MAJORATION DU NOMBRE DE VALEURS FRIABLES D’UN
POLYNOME

R. DE LA BRETECHE & S. DRAPPEAU

The following is a translation of section 8 of [dIBD17|, which is concerned with the
following bound.

Theorem 1. Let o, M, N > 1, MN < 2%, and (an), (b,) be two sequences bounded in
absolute values by 1. Let D € Z which is not a perfect square, and V : R — C be a
smooth function with compact support inside R*.. Then

Z Z ambn< Z v(k) _ :L"V(O) Q(mn)>
(1) M<m<2M N<n<2N keN x mn
(n,m)=1 mn|k?—D

<pyv x%JFEM% + $1+€N%79M*i+9/2’
where ‘7(5) = [ V(t)e(—t&)dt.

Another side-result is the following version of the main theorem of [DI82], with explicit
dependence on the best-known bound towards Selberg’s eigenvalue conjecture. Define

Pp(x) = P+< T (- D)).

r<n<2z

Corollary 2. For 6 € [0,1/4], let k(0) € [1,2] be the unique number satisfying

/5(9) tdt B 1
1 1—20t 4(1-20)

For all e > 0 and D € Z which is not a perfect square, we have
Pp(z) >, p z50¢

for all 0 > 0 which is admissible for Selberg’s eigenvalue conjecture. In particular, 6 =
7/64 is admissible [Kim03|; therefore, for x large enough,

PD(.T) Z I1’2182.
Theorem [1] follows immediately from the following bound, using Cauchy-Schwarz’s
inequality.

Proposition 3. Lete >0, 2, M,N > 1, MN < 22, (b,) € CY with ||b]|loc <1, D € Z
which is not a perfect square, and V : R — C a smooth function compactly supported
inside RY.. Then

2

k N
S| s w2 ov(E) vt

M<m<2M ' N<n<2N keN x mn
(2) (n,m)=1 mn|k?—D

M\ ~3t0
<o (1ro(z) )
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Remark. The left-hand side of (2)) is trivially bounded by M ~'2?™¢, which allows us to
assume from the start that M > N2, and justify the interest of seekmg a value of # as
small as possible.

The previous proposition will be deduced from the following lemma, which is con-
cerned with equidistribution of roots of quadratic congruences.

Lemma 4. Let (¢,r,d) € N3 with (¢,2Dr) = 1 and d|q, X (mod d) an invertible class,
and w (mod d) a residue class such that w?* = D (mod d). Let M > qd, [ be a smooth
Junction compactly supported in R, satisfying

(3) 1o <5 1,

Let 0 < a< <1 and

(4) Pf(M;CLr)da)\awaOé?ﬂ) = Z f( )
(m,Q)eD
a<£<5

where D s the set of pairs (m, <)) such that
(m,qr) =1, m =\ (mod d)
0? =D (mod mq), Q=w (mod d).
Then for all € > 0, we have
(5) Pr(M;q,r,d,\w,a,f) =Ap(M;q,r.d,a, )+ Og,DJ((qrM)Ed%(qd)%_eM%”).
Here, the main term Ay is defined through
A(qr)p(a/(q,d>))

Af(M;q,T’,d,Oé,ﬂ):(5—05)M]?(O)CD gO(d) )

where A(qr) = Tl (1 +1/p)~" and Cp > 0 is a constant depending only on D. The
implicit constant depends at most on €, D, and on the implicit constants in .

The previous estimate follows from the following exponential sums bound.

Lemma 5. Under the notations and hypotheses of Lemmal{, The following bounds hold
for all e > 0.

(1) For 1< |h| < qdz,

© X 1(5)e(B2) s e + (A1) o )0

(m,Q)eD
(2) For 1 <H < qM,

CIE R (5 G PP

H<|h|<2H ' (m,Q)eD

(8) Assume d =1, 3 < Q < M, 3 < H < QM, that t € [0,1], letIC[HQH] be
an interval, and (fo)o<q<2q a sequence of functions satisfying (3) and f,(v) #
0 = v =<1 uniformly in q. Then

1

Q o420 ‘H,ﬂ P n(3p)e ()]
(8) (¢.2Dr)=

e, s H(Qr)" + (TMV{M% + H-%Q%—0M5+9}.
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The implied constants depend at most on €, D, and on the implicit constants in .

Remarks.

e When d = 1, using the Selberg bound 0 < 1/4 (c¢f. [DI83], theorem 4), we recover,
up to the uniformity in h, a result of Duke, Friedlander and Iwaniec [DFI95,
formula (25)] and Té6th [T6t00), formula (15)].

e The bounds @ and are valid for M < qd, but they are then less precise than
the trivial bound O; p (¢ M*'*e).

0.1. Proof of Lemma We focus first on the bound @ We assume that h > 0,
taking complex conjugates if necessary.

0.1.1. Coprimality. Let S’(M,q, \) be the LHS of @ A MAfibius inversion yields

(9) S(M,q, ) = Y ul)S(M/E, gt )
Llqr
o

where y is the MA{ibius function and

S(MygN) = 3 3 f(]\"De(hQ)

meN QeN
m=X (mod d) amq<Q<Bmgq
Q2=D (mod mgq)
Q=w (mod d)

It will suffice to show that S(M, ¢, ) is bounded by the RHS of (0).

