we can prove the following theorem, which deals with the case

where the dominating term on the right hand side of (4.3) is exp(—22-co(k/h)).

Theorem 8. Let 1 < h < k with (h,k) =1 and assume co(k/h) < 0. Then,

(4.8)

log |74, o e(R/k))| = log |Ta, o e(F/h))| — o= co (K/h) + o(ﬁ + max | 3 cot (ﬁ”"“)”\)
b v h h = o<r<hl £~ h / hk

To prove (4.8) first we observe we can assume k > 2h since otherwise the result is trivial.
Also, we observe that, bounding trivially @l, one can write (4.3) as

/K12 = IR/ exp (= 2o /) + O(E(h, k) + /1) )

and so

T, (1/kss) = exp (OB, K) + /W) [F/ALE S exp (= heoll/m).
0<r<k
r=s (mod h)

nx mz+O(m

Now, if z > 0, we have Zogngme =e ), and thus if z is large the sum is roughly
dominated by the last term. Then for co(k/h) < 0, we have

0<TZ<k exp ( - Q}LL]:CO(k‘/hD = exp ( _ 2}7;:/ (k/h) + O(k:/h))
r=s (mod h)

where 7’ is the maximum integer satisfying 0 < v’ < k with ' = s (mod h). Then, k —h <
r’ < k and so in particular ;%.CO(E/h) = +co(k/h) + O(%|co(k/R)|) and the result follows.

5. PROOF OF THEOREM 3

Before starting, we state some basic properties of continued fractions (see [28] for a ref-
erence). Given h/k € QN (0,1) with h,k € N, (h,k) = 1, we denote by [0;b1,...,b,] the
continued fraction expansion of h/k. Then for 0 < s < r the convergents of h/k are the
fractions [0;b1,...,bs] = = with (us,vs) = 1 (as usual ug/vg = 0/1, v_1 := 0, u_g := 1);
the vs are called the partial quotients. The partial quotients satisfy the bounds vy < 275/2,
Vps < k2752 for 0 < s < r, and vs/vs—1 < bs+ 1 for 1 < s <r. Also, r < logk. For all
1 < s <r we have vsus_1 — vs_1us = (—1)® and so Uj}j = (—1)3“7;—2 (mod 1). Moreover, if
1 < A/ < kis such that A’ = (=1)"*'h (mod k), then the Euclid algorithm on A’ and k can be
written as

v =k, vp_1 = R/,
(5.1) " 1
Vo1 = bpy1ve +veq, £=0,...,r—1.

The following technical result, proved in [11], will be needed in the proof of Theorem 3.
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Lemma 15 ([11, Theorem 1]). Let 1 < h < k with (h,k) = 1. Let vy,...,v, be the partial
quotients of h/k. Then uniformly for 1 < ¢ < k, we have

r—1
nhyn
() e 5 ;
1<Z:n<cco )% <<n;)v +110g(Vmt1/vm) +

Proof of Theorem 3. Since J is even, applying repeatedly the reciprocity formula (1.7) and
the recurrence relation (5.1), we see that for all 0 < s <r

log Ja, 0(e(h/k)) = log Ju, 0(e(vr=1/vr)) = C j{: (%-13 UZ—l/lw)> + log Ju, 0(e(vs—1/vs)),
{=s+1

with C' = %jl) and E satisfying (1.8). Now, by Lemma 15

r

nvp—_2 Um+1
max cot (7’[‘ ) ‘<< 10 Vi1 /v
Z’I”/:O,...,Ugflfl ‘ Z Vp—1 Ug 1 Z Z g m+ / m) T
=1 1<n<r!
since 2=2 = (—1)**=L (mod 1) and so its partial quotients are vg. .., v, ;. The second sum

Vg1
is O(1), whereas changing the order of summation and using vy_1_, < vg_127"2 for n > 0,
we obtain

,
v
Z Z m+l log(Vm+1/vm) < Z Z o(m=0)/2 log(Vm+1/vm) < Z log(Vm+1/vm)-

v
e1m0£1 m=0{=m+2

Ve—1

Now, we fix an € > 1/k and we take s to be the least integer in {1,...,r} such that vs > 1/¢
and notice that, since v,, > 2™/2, we have s = O.(1). Then, the above computations and (1.8)
give
T v T
¢
log T, 0(e(h/k)) = > —(C+ O(VE)) + > Olog(ve/ve1)) + log Ju, o(e(Eus/vs)).
t=st1 ‘71 =1

since ij}—;l = +%= (mod 1) for 1 := (=1)*"". Now, if s > 1, we have Fu,/vs = v(bs), where
o= (ius’1 “s=2) ¢ SL(2,Z). Notice that by definition of s all entries of v are bounded by

:|:7.)571 Vs—2

1/e. Thus, by Theorem 1, we have

log Ju, o(e(Fus/vs)) = Cbs + O(log bs) + Oc( C’Zbg + O(logbs) + O:(1),
(=1
since s,vp—1 = O(1) and so also by = O(1) for all £ < s — 1. Then, since vs/vy_1 = by + O(1)
we find

log Ju, o(e(h/k)) = (C + O(VE)) > (be + O(logby)) + O(r) + Oc(1).

