
MAJORATION DU NOMBRE DE VALEURS FRIABLES D’UN
POLYNÔME

R. DE LA BRETÈCHE & S. DRAPPEAU

The following is a translation of section 8 of [dlBD17], which is concerned with the
following bound.

Theorem 1. Let x,M,N ≥ 1, MN ≤ x2, and (am), (bn) be two sequences bounded in
absolute values by 1. Let D ∈ Z which is not a perfect square, and V : R → C be a
smooth function with compact support inside R∗+. Then

(1)

∑
M≤m≤2M

∑
N≤n≤2N
(n,m)=1

ambn

( ∑
k∈N

mn|k2−D

V
(
k

x

)
− xV̂ (0)%(mn)

mn

)

�D,V x
1
2 +εM

1
2 + x1+εN

3
2−θM− 1

4 +θ/2,

where V̂ (ξ) =
∫
R V (t)e(−tξ)dt.

Another side-result is the following version of the main theorem of [DI82], with explicit
dependence on the best-known bound towards Selberg’s eigenvalue conjecture. Define

PD(x) = P+
( ∏
x<n≤2x

(n2 −D)
)
.

Corollary 2. For θ ∈ [0, 1/4], let κ(θ) ∈ [1, 2] be the unique number satisfying∫ κ(θ)

1

tdt
1− 2θt = 1

4(1− 2θ) .

For all ε > 0 and D ∈ Z which is not a perfect square, we have
PD(x)�ε,D xκ(θ)−ε

for all θ ≥ 0 which is admissible for Selberg’s eigenvalue conjecture. In particular, θ =
7/64 is admissible [Kim03]; therefore, for x large enough,

PD(x) ≥ x1,2182.

Theorem 1 follows immediately from the following bound, using Cauchy–Schwarz’s
inequality.

Proposition 3. Let ε > 0, x,M,N ≥ 1, MN ≤ x2, (bn) ∈ CN with ‖b‖∞ ≤ 1, D ∈ Z
which is not a perfect square, and V : R → C a smooth function compactly supported
inside R∗+. Then

(2)

∑
M<m≤2M

∣∣∣∣ ∑
N<n≤2N
(n,m)=1

bn

( ∑
k∈N

mn|k2−D

V
(
k

x

)
− xV̂ (0)ρ(mn)

mn

)∣∣∣∣2

�ε,V,D

(
1 + x

(
M

N2

)− 3
2 +θ)

x1+ε.
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Remark. The left-hand side of (2) is trivially bounded by M−1x2+ε, which allows us to
assume from the start that M ≥ N2, and justify the interest of seeking a value of θ as
small as possible.

The previous proposition will be deduced from the following lemma, which is con-
cerned with equidistribution of roots of quadratic congruences.

Lemma 4. Let (q, r, d) ∈ N3 with (q, 2Dr) = 1 and d|q, λ (mod d) an invertible class,
and ω (mod d) a residue class such that ω2 ≡ D (mod d). Let M � qd, f be a smooth
function compactly supported in R∗+, satisfying
(3) ‖f (j)‖∞ �j 1,
Let 0 ≤ α < β < 1 and

(4) Pf (M ; q, r, d, λ, ω, α, β) :=
∑

(m,Ω)∈D
α≤ Ω

mq
<β

f
(
m

M

)
,

where D is the set of pairs (m,Ω) such that
(m, qr) = 1, m ≡ λ (mod d)

Ω2 ≡ D (mod mq), Ω ≡ ω (mod d).
Then for all ε > 0, we have
(5) Pf (M ; q, r, d, λ, ω, α, β) = Af (M ; q, r, d, α, β) +Oε,D,f

(
(qrM)εd 3

4 (qd) 1
2−θM

1
2 +θ

)
.

Here, the main term Af is defined through

Af (M ; q, r, d, α, β) = (β − α)Mf̂(0)CD
A(qr)ρ(q/(q, d∞))

ϕ(d) ,

where A(qr) = ∏
p|qr(1 + 1/p)−1 and CD > 0 is a constant depending only on D. The

implicit constant depends at most on ε, D, and on the implicit constants in (3).

The previous estimate follows from the following exponential sums bound.

Lemma 5. Under the notations and hypotheses of Lemma 4, The following bounds hold
for all ε > 0.

(1) For 1 ≤ |h| ≤ qd
1
2 ,

(6)
∑

(m,Ω)∈D
f
(
m

M

)
e
(
hΩ
mq

)
�ε,D,f |h|(qr)ε + (rM)εd 3

4 (qd, h)θ(qd) 1
2−θM

1
2 +θ.

(2) For 1
2 ≤ H � qM ,

(7) 1
H

∑
H<|h|≤2H

∣∣∣∣ ∑
(m,Ω)∈D

f
(
m

M

)
e
(
hΩ
mq

)∣∣∣∣�ε,D,f H(qr)ε + (rM)εd 3
4 (qd) 1

2−θM
1
2 +θ.

(3) Assume d = 1, 1
2 ≤ Q � M , 1

2 ≤ H � QM , that t ∈ [0, 1], let I ⊂ [H, 2H] be
an interval, and (fq)Q<q≤2Q a sequence of functions satisfying (3) and fq(v) 6=
0⇒ v � 1 uniformly in q. Then

(8)

1
Q

∑
Q<q≤2Q
(q,2Dr)=1

∣∣∣∣ 1
H

∑
h∈I

e(th)
∑

(m,Ω)∈D
fq

(
m

M

)
e
(
hΩ
mq

)∣∣∣∣
�ε,D,f H(Qr)ε + (rM)ε

{
M

1
2 +H−

1
2Q

1
2−θM

1
2 +θ

}
.
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The implied constants depend at most on ε, D, and on the implicit constants in (3).

Remarks.
• When d = 1, using the Selberg bound θ ≤ 1/4 (cf. [DI83], theorem 4), we recover,

up to the uniformity in h, a result of Duke, Friedlander and Iwaniec [DFI95,
formula (25)] and Tóth [Tót00, formula (15)].
• The bounds (6) and (7) are valid for M � qd, but they are then less precise than

the trivial bound Oε,D,f (qεM1+ε).

0.1. Proof of Lemma 5. We focus first on the bound (6). We assume that h > 0,
taking complex conjugates if necessary.

0.1.1. Coprimality. Let S ′(M, q, λ) be the LHS of (6). A MÃűbius inversion yields

(9) S ′(M, q, λ) =
∑
`|qr

(`,d)=1

µ(`)S(M/`, q`, λ`)

where µ is the MÃűbius function and

S(M, q, λ) :=
∑
m∈N

m≡λ (mod d)

∑
Ω∈N

αmq≤Ω<βmq
Ω2≡D (mod mq)

Ω≡ω (mod d)

f
(
m

M

)
e
(
hΩ
mq

)
.

It will suffice to show that S(M, q, λ) is bounded by the RHS of (6).