0.1.2. Gauss correspondance. Let
2p ={Q(X,Y) = AX*+2BXY + CY?, (A,B,C) € Z*’, B> — AC = D}.
For Q € 2p, we let (A(Q), B(Q),C(Q)) be the coefficients in the expression above. The
group I' = PSLy(Z) acts on Zp through
0Q(z,y) = Q(z,y)o) (0 €T)
where the product on the RHS is the matrix product. In particular,
B(oQ) = ayA + (ad + Bv)B + BoC,

(10) C(0Q) =72A+ 2908 + §2C = Q(v,0)

ifo = ( g g ) By a reasonning identical to [DFI95, p. 247] (see also [Kow04, section 6.1]),
we obtain

(1) S(M,q,\) = Q%Z% Uermz\:r/% f<0(§?\f))e<h§%2)) )
70)

where Z(0) is the property that

and I'g C I is the stabilizer of Q.
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0.1.3. Localization of variables. Let o = (5 ) be a generic element in index of the sum in
the RHS of (11). We introduce, following Téth [T6t00, lemme 4.2], a function ¥ : I' — R
which allows us to encode the quotient by I'q. This function satisfying 3=, cp, ¥(o7) = 1
for all 0 € I'. When D < 0, the function ¥ is constant, and in the opposite case ¥ (o) is
a C* function of the ratio §/v. We also let w : R — R be a smooth function satisfying

for ¢ # 0. We insert the weight w(y/d) +w(§/v) in the RHS of (L1). In the contribution
of the term w(+y/0), we apply to the sums over ¢ and () the involutions changing Q(X,Y’)

to Q = Q(Y,X),and o to 6 = (_f _Va) We then have

B(6Q) = -B(0Q),  C(GQ)=C(0Q).
We obtain
(12) S(M,q,\) = S(h,¥1) + S(—h, ¥,),
with

(13)  (W1(0), ¥a(0)) = (w@)¥ (D), w®)¥(1/1))  (0=1(55) €T\I, t=17/0),

(14) Fyo(o) = qf(o)f(cé‘]j\jg))
and
hB(oQ)
(15) S(h,¥) = Fuo(o)e '
Qeg\:,% UEF(;(:\UF)/FQ N ( C(oQ) >

In what follows, we let ¥ € {W;, Uy} be fixed, noting that this function (and so the
associated function Fy ) vanishes whenever [t| > 2 (with the notation (13))).

0.1.4. Simplification of the phase. We write the definition as S(h, V) = Y per 2, Sq(h, ¥).
The sum over () is finite and its number of terms depends at most on D. It will therefore
suffice to bound Sg(h, V) separately for each Q). For o € I, we define

« o *
QSJ:;GR/Z (g:(’Y*)v 77&0)
The identity, due to Hooley [Hoo63, formula (27)],

e(hB(ch)
CloQ)

is then established similarly to lemma 4.3 of Toth [T'6t00]. Inserting this in Sg(h, V),
we obtain

(17) So(h, V) =Ty(h, Fyg) + O(h),
with

(16) ) = elhéx) + Olh(aM)™)

To(h,F)= > F(o)e(ho,).
O'GFoo\F/FQ
P (o)
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0.1.5. Congruence conditions. We decompose by the Hecke congruence subgroup I'g(gd)

to obtain
To(h,U)= >3 F(r0)e(hgrs).
7€l \o(gd)
o€l (qd)\I'
P(ro)

Ifr= (3 g) € I'o(qd), then the relations as well as ¢d|y show that
q|CeQ),
P(ro) <4 6% 'C(0Q) = A (mod d),
B(0Q) = w (mod d).
Since (A, d) = 1, the second condition is detected by Dirichlet character, which yields

1 -
(18) To(h, W) = —= > x(V) > x(¢7'C0Q)Uqe(h, V),
90( ) X (mod d) o€lg(gd)\I’
P* (o)
with
U(h, V) =Uqo(h,¥) = Z %F(Ta)e(hgﬁﬂ,),
7€l \o(qd)
where &2*(0) now denotes the conditions
, q|CoQ)
(19) 7o) & {B(JQ) = w (mod d)

and ¢ denotes the central character defined by

I(r) =X*()  (r={(5) € To(qd)).
0.1.6. Reminders on generalized Kloosterman sums. In this section, we recall some facts
on Kloosterman sums. We refer to chapters 2 and 4 of [Iwa97] for definitions. Let a,b €
PY(R) be two cusps for Ty(qd), of stabilizers T’y and T’y and scaling matrices o4, 0, €
PSLy(R), meaning that

I',= JaFooacfl, Iy = abFooagl.
A cusp is equivalent under the action of I'g(gd) to a unique cusp a’ = u/v, with
v>1, vlgd, (u,v)=1, 1<u<(v,qd/v).

We may then define the width of the cusp a to be the number

q
(q,v%)

(20> Wq =
We associate to (a, b) the set of moduli

C(a,b) = {c €R": 3a,8,6 € R, (2‘ 5) € Ua_lfab}.

J
For all ¢ € C(a,b) et (m,n) € Z?, we define the Kloosterman sums
— o e\ am + on
W Sammn= T Ha(tiene(E),
6€0,y) : v

(3 g)EUﬂ_lFo(qd)ab

We refer to section 4.1.1 of [Dral7] for more details, notably on the dependence of Sy, (m, 1; ¢)
with respect to the scaling matrices (o4, 0p). In this work, we will use the following facts.
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Lemma 6. Let o € To(qd)\I satisfy the conditions 2*(c) defined in (19).