(=1
Finally, we observe that by + O(logb;) = be(1 + O(\/€)) + O(1/¢). Thus,
log Ji, o(e(h/k)) = (C + O(/z Zbg—i—O — S(h/k) <C+O(\f)+0 < ((};L//’Z))»

By hypothesis r(h/k)/%(h/k) — 0 and so (1.9) follows by letting ¢ — 0T sufficiently slowly.
Equation (1.10) then follows immediately from [10, Corollary 1.4]. O
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Proof of Theorem 4. We extend H to a function on R~ by setting Hg (x) := limy_,; yeqo Hr (y)
for all z ¢ Ry \ Q. By hypothesis Hg (z) is well defined and it is easy to prove that Hy is

continuous on R\ Q. Then, setting 1(z) := Hg(z) — %STK)E — 3log(1/xz), for > 0, and
¥(0) = 0, we have that ¢ (x) is bounded and continuous almost everywhere on [0,1]. Thus,
by Lebesgue’s integrability condition, ¢ is Riemann-integrable on [0, 1]. In particular, for all
€ > 0 there exist a differentiable function 1 : [0,1] — R such that ||t) — 9c||oo j0,1) < €

By definition log Ji o(e(h/k)) — log Ju, o(e(k/h)) = ¢(h/k) + YAELE 4 3 10g(k /). Thus,
proceeding as in the proof of Theorem 3 using this formula instead of Theorem 2, we obtain

8 i (/1)) = 32 (V0P Sog(un/oi) + 0loi1/0) ) = 62(0/E) + O log ),

2 vy
=1 /—1

where

(VoK) v, 3
¢e(h/k) == 2 (27TW—1 + 5 log(ve/ve—1) + %(W—MW))-

Letting T'(z) = {1/x} for = € (0,1], we note that for 2 < s < r, we have ==+ = T"*('/k),
whereas % = T"=Y(h'/k) + 14,—1 (the contribution of 1,—; being negligible). We apply [10]
(Theorem 1.3 with A = 1, complemented by Theorem 1.2 with v(z) = {1/z}), and obtain
that the estimate (1.11) holds with log Ju, o(e(h/k)) replaced by ¢-(h/k) and

l—fyo—log2 3 / Ye(1/z)dx
12/m2 Vol( 7TV01 1+x

and with an error term o.(N?). The result then follows by letting e — 0T sufficiently slowly
with respect to N, and making the change of variables h/k — h'/k on the left hand side
of (1.11). O

Dy =

I

Proof of Corollary 5. We prove the result in the case where z € [0,1]\ Q and for y — x~, the
other cases being analogous. Let © = [0;b1,b2,...] and let h/k = [0;b1,ba,. .., bay, X, Y] for
some X,Y € Nyg. Then, h/k — = as n — oo, uniformly in X > bg,y; and Y. We have
k/h =1[0;ba,...,bapn, X,Y] (mod 1) and so by [8, (1.2)-(1.3) and Lemma 4]
2n+1
1 - 1
7 co(k/h) = p Z

(=1

(—1)"log(ve—1/vy) +O(n)
Vp—1

uniformly in X,Y, where v; denotes the partial quotient of [0;bo,...,bo,, X,Y]. Now, let
B = 2+ maxj<ij<2p bj. Then, for £ < 2n, we have vp/vy_1 < B, whereas vay,/vap—1 = X +0O(1)
and v2n+1/v2n =Y + 0(1) Also, vo, = Xwvop_1 + vop_2 and vop_o < Vo1 < Bl Tt
follows, that

T = logY log X log X
—col(k/h) = — + O(nlog B) = — 1+o0(1
h olk/h) Xvop—1 +Vop—2  Vap—1 (nlog B) ’Uanl( o(b))

as n, X,Y — oo under the constraint YnB?*" = o(log X). By (4.8) and [11, Theorem 1] we
then have

log X

2n—1

(1+0(1)(1+0(1/Y)) +O(Y + log X )

Hy (h/k) = —
i (h/h) S

and this goes to —oco as n, X, Y — oo with YnB?" = o(log X). O
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