0.1.2. Gauss correspondance. Let

QD = {Q(X, Y ) = AX2 + 2BXY + CY 2, (A,B,C) ∈ Z3, B2 − AC = D}.

For Q ∈ QD, we let (A(Q), B(Q), C(Q)) be the coefficients in the expression above. The
group Γ = PSL2(Z) acts on QD through

σQ(x, y) = Q((x, y)σ) (σ ∈ Γ)

where the product on the RHS is the matrix product. In particular,

(10)
B(σQ) = αγA+ (αδ + βγ)B + βδC,

C(σQ) = γ2A+ 2γδB + δ2C = Q(γ, δ)

if σ =
(
α β
γ δ

)
. By a reasonning identical to [DFI95, p. 247] (see also [Kow04, section 6.1]),

we obtain

(11) S(M, q, λ) =
∑

Q∈Γ\QD

∑
σ∈Γ∞\Γ/ΓQ

P(σ)

f
(
C(σQ)
qM

)
e
(
hB(σQ)
C(σQ)

)
,

where P(σ) is the property that

P(σ)⇔
{
C(σQ) ≡ λq (mod qd),
B(σQ) ≡ ω (mod d),

and ΓQ ⊂ Γ is the stabilizer of Q.



4 R. DE LA BRETÈCHE & S. DRAPPEAU

0.1.3. Localization of variables. Let σ = ( ∗ ∗γ δ ) be a generic element in index of the sum in
the RHS of (11). We introduce, following Tóth [Tót00, lemme 4.2], a function Ψ : Γ→ R
which allows us to encode the quotient by ΓQ. This function satisfying ∑τ∈ΓQ Ψ(στ) = 1
for all σ ∈ Γ. When D < 0, the function Ψ is constant, and in the opposite case Ψ(σ) is
a C∞ function of the ratio δ/γ. We also let w : R→ R+ be a smooth function satisfying

1|t|≤ 1
2
≤ w(t) ≤ 1|t|≤2, w(t) + w(1/t) = 1

for t 6= 0. We insert the weight w(γ/δ)+w(δ/γ) in the RHS of (11). In the contribution
of the term w(γ/δ), we apply to the sums over σ and Q the involutions changing Q(X, Y )
to Q̃ = Q(Y,X), and σ to σ̃ =

(
−β −α
δ γ

)
. We then have

B(σ̃Q̃) = −B(σQ), C(σ̃Q̃) = C(σQ).

We obtain

(12) S(M, q, λ) = S(h,Ψ1) + S(−h,Ψ2),

with

(13) (Ψ1(σ),Ψ2(σ)) = (w(t)Ψ(t), w(t)Ψ(1/t)) (σ = ( ∗ ∗γ δ ) ∈ Γ∞\Γ, t = γ/δ),

(14) FΨ,Q(σ) = Ψ(σ)f
(
C(σQ)
qM

)
,

and

(15) S(h,Ψ) =
∑

Q∈Γ\QD

∑
σ∈Γ∞\Γ/ΓQ

P(σ)

FΨ,Q(σ)e
(
hB(σQ)
C(σQ)

)
.

In what follows, we let Ψ ∈ {Ψ1,Ψ2} be fixed, noting that this function (and so the
associated function FΨ,Q) vanishes whenever |t| ≥ 2 (with the notation (13)).

0.1.4. Simplification of the phase. We write the definition (15) as S(h,Ψ) = ∑
Q∈Γ\QD

SQ(h,Ψ).
The sum over Q is finite and its number of terms depends at most on D. It will therefore
suffice to bound SQ(h,Ψ) separately for each Q. For σ ∈ Γ, we define

φσ = α

γ
∈ R/Z (σ = ( α ∗γ ∗ ) , γ 6= 0).

The identity, due to Hooley [Hoo63, formula (27)],

(16) e
(
hB(σQ)
C(σQ)

)
= e(hφσ) +O(h(qM)−1)

is then established similarly to lemma 4.3 of Toth [Tót00]. Inserting this in SQ(h,Ψ),
we obtain

(17) SQ(h,Ψ) = TQ(h, FΨ,Q) +O(h),

with
TQ(h, F ) =

∑
σ∈Γ∞\Γ/ΓQ

P(σ)

F (σ)e(hφσ).
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0.1.5. Congruence conditions. We decompose by the Hecke congruence subgroup Γ0(qd)
to obtain

TQ(h,Ψ) =
∑∑

τ∈Γ∞\Γ0(qd)
σ∈Γ0(qd)\Γ

P(τσ)

F (τσ)e(hφτσ).

If τ =
(
α β
γ δ

)
∈ Γ0(qd), then the relations (10) as well as qd|γ show that

P(τσ)⇔


q | C(σQ),
δ2q−1C(σQ) ≡ λ (mod d),
B(σQ) ≡ ω (mod d).

Since (λ, d) = 1, the second condition is detected by Dirichlet character, which yields

(18) TQ(h,Ψ) = 1
ϕ(d)

∑
χ (mod d)

χ(λ)
∑

σ∈Γ0(qd)\Γ
P∗(σ)

χ(q−1C(σQ))UQ,σ(h,Ψ),

with
U(h,Ψ) = UQ,σ(h,Ψ) =

∑
τ∈Γ∞\Γ0(qd)

ϑ(τ)F (τσ)e(hφτσ),

where P∗(σ) now denotes the conditions

(19) P∗(σ)⇔
{
q | C(σQ)
B(σQ) ≡ ω (mod d)

and ϑ denotes the central character defined by
ϑ(τ) = χ2(δ) (τ = ( ∗ ∗∗ δ ) ∈ Γ0(qd)).

0.1.6. Reminders on generalized Kloosterman sums. In this section, we recall some facts
on Kloosterman sums. We refer to chapters 2 and 4 of [Iwa97] for definitions. Let a, b ∈
P1(R) be two cusps for Γ0(qd), of stabilizers Γa and Γb and scaling matrices σa, σb ∈
PSL2(R), meaning that

Γa = σaΓ∞σ−1
a , Γb = σbΓ∞σ−1

b .

A cusp is equivalent under the action of Γ0(qd) to a unique cusp a′ = u/v, with
v ≥ 1, v|qd, (u, v) = 1, 1 ≤ u ≤ (v, qd/v).

We may then define the width of the cusp a to be the number

(20) wa = q

(q, v2) .

We associate to (a, b) the set of moduli

C(a, b) :=
{
c ∈ R∗+ : ∃α, β, δ ∈ R,

(
α β
γ δ

)
∈ σ−1

a Γσb
}
.

For all c ∈ C(a, b) et (m,n) ∈ Z2, we define the Kloosterman sums

(21) Sab(m,n; γ) =
∑

δ∈[0,γ) :
(α ∗γ δ )∈σ−1

a Γ0(qd)σb

ϑ(σa
(
α ∗
γ δ

)
σ−1
b )e

(
αm+ δn

γ

)
.