(1) The number of such o is O(dr(q)).
(2) Suppose that the cusp a = ooo is equivalent to u/v, with vlg, 1 < u < v
and (u,v) = 1. Then v|Q(0,1)?, in particular v = Og(1), and
qd

22 = =0 qd.
2 v = (d) <2

(8) The set of moduli C(co, a) is

C(oo,a) = {w?vm, meZ: (m,qd/v) = 1}.
(4) When v = wévm € C(o0,a), the Kloosterman sum Sooq(h,n;7y) is given by

Socal(h,n; ) = 2 ﬁ(Ig)e(haij;]m)’

/
a (mod vm) vm U[’U, v

d (mod u[v,w']m)
d=m (mod wv’)
(6—m,um)=u
ad=u (mod wvm)

where we have put v' = qd/v. Here, the scaling matrices are

Ooo = Id, op = | Ve 071 .
vyw  (uy/w)
(5) We have the trivial bound

v
(23) |Sooa(h> n; 7)| < (U U’) (m> u)m <o m,
(6) When n =0, we have
(24) 1Saca(h, 0:9)| < 7(2m) =@M (dh, m).

The proof of this lemma, which is independant from the rest of the proof of Lemma [f]
will be given below in section [0.5]

0.1.7. Completion of sums. In the sum U(h, ¥), we change 7 to 70!, so that
U(h, V) = > I(ro HYF(7)e(he,).
7€l \o(gd)o

The cusp a = ooo is equivalent to u/v for some v|qd and (u,v) = 1, and this expression
is unique if we impose 1 < u < (v, ¢d/v). We temporarily write

a
¢ (O wa/) ¢ ¢

so that the stabilize T'y C Tg(qd) of a satisfies 'y = 0,l'wo0; . In the sum on the RHS
of , we replace again 7 by 77, ! noting that this leaves the quantity ¢, unchanged.
We obtain
(25) U(h, V) = Z Iro Y (rm Ye(h,).
7€l \l'0(qd)q
At this point, we remark that (v, ¢d/v)|qg. In particular, the cusp a is singular for ¥,

meaning that
I(r)=1 (T €ly).
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We separate the sum over 7 in the RHS of according to right classes modulo I'.
Note that for w € T'y,, we have ¢,, = ¢, (mod 1), as well as

I(rwo, ') = I(ro, ) (ogwo, ) = I(ro™ ).
We obtain

Uh, W)= > d(ro;e(hs:) Y F (T(55) 7).

7€l \I0(¢d)oa/T oo keZ

Given the relations and , the function

t— F(T (é i) Tu1>

is smooth, with compact support, and only depends on the lower entries of 7. If 7 =

(55), then
F(r (é i) ) = ( (ij e+ ol 2) )

The Poisson summation formula yields

5 (e () 4)5) - o) St

keZ 7/ nen

Gy, n) = /R F( (7;;; w;ﬂ;))e(—nwdt.

Using the definition (21)), we finally obtain
(26) Uh, W) =3 > Socalhyn;7)G(v,n).

nez vyeC(oo,a)

where

0.1.8. Localization and preparation of variables. We recall that w, <¢ ¢d. By definition
of F' = Fy g, we have

Q(%Fytwu)
G(, :/llfta <) —nt)dt.
(rm) = [ wltwo) £ (= 22 et
Whenever the integrand is non-zero, we have [¢t| < 2w, ! and v =g ; ¢(dM )%. Integrating
by parts (c¢f. lemma 5.1 of [T'6t00]), we obtain

(27) G(y,n) <; (qd)’'n™7  (j €N).

The implied constants here also depend on the implied constants in ; this dependency
will not be explicited to clarify the notations.
Let Ny := qd(Mg)". In the RHS of (26]), we isolate the contribution of Uy (resp. Uy)

coming from n = 0 (resp. |n| > N;). The bounds (23), and yields
ol )] e (ad) ™ D0 [Sucalh 0:7)] < (Mah)d g M,

vEC(00,a)
(28) =q(dM)/?
A
Ui, 0] <50 @2 (5) < (@M
choosing j = j(n) sufficiently large. Both error terms here are bounded by the RHS

of @
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On another hand, Faa di Bruno’s formula shows that the function G satisfies
ak—i—é

WG(% Y) o=y

y=n

<<51,K2 /7_61 (qd) ~ht .

Similarly to , this bound also depends on the implicit constants in (3)).
We introduce a partition of unity for the variable n,

Z G2k (7) n

0<k<K

where K < 2+ log(Ny)/log2, and for 1 < N < Ny, the function Gy(v,n) is smooth
with respect to both variables, vanishes outside n € [N/2,2N]| and satisfies

(29)

8k+€

WGN(xay) o=

y=n

< (gd) 'y F(min{gd, N}) ™" < (¢M)°?") (qd) 'y FN .

In accordance with this decomposition, we have

(30) S Y Saalhmn)Glrn) = Y Vi,

0<|n|<N1 vE€C(00,a) 0<k<K

(31) VN = Z Z Secalhs1;7)GN (7, n).

N/2<[n|<2N v€C(o0,q)

We then let

P = [ xS ey, antrm = [ F(W,s)d—nf)de

The integral defining F' is supported on y < N, and when F(z,£) # 0, we necessarily
have z =< X := (hN/q2dM)z. Faa di Bruno’s formula again implies

_ d)"'N
hoF(z,8) <, (gM)°WX kl(q—|-)(]\/'§)2

Here the implied constant in O(7n) is independent of k. We finally let
Ge(x) = X (1+ (N€)*)qd(xN) ™ (¢M) ™7 F(,€)

for some positive number w = O(n), so that x +— ¢,(x) is smooth, compactly supported
on r =< X and satisfies

(32) sup |6 <; X7,
EeR

Here again the implied constants depend on the implied constants in . We then have

33 Vi =4 dezMz/iVV de,
where we have let
SSa(h, n; 4my/hin|
(34) W)= > an ) ( 7>ng< >’
N/2<|n|<2N y€C(c0,0) i 7

as well as a,, = 1/|n|/N, and where we have incorporated the factor e(—n¢) in the scaling

matrix of co (which is indicated by the notation Ségﬁ)
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0.1.9. Using Kuznetsov’s formula. We bound Wy separately for each £&. We omit the
quantity £ from the notation, and we will use from (a,) and ¢ only the bounds |a,| < 1,
the bounds and the fact that ¢(z) # 0 implies x < X, where we recall that X =<
(hN/q*dM)>.

For each n € [N/2,2N], we apply Kuznetsov’s formula (lemma 4.5 of [Dral7], with k =
0). We obtain

Socalh,n; Ve
o Dol (V) s st bt 0>0)
vEC(00,a)
Sooa h’ ; 47'(' h n
> Sallor) (TN _ o 1 (n<0)
YEC(00,a) v v 7 ’

where

¢(ty) 1—
M= S 2 R pra(n),
b, fegaz(q,x) cosh(mty) / !

and A, ,, éa,ffn, z%’f;z are given by similar expression. Here, the set %(q, x) denotes an
orthonormal basis of Maass cusp forms f, each being an eigenfunction of the hyperbolic
Laplacian, with associated eigenvalue \; = i + tfc and Fourier coefficients psq(n). We
refer to section 4.1.2 of [Dral7| for the associated definitions and normalisation. We
have t; € RU [—i6, 0], where we recall that § < 7/64 by Kim and Sarnak [Kim03], and
that the Selberg-Ramanujan conjecture predicts that § = 0. The transform gg in the
expression above is given by

~ 211

30 = ey o (oel@) = Tle)o(a)

~ sinh(rt

dz
€T

where J,(z) is the J-Bessel function. The transform ¢ satisfies the bounds in lemma 4.4
of [Dral7] (see lemma 2.4 of [Toplh] for stronger bounds). In the present case, we
have X < (¢M)"/?, so that

(gM)*"(1 + [t])~2, teR,

6(1)] < {(Mq)nﬂ(q?dM/hN)'t', te[—i/d,i/4].

The quantity @@hin (resp. J%,",) corresponds to the contribution of non-holomorphic
Eisenstein series (resp. to the contribution of holomorphic cusp forms of weight > 2).
We study in detail .#Z ™, the other terms being analyzed in a similar manner.

Our treatment differs depending on whether we average over h or not.

0.1.10. The case (h,q) fized. We separate in ///}fn the contribution of functions f €
HB(q,x) with ty € R, from those with ¢; € {R. According to this decomposition we write

(35) W= > andly, =M%+ AN,

N/2<n<2N

where the notation corresponds to “regular” and “exceptional”. The Cauchy-Schwarz
inequality yields

(36) K| < (MM,
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with
O(ty)]
5 LUy
feg(;z,x) cosh(rty)
thR
o(ty)] 1 2
MEE = Z " Z apn2pga(n)| -
F€2(q,x) COSh(mf ) N/2<n<2N
thR

To bound ., ®, we use lemma 2.7 of [Top15], so that

=

1 h
A% < (ah M {1+ (qd 1)
q 2

To bound .#x®, we use the large sieve inequality (in our case, proposition 4.7 of [Dral7])

N
(37) MEE <. (qM)aN{l T }
qd>
Our hypotheses h < ¢ and N < Nj then imply
(38) M <y (qM)OMg3dT,
For each h, we have by the Cauchy-Schwarz inequality
(39) ‘ exc| << ( exc K[XC)§’
2

Z ann2ppa(n)| .

N/2<n<2N

(40) = Y |oty)Phlose(B)f, Az = Y
fe%(a,x) Fe%(a;x)
thiR thiR

The large sieve again yields

N
(41) M <. (qM)EN{l = }
q 2

For .#*°, we use lemma 2.9 of [Top15|,
M < (qh M) (gd, H)MN T},
Our hypothesis N < N; then implies
A <y (qh M) (qd, h)' M (qd) 3~
The right-hand side here is larger than that obtain in (38)). Therefore, we have
S andty, <y (qhM)°Md (qd, )’ M (qd)>

N/2<n<2N

The same bounds holds for ., ,,, whereas the other terms & + and 77, are of the order
of the RHS of . We therefore have

Wy < (qM)°ds (qd, h)" M (qd) ="
We insert this in then , which yields, with the bounds and choosing n > 0
arbitrarily small,
U(h, W) <. (¢M)*d =% (qd, h)’ M’ (qd)=~".
We insert this again in (18), using point (i) of Lemma [f] to bound the sum over o. We
get
To(h. W) <= (¢M)"d* (qd, h)’M° (qd)= ™",
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which gives the bound @ by using , and @ successively.