We refer to section 4.1.1 of [Dra17] for more details, notably on the dependence of Sab(m,n; c)
with respect to the scaling matrices (σa, σb). In this work, we will use the following facts.
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Lemma 6. Let σ ∈ Γ0(qd)\Γ satisfy the conditions P∗(σ) defined in (19).
(1) The number of such σ is O(dτ(q)).
(2) Suppose that the cusp a = σ∞ is equivalent to u/v, with v|q, 1 ≤ u < v

and (u, v) = 1. Then v|Q(0, 1)2, in particular v = OQ(1), and

(22) wa = qd

(qd, v2) �Q qd.

(3) The set of moduli C(∞, a) is

C(∞, a) =
{
w

1
2
a vm, m ∈ Z : (m, qd/v) = 1

}
.

(4) When γ = w
1
2
a vm ∈ C(∞, a), the Kloosterman sum S∞a(h, n; γ) is given by

S∞a(h, n; γ) =
∑

α (mod vm)
δ (mod u[v,v′]m)
δ≡m (mod uv′)

(δ−m,um)=u
αδ≡u (mod vm)

ϑ
(
∗ ∗
∗ δ

)
e
(
hα

vm
+ nδ

u[v, v′]m

)
,

where we have put v′ = qd/v. Here, the scaling matrices are

σ∞ = Id, σa =
(
u
√
wa 0

v
√
w (u

√
w)−1

)
.

(5) We have the trivial bound

(23) |S∞a(h, n; γ)| ≤ v

(v, v′)(m,u)m�Q m,

(6) When n = 0, we have

(24) |S∞a(h, 0; γ)| ≤ τ(2m)Oa,Q(1)(dh,m).

The proof of this lemma, which is independant from the rest of the proof of Lemma 5,
will be given below in section 0.5.

0.1.7. Completion of sums. In the sum U(h,Ψ), we change τ to τσ−1, so that

U(h,Ψ) =
∑

τ∈Γ∞\Γ0(qd)σ
ϑ(τσ−1)F (τ)e(hφτ ).

The cusp a = σ∞ is equivalent to u/v for some v|qd and (u, v) = 1, and this expression
is unique if we impose 1 ≤ u ≤ (v, qd/v). We temporarily write

τa =
(
w

1/2
a 0
0 w

−1/2
a

)
, σa = στa

so that the stabilize Γa ⊂ Γ0(qd) of a satisfies Γa = σaΓ∞σ−1
a . In the sum on the RHS

of (25), we replace again τ by ττ−1
a noting that this leaves the quantity φτ unchanged.

We obtain
(25) U(h,Ψ) =

∑
τ∈Γ∞\Γ0(qd)σa

ϑ(τσ−1
a )F (ττ−1

a )e(hφτ ).

At this point, we remark that (v, qd/v)|q. In particular, the cusp a is singular for ϑ,
meaning that

ϑ(τ) = 1 (τ ∈ Γa).



MAJORATION DU NOMBRE DE VALEURS FRIABLES D’UN POLYNÔME 7

We separate the sum over τ in the RHS of (25) according to right classes modulo Γ∞.
Note that for ω ∈ Γ∞, we have φτω ≡ φτ (mod 1), as well as

ϑ(τωσ−1
a ) = ϑ(τσ−1

a )ϑ(σaωσ−1
a ) = ϑ(τσ−1).

We obtain
U(h,Ψ) =

∑
τ∈Γ∞\Γ0(qd)σa/Γ∞

ϑ(τσ−1
a )e(hφτ )

∑
k∈Z

F
(
τ ( 1 k

0 1 ) τ−1
a

)
.

Given the relations (13) and (14), the function

t 7→ F
(
τ

(
1 t
0 1

)
τ−1
a

)
is smooth, with compact support, and only depends on the lower entries of τ . If τ =
( ∗ ∗γ δ ), then

F
(
τ

(
1 t
0 1

)
τ−1
a

)
= F

(( ∗ ∗
γw
−1/2
a γ(t+ δ/γ)w1/2

a

))
.

The Poisson summation formula yields∑
k∈Z

F
(
τ

(
1 k
0 1

)
τ−1
a

)
= e

(
nδ

γ

)∑
n∈N

G(γ, n),

where

G(γ, n) =
∫
R
F
(( ∗ ∗

γw
− 1

2
a γtw

1
2
a

))
e(−nt)dt.

Using the definition (21), we finally obtain

(26) U(h,Ψ) =
∑
n∈Z

∑
γ∈C(∞,a)

S∞a(h, n; γ)G(γ, n).

0.1.8. Localization and preparation of variables. We recall that wa �Q qd. By definition
of F = FΨ,Q, we have

G(γ, n) =
∫
R

Ψ(twa)f
(
Q(γ, γtwa)
qwaM

)
e(−nt)dt.

Whenever the integrand is non-zero, we have |t| ≤ 2w−1
a and γ �Q,f q(dM) 1

2 . Integrating
by parts (cf. lemma 5.1 of [Tót00]), we obtain

(27) G(γ, n)�j (qd)j−1n−j (j ∈ N).
The implied constants here also depend on the implied constants in (3) ; this dependency
will not be explicited to clarify the notations.

Let N1 := qd(Mq)η. In the RHS of (26), we isolate the contribution of U0 (resp. U1)
coming from n = 0 (resp. |n| > N1). The bounds (23), (24) and (27) yields

(28)

|U0(h,Ψ)| �ε,D (qd)−1 ∑
γ∈C(∞,a)
γ�q(dM)1/2

|S∞a(h, 0; γ)| � (Mqh)εd−1q−
1
2M

1
2 ,

|U1(h,Ψ)| �j,D (qM)3/2
(
qd

N

)j−1
�η,D (qM)−10

choosing j = j(η) sufficiently large. Both error terms here are bounded by the RHS
of (6).
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On another hand, Faà di Bruno’s formula shows that the function G satisfies
∂k+`

∂x`1∂y`2
G(x, y)

∣∣∣∣x=γ
y=n
�`1,`2 γ

−`1(qd)−`2−1.

Similarly to (27), this bound also depends on the implicit constants in (3).
We introduce a partition of unity for the variable n,

G(γ, n) =
∑

0≤k≤K
G2k(γ, n),

where K ≤ 2 + log(N1)/ log 2, and for 1 ≤ N ≤ N1, the function GN(γ, n) is smooth
with respect to both variables, vanishes outside n ∈ [N/2, 2N ] and satisfies

(29) ∂k+`

∂xk∂y`
GN(x, y)

∣∣∣∣x=γ
y=n
� (qd)−1γ−k(min{qd,N})−` � (qM)O(η`)(qd)−1γ−kN−`.

In accordance with this decomposition, we have

(30)
∑

0<|n|≤N1

∑
γ∈C(∞,a)

S∞a(h, n; γ)G(γ, n) =
∑

0≤k≤K
V2k ,

(31) VN =
∑

N/2≤|n|≤2N

∑
γ∈C(∞,a)

S∞a(h, n; γ)GN(γ, n).