0.1.11. Bound on average over h. In this section we justify the bound . When H <
qd%, we may simply take the average over h of the bound @ established in the previous

sections. We henceforth assume that H > qd%.
Let (cy) € CN, |cn| < 1 be a sequence with

GGl 2 GG

The coefficients (cp) depend at most on (h,q,d, \,w, M, f).
Recalling the definition , it will suffice to prove that

1
(42) M= Y el <y (QHM)OPdigr,
H<h<2H

1
(43) M= D ol < (qHM)°™ ds MO (qd)z~°.
H<h<2H

The bounds and are valid on average over h, since they do not depend on h.
In the case of , a reasonning similar to (36| reduces the problem to the estimation
of

re _ H(t 2
MiE=H? > W‘ S eVhpreo(h)
re(gx) €08 (mf) H<h<2H

thR

The large sieve inequality yields

H
//reg <. (qHM)SH_l{l—i- }<<E (qHM)a,

gz
whence we deduce the bound .
As concerns , by reasonning similarly to , the problem is reduced to considering

2

Z Ch\/ﬁpfw(h)

H<h<2H

M =H2 S oty
Fe€%(q,x)
thiR

We use the large sieve inequality for the exceptional spectrum, in our case lemma
4.8 of [Dral7], using the bound of Kim-Sarnak (see the remark preceding section 4.3
of [Dral7]). We obtain

o) qM>29>< ;(H)”9>
M7 <o BN @O0 (14 (25) ) (14 .

MO (24)20- 3 M 2

This plainly suffices to prove (43)). Formula ([7)) is deduced in a way similar to the case
of fixed h.
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0.1.12. Bound on average over h and q. Suppose now that d = 1, and ¢, = e(th)lper
for some interval Z C [H,2H]. We follow the arguments from the previous sections,

encoding the factor e(th) in the scaling matrix of oo, which brings us to the estimation
of

2
S Vhpgw(h)]

hel

Mi(q)=H? Y oty
fe#(q.1)
tyeiR

We sum this over ¢ € [@, 2Q)], and use the weighted large sieve inequality of Deshouillers-
Iwaniec, Theorem 7 of [DI83]. We obtain

1 H  /M\2°
o X (@) ey w01 2 ()]
Q<q=2Q

With 260 remplaced with %, this follows directly from Theorem 7 of [DI83]. The previous
bound is easily justified by noting that at the conclusion of the proof of Theorem 7, page
278 of [DIS3], the quantity /Y/Y; may be replaced by (Y/Y;)?. The conclusion of the
proof follows in a way identical to the case of fixed h.

Remarks.

e When H is large, the error term we obtain is slightly better than that announced
in (7). This has no bearing on the application we consider here.

e The factors h and H in the first terms of the RHS of @— may be improved
by using integration by parts instead of the trivial approximation ([16]).

0.2. Proof of Lemma [} From Lemma [, we deduce by a standard Fourier analytic
technique the estimate

Pf(M;q,r,d,)\,w,oz,ﬁ)

44 3 1 1
(44) = (8 —a)Pr(M;q,r,d,\w,0,1) + O&D,f((qM)EdZ(qd)5_9M5+9).

We omit the details, which are similar to pages 179 and 180 of [Iwa78]. The only
difference with our treatment lies in the additional terms h and H in the RHS of @
and (7)), which forces the choice A = (¢ + M %)_1 in the argument of Iwaniec. This
induces an additional error term

<AV MA < g+ M? < g2 Mt

which is acceptable.
We therefore focus on the treatment of the main term. We require the following
lemma.

Lemma 7. Let x € R with x > 1, D € Z which is not a perfect square, (q,d) € N>
with ¢ > 1, (¢,2D) = 1, d|q and X (mod d) with (\,d) = 1. Let xp = (2) be the
Kronecker symbol, and »p(n) := (1% xp)(n). Then

_ 7T (Q) XD(p) 1e
% #p(n) = g&(d)qg (1 — ) )L(LXD) + O:p(z2q°).

(n,q)=1
n=\ (mod d)

Proof. This follows easily from the Dirichlet hyperbola method. 0
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Recall that for p 1 2D, we have p(p) = 1 + (%) = »p(p). We write p = sp * hp,

in such a way that the function hp satisfies >, ‘hp(é)lﬁ’%’g <.p 1. When M > 1
and (A, d) = 1, using Lemma [7| and integration by parts, we deduce

14
> i(§)em = X om S (5
mz(;\n (qn);cll d) (§<q<)1\_41 nE)(\g((lI)nzoti d)
_ 1 ©(q) hp(?) e npite
(45) = g MM 3 B Ol
Let
Cp = L(l XD>Z hDM) Z (p*ﬂ)@)
>1 ¢ >1 4
We obtain
(q) hp(f) _ N
(46) L1 x0) 7, (%jl : _CDH(1+p> .