We then let

F (x, ξ) =
∫
R
GN

(4π
√
h|y|
x

, y
)

e(yξ)dy, GN(γ, n) =
∫
R
F
(4π

√
h|n|
γ

, ξ
)

e(−nξ)dξ.

The integral defining F is supported on y � N , and when F (x, ξ) 6= 0, we necessarily
have x � X := (hN/q2dM) 1

2 . Faà di Bruno’s formula again implies

∂k0F (x, ξ)�k (qM)O(η)X−k
(qd)−1N

1 + (Nξ)2 .

Here the implied constant in O(η) is independent of k. We finally let

φξ(x) = X(1 + (Nξ)2)qd(xN)−1(qM)−$F (x, ξ)

for some positive number $ = O(η), so that x 7→ φu(x) is smooth, compactly supported
on x � X and satisfies

(32) sup
ξ∈R
‖φ(j)

ξ ‖ �j X
−j.

Here again the implied constants depend on the implied constants in (3). We then have

(33) VN = 4π(qM)$d− 1
2M

1
2

∫
R

N

1 + (Nξ)2WN(ξ)dξ,

where we have let

(34) WN(ξ) :=
∑

N/2≤|n|≤2N
an

∑
γ∈C(∞,a)

S
(ξ)
∞a(h, n; γ)

γ
φξ

(4π
√
h|n|
γ

)
,

as well as an =
√
|n|/N , and where we have incorporated the factor e(−nξ) in the scaling

matrix of ∞ (which is indicated by the notation S
(ξ)
∞a).
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0.1.9. Using Kuznetsov’s formula. We bound WN separately for each ξ. We omit the
quantity ξ from the notation, and we will use from (an) and φ only the bounds |an| ≤ 1,
the bounds (32) and the fact that φ(x) 6= 0 implies x � X, where we recall that X �
(hN/q2dM) 1

2 .
For each n ∈ [N/2, 2N ], we apply Kuznetsov’s formula (lemma 4.5 of [Dra17], with κ =

0). We obtain

∑
γ∈C(∞,a)

S∞a(h, n; γ)
γ

φ
(4π
√
hn

γ

)
= H +

h,n + E +
h,n + M +

h,n, (n > 0)

∑
γ∈C(∞,a)

S∞a(h, n; γ)
γ

φ
(4π

√
h|n|
γ

)
= E −h,n + M−

h,n, (n < 0)

where

M +
h,n =

∑
f∈B(q,χ)

φ̃(tf )
cosh(πtf )

(hn) 1
2ρf∞(h)ρfa(n),

and M−
h,n, E ±h,n, H +

h,n are given by similar expression. Here, the set B(q, χ) denotes an
orthonormal basis of Maass cusp forms f , each being an eigenfunction of the hyperbolic
Laplacian, with associated eigenvalue λf = 1

4 + t2f and Fourier coefficients ρfa(n). We
refer to section 4.1.2 of [Dra17] for the associated definitions and normalisation. We
have tf ∈ R ∪ [−iθ, iθ], where we recall that θ ≤ 7/64 by Kim and Sarnak [Kim03], and
that the Selberg-Ramanujan conjecture predicts that θ = 0. The transform φ̃ in the
expression above is given by

φ̃(t) = 2πi
sinh(πt)

∫ ∞
0

(J2it(x)− J−2it(x))φ(x)dx
x

where Jν(x) is the J-Bessel function. The transform φ̃ satisfies the bounds in lemma 4.4
of [Dra17] (see lemma 2.4 of [Top15] for stronger bounds). In the present case, we
have X � (qM)η/2, so that

|φ̃(t)| �

(qM)2η(1 + |t|)−3, t ∈ R,
(Mq)η/2(q2dM/hN)|t|, t ∈ [−i/4, i/4].

The quantity E ±h,n (resp. H +
h,n) corresponds to the contribution of non-holomorphic

Eisenstein series (resp. to the contribution of holomorphic cusp forms of weight ≥ 2).
We study in detail M +, the other terms being analyzed in a similar manner.

Our treatment differs depending on whether we average over h or not.

0.1.10. The case (h, q) fixed. We separate in M +
h,n the contribution of functions f ∈

B(q, χ) with tf ∈ R, from those with tf ∈ iR. According to this decomposition we write

(35) WN =
∑

N/2≤n≤2N
anM

+
h,n = M reg

h,N + M exc
h,N ,

where the notation corresponds to “regular” and “exceptional”. The Cauchy-Schwarz
inequality yields

(36) |M reg
h,N | ≤ (M reg

h M reg
N ) 1

2 ,
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with

M reg
h :=

∑
f∈B(q,χ)
tf∈R

|φ̃(tf )|
cosh(πtf )

h|ρf∞(h)|2,

M reg
N :=

∑
f∈B(q,χ)
tf∈R

|φ̃(tf )|
cosh(πtf )

∣∣∣∣ ∑
N/2≤n≤2N

ann
1
2ρfa(n)

∣∣∣∣2.
To bound M reg

h , we use lemma 2.7 of [Top15], so that

M reg
h �ε (qhM)ε

{
1 + (qd, h) 1

2
h

1
2

qd
1
2

}
.

To bound M reg
N , we use the large sieve inequality (in our case, proposition 4.7 of [Dra17])

(37) M reg
N �ε (qM)εN

{
1 + N

qd
1
2

}
.

Our hypotheses h� q and N ≤ N1 then imply
(38) M reg

h,N �η (qM)O(η)q
1
2d

3
4 .

For each h, we have by the Cauchy-Schwarz inequality
(39) |M exc

h,N | � (M exc
h M exc

N ) 1
2 ,

(40) M exc
h :=

∑
f∈B(q,χ)
tf∈iR

|φ̃(tf )|2h|ρf∞(h)|2, M exc
N :=

∑
f∈B(q,χ)
tf∈iR

∣∣∣∣ ∑
N/2≤n≤2N

ann
1
2ρfa(n)

∣∣∣∣2.
The large sieve again yields

(41) M exc
N �ε (qM)εN

{
1 + N

qd
1
2

}
.

For M exc
h , we use lemma 2.9 of [Top15],

M exc
h �η (qhM)O(η){(qd, h)MN−1}2θ.

Our hypothesis N ≤ N1 then implies
M exc

h,N �η (qhM)O(η)d
1
4 (qd, h)θM θ(qd) 1

2−θ.

The right-hand side here is larger than that obtain in (38). Therefore, we have∑
N/2≤n≤2N

anM
+
h,n �η (qhM)O(η)d

1
4 (qd, h)θM θ(qd) 1

2−θ.

The same bounds holds for M−
h,n, whereas the other terms E ± and H +, are of the order

of the RHS of (38). We therefore have

WN �η (qM)O(η)d
1
4 (qd, h)θM θ(qd) 1

2−θ.

We insert this in (33) then (30), which yields, with the bounds (28) and choosing η > 0
arbitrarily small,

U(h,Ψ)�ε (qM)εd− 1
4 (qd, h)θM θ(qd) 1

2−θ.