We return now to the estimation of the main term in the RHS of ([44). The Chinese
remainder theorem and the relations and with ¢ replaced by qr yield

Pf<M;Q7T7d7)\7w7071): Z f(;z.) Z 1
Q

(m,qr)=1 (mod gm)
=) (mod d) (mod qm)

w (mod d)
= pu,a(q) ( )

1 _1 w Iy l4e e
B CDpltz[r (1 * p> pso’zic(l;!) Mf(0) + Ocp.s(M>"¢),

where we have let, for all w (mod d) with w? = D (mod d),

/M,d(Q) = Z L

Q (mod q)
Q22=D (mod q)
Q=w (mod d)
It is easy to see that p, 4(q) = p(q) if d =1, and for all p 12D, 1 <5 < v, p,s(p") =1
by Hensel’s lemma. We deduce that p,4(q) = p(¢/(q,d*>)) independently of w. This
concludes the proof of Lemma [4]

0.3. Proof of Proposition [3|

0.3.1. First reduction. We remark first that the trivial bound x?*¢/M for the LHS of
allows us to assume without loss that x > M.

To simplify the proof of Proposition [3| we first justify that we may assume the se-
quence (b,) to be supported on odd integers coprime to D. Suppose first, then, that the
estimate holds for such sequences. Letting

(@7 - > v(%)-w0l2

keN q
q|lk?—D
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we have

> > bnrD(x;mn)’ = > > > bunt (2 vmn)’

M<m<2M ' N<n<2N M<m<2M ' 1<v<2N N/v<n<2N/v
(n,m)=1 v[(2D)*®  (n,2Dm)=1

< Z Z ‘ Z bynTp(; mn)’

v<2N vM<m<2vM ' N/v<n<2N/v
v|(2D)*>° (n,2Dm)=1

The bound applied for each c in the RHS yields the desired bound.
We therefore assume in what follows that (b,,) is supported on integers n such that (n, 2D) =
1.

0.3.2. Interpreting a congruence condition. We follow the arguments in pages 180-183
of [Iwa78]. To do this, we modify the construction of the class ¢ (mod [ni,ns]), page
183 of [Iwa78], to deal with the fact that in our case, the sequence (b,) is not assumed
to be supported on squarefree integers.

Lemma 8. Let m,ny,ng, l1,0y > 1 be given, with (2mD,nins) = 1. Let
d = (ny,n2)/(ny,ne, b4 — ly),

and suppose that

(48) (m(fy — £))* = 4D (mod d).

Then there ezists ¢ € Z, with 0 < ¢ < [ny,ng|, such that the sets

~ v*=D (mod m)
D1 = {U € ZN [Ovm) . (mfj +U)2 =D (HlOd nj) (] S {172}) }
and

Dy = {Q € ZNem,(c+ 1)m) : Q? = D (mod m[ny,ny)) }

0= m(c - %(61 + 52)) (I’IlOd d)

are in bijection.
Remark. The sets D; and D, are empty if the condition is not satisfied.

Proof. Let
ny=[1p"" (G e{1,2}),
p
We define ¢ € Z, 0 < ¢ < [n1,ng] as the unique integers satisfying, for all p,
_ )4 (mod pr P siovi(p) > a(p),
" | 42 (mod p*2®)  sinon.

To each v € Z N [0,m), we associate Q(v) = em + v € [em, (m + 1)c). This map is
bijective, and it will suffice to show that Q(D;) = D,. Suppose v € Dy, and let 2 = Q(v).
Since (m, [ny,ns]) = 1, it suffices to prove the congruence 2 = D modulo m and [ny, ns),
separately. We have Q = v (mod m), which yields Q? = D (mod m). For all p, we have

Q= ¢;m+v (mod p*i?)),

with j = 1 if v1(p) > w(p), and j = 2 otherwise. In both cases, we obtain Q? =
D (mod p*®), therefore Q> = D (mod [n;,n,]). The condition Q = m(c — () +
¢3)) (mod d) easily follows from the fact that

(mly +v)? = (mly +v)? (mod (ny,ns)).
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Suppose conversely that Q0 € D, is given, and let v =  — mec. The congruence v? =

D (mod m) is then immediate. Next, let p be fixed, let v; = v;(p) and suppose v4 > 15
(the complementary case is treated in an identical way). We therefore have
¢ =/, (mod p"), Q? = D (mod p"),

which yields directly the congruence (mf; + v)> = D (mod p**). On another hand, we
have
(mly +v)? = Q% = 2m(l; — £5)Q + (m(f; — £3))? (mod p*?).
By hypothesis, we have Q% = D (mod p*?). Then,
Q=m(c— it +6)) = tm(ly — £5) (mod m)
which yields
2m(l; — £,)Q = (m(f — £3))? (mod p*?).
We deduce (mfy +v)? = D (mod p*?). We have therefore obtained v € D;. O

0.3.3. Using the dispersion method. We expand the square in the LHS of . In agree-
ment with [Iwa78], we let

3 p(n)
N<n<2N
(n,m)=1

Let also the smooth function f : R — R be given and such that 1,<,<o < f(t) < 11 0<i<3.
Finally, we recall the notation . The LHS of is bounded above by

(49) ;K;’;)' S burp(asmn)|

= S, — 22V (0)Re Sy + |2V (0)]2Ss,

N<n<2N
(n,m)=1
with
m
5=21(5) X mom),
m 0<v<m
v2=D (mod m)
and

Ti(m)= 3.3 bubn, >3 V<kl>v(];2)

N<ni,na<2N k1 kaeN z
(n1ng,m)=1 kj=v (mod m)
kJQ-ED (mod nj)
Y k Y 2
To(m) = L) S V() Ty(m) = <(m>) .
m N<n<2N keN z m
(n,m)=1 k=v (mod m)
k2=D (mod n)

0.3.4. Estimation of S3. We have
p ni)p(n M? /m
N<n1 ne<2N ninz (m,nin2)=1
With g;(t) = t~2f(t), the m-sum in the RHS equals
P, (M;1,mmn9,1,1,1,0,1).