We insert this again in (18), using point (i) of Lemma 6 to bound the sum over σ. We
get

TQ(h,Ψ)�ε (qM)εd 3
4 (qd, h)θM θ(qd) 1

2−θ,
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which gives the bound (6) by using (17), (12) and (9) successively.

0.1.11. Bound on average over h. In this section we justify the bound (7). When H ≤
qd

1
2 , we may simply take the average over h of the bound (6) established in the previous

sections. We henceforth assume that H > qd
1
2 .

Let (ch) ∈ CN, |ch| ≤ 1 be a sequence with∣∣∣∣ ∑
(m,Ω)∈D

f
(
m

M

)
e
(
hΩ
mq

)∣∣∣∣ = ch
∑

(m,Ω)∈D
f
(
m

M

)
e
(
hΩ
mq

)
.

The coefficients (ch) depend at most on (h, q, d, λ, ω,M, f).
Recalling the definition (35), it will suffice to prove that

(42) M reg
H,N := 1

H

∑
H<h≤2H

chM
reg
h,N �η (qHM)O(η)d

3
4 q

1
2 ,

(43) M exc
H,N := 1

H

∑
H<h≤2H

chM
exc
h,N �η (qHM)O(η)d

1
4M θ(qd) 1

2−θ.

The bounds (37) and (41) are valid on average over h, since they do not depend on h.
In the case of (42), a reasonning similar to (36) reduces the problem to the estimation

of

M reg
H := H−2 ∑

f∈B(q,χ)
tf∈R

|φ̃(tf )|
cosh(πtf )

∣∣∣∣ ∑
H<h≤2H

ch
√
hρf∞(h)

∣∣∣∣2.
The large sieve inequality yields

M reg
H �ε (qHM)εH−1

{
1 + H

qd
1
2

}
�ε (qHM)ε,

whence we deduce the bound (42).
As concerns (43), by reasonning similarly to (41), the problem is reduced to considering

M exc
H := H−2 ∑

f∈B(q,χ)
tf∈iR

|φ̃(tf )|2
∣∣∣∣ ∑
H<h≤2H

ch
√
hρf∞(h)

∣∣∣∣2.
We use the large sieve inequality for the exceptional spectrum, in our case lemma
4.8 of [Dra17], using the bound of Kim-Sarnak (see the remark preceding section 4.3
of [Dra17]). We obtain

M exc
H �η H

−1(qM)O(η)
(

1 +
(
qM

N

)2θ)(
1 + d

1
2

(
H

qd

)1−2θ)

�η (qM)O(η)(q2d)2θ− 1
2

(
M

N

)2θ
.

This plainly suffices to prove (43). Formula (7) is deduced in a way similar to the case
of fixed h.
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0.1.12. Bound on average over h and q. Suppose now that d = 1, and ch = e(th)1h∈I
for some interval I ⊂ [H, 2H]. We follow the arguments from the previous sections,
encoding the factor e(th) in the scaling matrix of ∞, which brings us to the estimation
of

M exc
H (q) = H−2 ∑

f∈B(q,1)
tf∈iR

|φ̃(tf )|2
∣∣∣∣ ∑
h∈I

√
hρf∞(h)

∣∣∣∣2.
We sum this over q ∈ [Q, 2Q], and use the weighted large sieve inequality of Deshouillers-
Iwaniec, Theorem 7 of [DI83]. We obtain

1
Q

∑
Q<q≤2Q

M exc
H (q)�ε,η M

O(η)H−1+ε
{

1 + H

Q
+
(
M

N

)2θ}
.

With 2θ remplaced with 1
2 , this follows directly from Theorem 7 of [DI83]. The previous

bound is easily justified by noting that at the conclusion of the proof of Theorem 7, page
278 of [DI83], the quantity

√
Y/Y1 may be replaced by (Y/Y1)2θ. The conclusion of the

proof follows in a way identical to the case of fixed h.

Remarks.
• When H is large, the error term we obtain is slightly better than that announced

in (7). This has no bearing on the application we consider here.
• The factors h and H in the first terms of the RHS of (6)-(8) may be improved

by using integration by parts instead of the trivial approximation (16).

0.2. Proof of Lemma 4. From Lemma 5, we deduce by a standard Fourier analytic
technique the estimate

(44)
Pf (M ; q, r, d, λ, ω, α, β)

= (β − α)Pf (M ; q, r, d, λ, ω, 0, 1) +Oε,D,f ((qM)εd 3
4 (qd) 1

2−θM
1
2 +θ).

We omit the details, which are similar to pages 179 and 180 of [Iwa78]. The only
difference with our treatment lies in the additional terms h and H in the RHS of (6)
and (7), which forces the choice ∆ = (q + M

1
2 )−1 in the argument of Iwaniec. This

induces an additional error term

� ∆−1 +M∆� q +M
1
2 � q

1
2−θM

1
2 +θ,

which is acceptable.
We therefore focus on the treatment of the main term. We require the following

lemma.

Lemma 7. Let x ∈ R with x ≥ 1, D ∈ Z which is not a perfect square, (q, d) ∈ N2

with q ≥ 1, (q, 2D) = 1, d|q and λ (mod d) with (λ, d) = 1. Let χD = (D· ) be the
Kronecker symbol, and κD(n) := (1 ∗ χD)(n). Then

∑
n≤x

(n,q)=1
n≡λ (mod d)

κD(n) = x

ϕ(d)
ϕ(q)
q

∏
p|q

(
1− χD(p)

p

)
L(1, χD) +Oε,D(x 1

2 qε).

Proof. This follows easily from the Dirichlet hyperbola method. �
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Recall that for p - 2D, we have ρ(p) = 1 + (D
p

) = κD(p). We write ρ = κD ∗ hD,
in such a way that the function hD satisfies ∑` |hD(`)|`− 1

2−ε �ε,D 1. When M ≥ 1
and (λ, d) = 1, using Lemma 7 and integration by parts, we deduce∑

(m,q)=1
m≡λ (mod d)

f
(
m

M

)
ρ(m) =

∑
(`,q)=1
`�M

hD(`)
∑

(n,q)=1
n≡λ` (mod d)

f
(
n`

M

)
κD(n)

= 1
ϕ(d)

ϕ(q)
q
L(1, χD)Mf̂(0)

∑
(`,q)=1

hD(`)
`

+Oε,D,f (qεM
1
2 +ε).(45)

Let
CD := L(1, χD)

∑
`≥1

hD(`)
`

=
∑
`≥1

(ρ ∗ µ)(`)
`

.

We obtain

(46) L(1, χD)ϕ(q)
q

∑
(`,q)=1

hD(`)
`

= CD
∏
p|q

(
1 + 1

p

)−1
.

We return now to the estimation of the main term in the RHS of (44). The Chinese
remainder theorem and the relations (45) and (46) with q replaced by qr yield

Pf (M ; q, r, d, λ, ω, 0, 1) =
∑

(m,qr)=1
m≡λ (mod d)

f
(
m

M

) ∑
Ω (mod qm)

Ω2≡D (mod qm)
Ω≡ω (mod d)

1

= ρω,d(q)
∑

(m,qr)=1
m≡λ (mod d)

f
(
m

M

)
ρ(m)

= CD
∏
p|qr

(
1 + 1

p

)−1ρω,d(q)
ϕ(d) Mf̂(0) +Oε,D,f (M

1
2 +εqε),

where we have let, for all ω (mod d) with ω2 ≡ D (mod d),

ρω,d(q) =
∑

Ω (mod q)
Ω2≡D (mod q)
Ω≡ω (mod d)

1.

It is easy to see that ρω,d(q) = ρ(q) if d = 1, and for all p - 2D, 1 ≤ δ ≤ ν, ρω,pδ(pν) = 1
by Hensel’s lemma. We deduce that ρω,d(q) = ρ(q/(q, d∞)) independently of ω. This
concludes the proof of Lemma 4.

0.3. Proof of Proposition 3.

0.3.1. First reduction. We remark first that the trivial bound x2+ε/M for the LHS of (2)
allows us to assume without loss that x ≥M .

To simplify the proof of Proposition 3, we first justify that we may assume the se-
quence (bn) to be supported on odd integers coprime to D. Suppose first, then, that the
estimate (2) holds for such sequences. Letting

(47) rD(x; q) :=
∑
k∈N

q|k2−D

V
(
k

x

)
− xV̂ (0)ρ(q)

q
,
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we have∑
M<m≤2M

∣∣∣∣ ∑
N<n≤2N
(n,m)=1

bnrD(x;mn)
∣∣∣∣ =

∑
M<m≤2M

∣∣∣∣ ∑
1≤v≤2N
v|(2D)∞

∑
N/v<n≤2N/v

(n,2Dm)=1

bvnrD(x; vmn)
∣∣∣∣

≤
∑
v≤2N
v|(2D)∞

∑
vM<m≤2vM

∣∣∣∣ ∑
N/v<n≤2N/v

(n,2Dm)=1

bvnrD(x;mn)
∣∣∣∣.

The bound (2) applied for each c in the RHS yields the desired bound.
We therefore assume in what follows that (bn) is supported on integers n such that (n, 2D) =

1.

0.3.2. Interpreting a congruence condition. We follow the arguments in pages 180-183
of [Iwa78]. To do this, we modify the construction of the class c (mod [n1, n2]), page
183 of [Iwa78], to deal with the fact that in our case, the sequence (bn) is not assumed
to be supported on squarefree integers.

Lemma 8. Let m,n1, n2, `1, `2 ≥ 1 be given, with (2mD,n1n2) = 1. Let
d = (n1, n2)/(n1, n2, `1 − `2),

and suppose that
(48) (m(`1 − `2))2 ≡ 4D (mod d).
Then there exists c ∈ Z, with 0 ≤ c < [n1, n2], such that the sets

D1 =
{
v ∈ Z ∩ [0,m) : v2 ≡ D (mod m)

(m`j + v)2 ≡ D (mod nj) (j ∈ {1, 2})

}
and

D2 =
{

Ω ∈ Z ∩ [cm, (c+ 1)m) : Ω2 ≡ D (mod m[n1, n2])
Ω ≡ m(c− 1

2(`1 + `2)) (mod d)

}
are in bijection.

Remark. The sets D1 and D2 are empty if the condition (48) is not satisfied.

Proof. Let
nj =

∏
p

pνj(p) (j ∈ {1, 2}),

We define c ∈ Z, 0 ≤ c < [n1, n2] as the unique integers satisfying, for all p,

c ≡

`1 (mod pν1(p)), si ν1(p) ≥ ν2(p),
`2 (mod pν2(p)) sinon.

To each v ∈ Z ∩ [0,m), we associate Ω(v) = cm + v ∈ [cm, (m + 1)c). This map is
bijective, and it will suffice to show that Ω(D1) = D2. Suppose v ∈ D1, and let Ω = Ω(v).
Since (m, [n1, n2]) = 1, it suffices to prove the congruence Ω2 ≡ D modulo m and [n1, n2],
separately. We have Ω ≡ v (mod m), which yields Ω2 ≡ D (mod m). For all p, we have

Ω ≡ `jm+ v (mod pνj(p)),
with j = 1 if ν1(p) ≥ ν2(p), and j = 2 otherwise. In both cases, we obtain Ω2 ≡
D (mod pνj(p)), therefore Ω2 ≡ D (mod [n1, n2]). The condition Ω ≡ m(c − 1

2(`1 +
`2)) (mod d) easily follows from the fact that

(m`1 + v)2 ≡ (m`2 + v)2 (mod (n1, n2)).
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Suppose conversely that Ω ∈ D2 is given, and let v = Ω − mc. The congruence v2 ≡
D (mod m) is then immediate. Next, let p be fixed, let νj = νj(p) and suppose ν1 ≥ ν2
(the complementary case is treated in an identical way). We therefore have

c ≡ `1 (mod pν1), Ω2 ≡ D (mod pν1),
which yields directly the congruence (m`1 + v)2 ≡ D (mod pν1). On another hand, we
have

(m`2 + v)2 ≡ Ω2 − 2m(`1 − `2)Ω + (m(`1 − `2))2 (mod pν2).
By hypothesis, we have Ω2 ≡ D (mod pν2). Then,

Ω ≡ m(c− 1
2(`1 + `2)) ≡ 1

2m(`1 − `2) (mod pν2
(pν2 ,`1−`2)),

which yields
2m(`1 − `2)Ω ≡ (m(`1 − `2))2 (mod pν2).

We deduce (m`2 + v)2 ≡ D (mod pν2). We have therefore obtained v ∈ D1. �

0.3.3. Using the dispersion method. We expand the square in the LHS of (2). In agree-
ment with [Iwa78], we let

Y (m) :=
∑

N<n≤2N
(n,m)=1

bn
ρ(n)
n

.

Let also the smooth function f : R→ R be given and such that 11≤t≤2 ≤ f(t) ≤ 11/2≤t≤3.
Finally, we recall the notation (47). The LHS of (2) is bounded above by

(49)
∑
m

f
(
m

M

)∣∣∣∣ ∑
N<n≤2N
(n,m)=1

bnrD(x;mn)
∣∣∣∣2 = S1 − 2xV̂ (0) ReS2 + |xV̂ (0)|2S3,

with
Sj =

∑
m

f
(
m

M

) ∑
0≤v<m

v2≡D (mod m)

Tj(m),

and

T1(m) =
∑∑

N<n1,n2≤2N
(n1n2,m)=1

bn1bn2

∑∑
k1,k2∈N

kj≡v (mod m)
k2
j≡D (mod nj)

V
(
k1

x

)
V
(
k2

x

)
,

T2(m) = Y (m)
m

∑
N<n≤2N
(n,m)=1

bn
∑
k∈N

k≡v (mod m)
k2≡D (mod n)

V
(
k

x

)
, T3(m) =

(
Y (m)
m

)2
.