We therefore obtain
(50) S5 = Py + O.p(x*M~217),
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with

Py = CpM~ (/tzf dt) SN b b A(mng) 2PT2)

N<nino<2N N2

0.3.5. Estimation of So. We have

—p(ng) 1 ,./m
S, = by f() v()
’ N<%:nzz<:21v N2 (m,nlz:m)=1 m* A\ M og;m 1%\1

v2=D (mod m) k=v (mod m)
k2=D (mod n1)

We write k = ml 4+ v with £ > 0 and ¢ < x/m. We therefore have

V() v () o (s)

which yields, similarly to [Iwa78, formula (11)], the approximation Sy = S5+ O(z°) with

p(ns) L ,./m ml
5= LY mmEE Y () TXv(T)
N<ni,na<2N N2 (m,ning)=1 O<£22
’UQEDi(mOd m)
(mé+v)?=D (mod n1)

The condition on the supports of f and V' imply that the integers ¢ giving a non-trivial
contribution to S} come from an interval of integers I such that ¢ < x/M for each ¢ € I.
For all ny with p(ng) # 0, we let ny, = ny/(n2,n$°). Let ¢ € NN [0,ny) be the unique
integer satisfying ¢ = ¢ (mod n;). We have a bijection

{v e NN [0,m): ?(];?_FDU)(;H;dDm()mOd n) }
—<Q e NN|0,mny) : |= e
{ 0. mm) Q? = D (mod mn,) }

em < Q< (c+1)m

given by v — mc + v. Therefore,

ZZ Z Z 92,e(m> Z 1.

My n2<2N ”2/’(”2/ ”27”1 ) tet (m,ning)=1 M QeN
Q2=D (mod mn1)
em<Q<(c+1)m

where gy ,(t) =t f(t)V (tEM/x) which satisfies the hypothesis (3]). The sum over (m, Q)
is exactly P, ,(M;nqy,n5,1,1,1 1) Lemma {4 therefore ylelds

92,0 ) 4 ’nl’n

Sé = Pg + OEyD(ZL‘EN_E_OM_E—i_G),
with
étM)

i

—Cp % b 2P ) [ Zv(

N<nina<2N ning =/
Uniformly for ¢ € supp f, we use
(tM

>v(

ez T > Mt
which yields P, = 2V (0)Ps + O, p(2°), and finally

= V(0) +0(1),

(51 S2 = 2V ()P + 0. p(a{1+ N300+,
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0.3.6. Estimation of Si and conclusion. In the sum S, we let k; = ml; + v be given
with ¢; > 0, so that

mly + v mby + v
Si= Y b XYY f< D S| v )
N<ni,na<2N £1,£22>0 (m,ning)= o<v<m Z x
v?=D (mod m)
(mé;+v)?=D (mod nj)

We replace the product V(... )V (...) by V(mt,/z)V (mly/z). The error induced in S
by this replacement is O, p(z'*¢), so that S; = S + O, p(z'*¢), with

= T min XY ¥ ()

N<ni,na2<2N £22>0 (m,ning)=

SN x

z z 0<v<m
v2=D (mod m)
(mlj+v)?=D (mod nj)

For each (ni,ng, ¢1,¢3), the sum over v is expressed by means of Lemma . We let ¢ =
[nla n2]7 d — (nh n?)/(nla n??‘gl - 62)7 a’nd
L={)(modd): (At; —¥£))*> =4D (mod d)}.

Since (d,2D) = 1, we have L = @ si ({; —l2,d) > 1, and |L| = p(d) otherwise. The sum
over ({1,¢s) is therefore restricted to (¢; — ¢5,d) = 1. The sum over (m,v) in the RHS

of equals
c c+ 1)

> P, (M q,d, \,wy, —,
\eL q q

with gs(t) = f(O)V(t0M/[x)V (tloM/x). Since [L] = p(d) and p(d)p(a/(q,d>)) = pla),
Lemma [] yields

(wWr = Ale = 3(0 + £2))),

NG

N?
Si — Pl + OE,D<:U1+E +x2+E(M>

with
(53) Pi=CoM % bl % @A/f (tél v (t&M)dt‘
N<ni,n2<2N 0, g2>)0 T
(b1 —¥2,d)=1

We denote temporarily ng = (n1,ns). Recall that d = ng/(ng, {1 — ¢2). For X > 1, we
have

mr V() =t () 2 V(TR

L1 —l2,n9)=no/d (k,d)=
(54)  (glepornel

d N
. /d“{@r(bo) XVO) +0.p(dX) .
Note that the property p(p”) = p(p) € {0,2} (for p1 2D, v > 1) implies
(55) p(lnma]) D0 1= p([na,na])2910"2) = p(ny)p(ng).

d|(n1,n2)
(d,(n1,m2)/d)=1
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We insert the estimate with X = x/(Mt) in the RHS of (recall that the addi-
tional hypothesis M < x was justified at section [0.3.1]). The factors ¢(d) compensate,
and the relation allows us to deduce P, = P| + O(z'*¢), with

’”“"V VOF S bub, g Pme(n2) A(nans /t‘Qf

/
Pl nin
N<n1 n2<2N 172

We then have P = |m‘7(0)|2P3, and finally

N N2 ——0
(56) Si = [V (O P+ Oup (¥ +22(57) 7).