0.3.4. Estimation of S3. We have

S3 = 1
M2

∑∑
N<n1,n2≤2N

bn1bn2

ρ(n1)ρ(n2)
n1n2

∑
(m,n1n2)=1

M2

m2 f
(
m

M

)
ρ(m).

With g1(t) = t−2f(t), the m-sum in the RHS equals
Pg1(M ; 1, n1n2, 1, 1, 1, 0, 1).

We therefore obtain
(50) S3 = P3 +Oε,D(xεM− 3

2 +θ),
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with
P3 = CDM

−1
( ∫

R
t−2f(t)dt

) ∑∑
N<n1,n2≤2N

bn1bn2A(n1n2)ρ(n1)ρ(n2)
n1n2

.

0.3.5. Estimation of S2. We have

S2 =
∑∑

N<n1,n2≤2N
bn1bn2

ρ(n2)
n2

∑
(m,n1n2)=1

1
m
f
(
m

M

) ∑
0≤v<m

v2≡D (mod m)

∑
k∈N

k≡v (mod m)
k2≡D (mod n1)

V
(
k

x

)
.

We write k = m`+ v with ` ≥ 0 and `� x/m. We therefore have

V
(
m`+ v

x

)
= V

(
m`

x

)
+O

(
m

x

)
,

which yields, similarly to [Iwa78, formula (11)], the approximation S2 = S ′2 +O(xε) with

S ′2 =
∑∑

N<n1,n2≤2N
bn1bn2

ρ(n2)
n2

∑
(m,n1n2)=1

1
m
f
(
m

M

) ∑∑
`≥0

0≤v<m
v2≡D (mod m)

(m`+v)2≡D (mod n1)

V
(
m`

x

)
.

The condition on the supports of f and V imply that the integers ` giving a non-trivial
contribution to S ′2 come from an interval of integers I such that ` � x/M for each ` ∈ I.
For all n2 with ρ(n2) 6= 0, we let n′2 = n2/(n2, n

∞
1 ). Let c ∈ N ∩ [0, n1) be the unique

integer satisfying c ≡ ` (mod n1). We have a bijection{
v ∈ N ∩ [0,m) : v2 ≡ D (mod m)

(m`+ v)2 ≡ D (mod n1)

}

−→
{

Ω ∈ N ∩ [0,mn1) : Ω2 ≡ D (mod mn1)
cm ≤ Ω < (c+ 1)m

}
given by v 7→ mc+ v. Therefore,

S ′2 = 1
M

∑∑
N<n1,n2≤2N

bn1bn2

ρ(n2)
n2ρ(n2/(n2, n∞1 ))

∑
`∈I

∑
(m,n1n2)=1

g2,`

(
m

M

) ∑
Ω∈N

Ω2≡D (mod mn1)
cm≤Ω<(c+1)m

1.

where g2,`(t) = t−1f(t)V (t`M/x), which satisfies the hypothesis (3). The sum over (m,Ω)
is exactly Pg2,`(M ;n1, n

′
2, 1, 1, 1, c

n1
, c+1
n1

), Lemma 4 therefore yields

S ′2 = P2 +Oε,D(xεN− 3
2−θM− 1

2 +θ),
with

P2 = CD
∑∑

N<n1,n2≤2N
bn1bn2

ρ(n1)ρ(n2)
n1n2

A(n1n2)
∫
t−1f(t)

∑
`∈Z

V
(
`tM

x

)
dt.

Uniformly for t ∈ supp f , we use∑
`∈Z

V
(
`tM

x

)
= x

Mt
V̂ (0) +O(1),

which yields P2 = xV̂ (0)P3 +Oε,D(xε), and finally

(51) S2 = xV̂ (0)P3 +Oε,D(xε{1 +N−
3
2−θM− 1

2 +θ}).



MAJORATION DU NOMBRE DE VALEURS FRIABLES D’UN POLYNÔME 17

0.3.6. Estimation of S1 and conclusion. In the sum S1, we let kj = m`j + v be given
with `j ≥ 0, so that

S1 =
∑∑

N<n1,n2≤2N
bn1bn2

∑∑
`1,`2≥0

∑
(m,n1n2)=1

f
(
m

M

) ∑
0≤v<m

v2≡D (mod m)
(m`j+v)2≡D (mod nj)

V
(
m`1 + v

x

)
V
(
m`2 + v

x

)
.

We replace the product V (. . . )V (. . . ) by V (m`1/x)V (m`2/x). The error induced in S1
by this replacement is Oε,D(x1+ε), so that S1 = S ′1 +Oε,D(x1+ε), with

(52)

S ′1 =
∑∑

N<n1,n2≤2N
bn1bn2

∑∑
`1,`2≥0

∑
(m,n1n2)=1

f
(
m

M

)
×

× V
(
m`1

x

)
V
(
m`2

x

) ∑
0≤v<m

v2≡D (mod m)
(m`j+v)2≡D (mod nj)

1

For each (n1, n2, `1, `2), the sum over v is expressed by means of Lemma 8. We let q =
[n1, n2], d = (n1, n2)/(n1, n2, `1 − `2), and

L = {λ (mod d) : (λ(`1 − `2))2 ≡ 4D (mod d)}.

Since (d, 2D) = 1, we have L = ∅ si (`1− `2, d) > 1, and |L| = ρ(d) otherwise. The sum
over (`1, `2) is therefore restricted to (`1 − `2, d) = 1. The sum over (m, v) in the RHS
of (52) equals∑

λ∈L
Pg3

(
M ; q, d, λ, ωλ,

c

q
,
c+ 1
q

)
(ωλ = λ(c− 1

2(`1 + `2))),

with g3(t) = f(t)V (t`1M/x)V (t`2M/x). Since |L| = ρ(d) and ρ(d)ρ(q/(q, d∞)) = ρ(q),
Lemma 4 yields

S ′1 = P1 +Oε,D

(
x1+ε + x2+ε

(
N2

M

)3
2−θ

)
,

with

(53) P1 = CDM
∑∑

N<n1,n2≤2N
bn1bn2

∑∑
`1,`2≥0

(`1−`2,d)=1

ρ(q)
q

A(q)
ϕ(d)

∫
R
f(t)V

(
t`1M

x

)
V
(
t`2M

x

)
dt.

We denote temporarily n0 = (n1, n2). Recall that d = n0/(n0, `1 − `2). For X � 1, we
have

(54)

∑∑
`1,`2∈N

(`1−`2,n0)=n0/d
(`1−`2,d)=1

V
(
`1

X

)
V
(
`2

X

)
= 1(d,n0/d)=1

∑
`∈N

V
(
`

X

) ∑
k∈Z

(k,d)=1

V
(
`+ kn0/d

X

)

= 1(d,n0/d)=1

{
ϕ(d)
n0
|XV̂ (0)|2 +Oε,D(dεX)

}
.

Note that the property ρ(pν) = ρ(p) ∈ {0, 2} (for p - 2D, ν ≥ 1) implies

(55) ρ([n1, n2])
∑

d|(n1,n2)
(d,(n1,n2)/d)=1

1 = ρ([n1, n2])2ω((n1,n2)) = ρ(n1)ρ(n2).
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We insert the estimate (54) with X = x/(Mt) in the RHS of (53) (recall that the addi-
tional hypothesis M ≤ x was justified at section 0.3.1). The factors ϕ(d) compensate,
and the relation (55) allows us to deduce P1 = P ′1 +O(x1+ε), with

P ′1 = |xV̂ (0)|2
M

CD
∑∑

N<n1,n2≤2N
bn1bn2

ρ(n1)ρ(n2)
n1n2

A(n1n2)
∫
R
t−2f(t)dt.

We then have P ′1 = |xV̂ (0)|2P3, and finally

(56) S1 = |xV̂ (0)|2P3 +Oε,D

(
x1+ε + x2+ε

(
N2

M

) 3
2−θ

)
.

Inserting the estimates (50), (51), and (56) in (49), we obtain the desired bound (2).
This concludes the proof of Proposition 3

0.4. Proof of Corollary 2. In this section, we deduce Corollary 2 from the bound (8).
We follow the arguments and notations of sections 4 and 5 de [DI82]. We consider

RH(x, P,D) =
∑

D<d≤2D
λd

∑
0<|h|≤H

∑
m≡0 (mod d)

C(m) logm
m

∑
ν2≡D (mod m)

b̂
(
h

m

)
e
(
− hν

m

)
,

where D ≤ x
1
2 , P ∈ [x, x2], η > 0 is arbitrary, H = Px−1+η, b is a smooth function

compactly supported in [x, 2x], such that ‖b(j)‖∞ �j x−j, C is a smooth function
compactly supported in [P, 4P ], such that ‖C(j)‖∞ � P−j, and (λd) is a sequence of
coefficients with |λd| ≤ 1. We insert the definition

1
m
b̂
(
h

m

)
=
∫
R

e(−ht)b(mt)dt.

Let M = P/D and fd,t(v) = C(Mvd) log(Mvd)b(Mvdt). We obtain

|RH(x, P,D)| � xP−1 sup
|t|∈[x/(4P ),2x/P ]

∑
D<d≤2D

∣∣∣∣ ∑
0<|h|≤H

e(th)
∑
m

fd,t

(
m

M

) ∑
ν2≡D (mod m)

e
(
− hν
md

)∣∣∣∣.
We have ‖f (j)

d,t ‖∞ �j 1, D �M and H �MD. We may therefore apply the bound (8)
to each dyadic subsum H1 < h ≤ 2H1, for 1

2 ≤ H1 ≤ H. We obtain

RH(x, P,D)� x1+ε+O(η)P−1D sup
1
2≤H1≤H

H1
{
H1 +M

1
2 +H

− 1
2

1 D
1
2−θM

1
2 +θ

}
� xε+O(η)

{
x−1DP + (DP ) 1

2 + x
1
2P θD1−2θ

}
.

This is O(x1−η) if D ≤ x−Kη min{x2P−1, x1/(2−4θ)P−θ/(1−2θ)} and K is a sufficiently large
absolute constant. This bound on D, in conjunction with the arguments of section 8
of [DI82], yields the announced result.

0.5. Proof of Lemma 6.
Proof. Write σ ≡ ( u ∗v r ) with r ∈ Z. The classes Γ0(qd)\Γ are in bijection with P1(Z/qdZ),
the correspondance being given by σ 7→ [v : r]. The condition q|C(σQ) then corresponds
to q|Q(v, r).

The relation q|C(σQ) = Q(v, r) implies v|Q(v, r)2. However, we have the congru-
ence Q(v, r) ≡ Q(0, 1)r2 (mod v) and (r, v) = 1, so that finally v|Q(0, 1)2.

The explicit expression of C(∞, a) and of S∞a(h, n; γ) is an elementary computa-
tion similar to section 2.2 of Deshouillers-Iwaniec [DI83]. We omit the details. The
bound (23) is deduced using the triangle inequality, and noting that the condition αδ ≡
u (mod vm) determines α (mod vm/(u,m)).
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For the proof of (24), we use the Chinese remainder theorem. Let p be a prime
number, and let

pµ‖m, pλ‖u, pν‖v pν
′‖v′, p∆‖d.

Our hypotheses (v, u) = (v′,m) = 1 then imply

µ > 0⇒ ν ′ = 0, λ > 0⇒ ν = 0, ∆ ≤ max{ν, ν ′}.

The Chinese remainder theorem shows that if suffices to prove the bounds

(57) Sp(h) :=
∑

α (mod pν+µ)
δ (mod pλ+µ+max{ν,ν′})

δ≡m (mod pλ+ν′ )
(δ−m,pλ+µ)=pλ
αδ≡u (mod pν+µ)

χp(δ)e
(
hα

pν+µ

)
�Q (p∆h, pµ),

where χp is a character modulo p∆. The change of variables δ ← m+ δpλ+ν′ transforms
the LHS into

Sp(h) =
∑

α (mod pν+µ)
δ (mod pµ+max{ν−ν′,0})

(δ,pµ)=1
α(m+δpλ+ν′ )≡u (mod pν+µ)

χp(m+ δpλ+ν′)e
(
hα

pν+µ

)
.

We first deal with the case µ ≤ max{λ, ν}, taking the trivial bound

Sp(h)�Q 1,

which follows from the fact that u, v �Q 1.
Suppose then that µ > max{λ, ν} ≥ 0, in particular, ν ′ = 0. Consider first the

case ν = 0, which implies ∆ = 0, so that the character is trivial and the sum simplies to

Sp(h) =
∑

α (mod pµ)
(α,p)=1

e
(
hα

pµ

) ∑
δ (mod pµ)

αδ≡u/pλ (mod pµ−λ)

1 = pλcpµ(h),

where cr(h) = ∑
b (mod r),(b,r)=1 e(hb/r) is the Ramanujan sum. We obtain

|Sp(h)| ≤ pλ(h, pµ).

Consider then the case ν > 0. This implies λ = 0 and ∆ ≤ ν, and so

Sp(h) =
∑

α (mod pν+µ)
δ (mod pν+µ)

(δ,p)=1
α(m+δ)≡u (mod pν+µ)

χ(m+ δ)e
(
hα

pν+µ

)
= χ(u)

∑
α (mod pν+µ)

(α,p)=1

χ(α)e
(
hα

pν+µ

)

which is a Gauss sum (c.f. [IK04, lemme 3.2]). We therefore have

|Sp(h)| ≤ 2(p∆h, pν+µ).

We obtain in any case the bound (57), which concludes the proof. �
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