Inserting the estimates , , and in , we obtain the desired bound .
This concludes the proof of Proposition

0.4. Proof of Corollary . In this section, we deduce Corollary [2 from the bound .
We follow the arguments and notations of sections 4 and 5 de [DI82]. We consider

C(m)logm ~(h hv
Rae.pD)= ¥ Ay oy Gem e gl Iy
D<d<2D  0<|h|<H m=0 (mod d) m v2=D (mod m) ' m

where D < z2, P € [z,2%], n > 0 is arbitrary, H = Pz~'*", b is a smooth function
compactly supported in [z,2z], such that ||bj)|\oo <; 7, C is a smooth function
compactly supported in [P,4P], such that [|[OY| . < P77, and ()\y) is a sequence of
coefficients with [\g| < 1. We insert the definition

1~/h

—b(=-) = [ e(=ht)p(me)a

it () = Jettomy
Let M = P/D and fy,(v) = C(Muvd)log(Mvd)b(Mwvdt). We obtain

> e(th)z,fd,t<z> > e( hy)‘

|Ry(z, P,D)| < zP™* sup
0<|h|<H m V2=D (mod m) md

[tl€[z/(4P),22/P] p<d<2D

We have Hfd o <; 1, D < M and H < MD. We may therefore apply the bound (§)
to each dyadic subsum H; < h < 2H;, for % 5 < Hy < H. We obtain

1 _1 1 1
Ry(z,P,D) < x"***°WpP='D sup H{H, + M? + H, *D>~"M>*"}
<H\<H

< 2=t 9371 DP + (DP)? + 22 P'D'~*}.

This is O(2'™) if D < 2= K" min{z?P~!, 21/(2=49) p=6/(1=20)1 and K is a sufficiently large
absolute constant. This bound on D, in conjunction with the arguments of section 8
of [DI82], yields the announced result.

0.5. Proof of Lemma [6l

Proof. Write 0 = (%) withr € Z. The classes ['y(qd)\I are in bijection with P*(Z/qdZ),
the correspondance being given by o +— [v : r]. The condition ¢|C'(0Q) then corresponds
to ¢|Q(v, 7).

The relation ¢|C(cQ) = Q(v,r) implies v|Q(v,7)?. However, we have the congru-
ence Q(v,7) = Q(0,1)r? (mod v) and (r,v) = 1, so that finally v|Q(0,1).

The explicit expression of C(oco,a) and of Sy4(h,n;7) is an elementary computa-
tion similar to section 2.2 of Deshouillers-Iwaniec [DI83]. We omit the details. The
bound is deduced using the triangle inequality, and noting that the condition ad =
u (mod vm) determines o (mod vm/(u, m)).
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For the proof of , we use the Chinese remainder theorem. Let p be a prime
number, and let

plm, pMu, plle pll, pld.
Our hypotheses (v,u) = (v/,;m) = 1 then imply
p>0=1v=0, A>0=v=0, A <max{y, v}

The Chinese remainder theorem shows that if suffices to prove the bounds

ha
67) S= X () <o @hp),
a (mod p¥tH) p
§ (mod prrtmax{v.v'})

6=m (mod p>‘+l’/)
(6—m,prti)=p>
ad=u (mod pY*tH)

A+’

where Y, is a character modulo p®. The change of variables & < m + dp transforms

the LHS into

/ ha
Sp(h) = > Xp(m + 6p™* )e(w> :
a (mod p¥TH) p
¢ (mod p“*max{l””/’o})
(0,pH)=1
a(m+§p’\+”l)5u (mod p¥TH)

We first deal with the case u < max{\, v}, taking the trivial bound
Sp(h) <@ 1,

which follows from the fact that u,v <¢ 1.
Suppose then that g > max{\, v} > 0, in particular, v = 0. Consider first the
case v = (0, which implies A = 0, so that the character is trivial and the sum simplies to

ha
Sp(h) = > e(u) > 1 = prcpu(h),
a (mod pH) p d (mod p*)
(a,p)=1 ad=u/p* (mod pt—*)
where ¢, (h) = X5 (mod r),(br)=1 €(hb/7) is the Ramanujan sum. We obtain

|S,(h)| < p*(h, p").

Consider then the case v > 0. This implies A = 0 and A < v, and so

ho . ho
Sy(h) = > x(m + 6)e(pu+u> = x(u) > X(&)e(p,ﬂru)
a (mod p¥tH) a (mod p¥t#)
§ (mod p¥tH) (a,p)=1

(6,p)=1
a(m+38)=u (mod p*t++)

which is a Gauss sum (c.f. [IK04, lemme 3.2]). We therefore have
[Sp(R)] < 2(p™h, ™).

We obtain in any case the bound , which concludes the proof. 0
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