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Weyl sums, mean value estimates,
and Waring’s problem with friable numbers
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Sary Drappeau (Marseille) and Xuancheng Shao (Oxford)

1. Introduction

1.1. Waring’s problem. Posed in 1770, Waring’s problem [34] is the
question of whether or not, given a positive integer k, there exist positive
integers s and N0 such that every integer N > N0 can be written as a sum
of s kth powers:

(1.1) N = nk1 + · · ·+ nks .

Here and in the rest of the paper, by a kth power we mean the kth power
of a non-negative integer. Denote by G(k) the least such number s. After
Hilbert [19] proved that G(k) < ∞, there came the question of precisely
determining the value of G(k). This question, usually attacked by the circle
method, has motivated an outstanding amount of research in the theory of
exponential sums. Referring to the survey by Vaughan and Wooley [33] for
a precise account of the vast history of this problem, we mention Wooley’s
state-of-the-art result [37] that

(1.2) G(k) ≤ k(log k + log log k + 2 +O(log log k/log k)).

Conjecturally G(k) = O(k), and even G(k) = k + 1 if there are no “local
obstructions”.

To obtain an asymptotic formula for the number of solutions to (1.1),
we need more variables than the bound given in (1.2). The current best
published result, following from Wooley’s work [39] on the Vinogradov main
conjecture, gives such as asymptotic formula when

s ≥ Ck2 +O(k)
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for C = 1.542749 . . . . The Vinogradov main conjecture has very recently
been proved by Bourgain, Demeter and Guth [4], which would allow C = 1.

1.2. Friable integers. In this paper we study the representation prob-
lem (1.1) with the condition that the variables nj have only small prime
factors. Given y ≥ 2, a positive integer n is called y-friable, or y-smooth, if
its largest prime factor P (n) is at most y. Estimates involving friable num-
bers have found applications in different areas in number theory. In fact
they are a crucial ingredient in the proof of the estimate (1.2) for G(k), and
so are naturally studied in conjunction with Waring’s problem. We refer to
the surveys [22, 13, 28] for an account of classical results on friable numbers
and their applications.

The following standard notation will be used throughout the paper.
For 2 ≤ y ≤ x, let

S(x, y) := {n ≤ x : P (n) ≤ y}, Ψ(x, y) := cardS(x, y).

The size of the parameter y with respect to x is of great importance in the
study of friable numbers. The lower y is, the sparser the set S(x, y) is, and the
more difficult the situation typically becomes. For example, when y = x1/u

for some fixed u ≥ 1, we have

Ψ(x, y) ∼ ρ(u)x (x→∞),

so that S(x, y) has positive density. Here ρ(u) is Dickman’s function. On the
other hand, when y = (log x)κ for some fixed κ > 1, we have

Ψ(x, (log x)κ) = x1−1/κ+o(1) (x→∞).

Because of this sparsity, many results about friable numbers from the second
example above were until recently only known conditional on assumptions
such as the Generalized Riemann Hypothesis.

The main result in our paper (Theorem 2.4 below) is an asymptotic
formula in Waring’s problem with (logN)κ-friable variables, when κ is suf-
ficiently large. Here we state a special case of it.

Theorem 1.1. For any given k ≥ 2, there exist κ(k) and s(k) such
that every sufficiently large positive integer N can be represented in the
form (1.1), with each nj∈S(N1/k, (logN)κ). Moreover, we can take s(2)=5,
s(3) = 8, and

s(k) = k(log k + log log k + 2 +O(log log k/log k))

for large k.

An overview of the proof will be given in Section 2. In the remainder of
this introduction, we summarize some previous works on Waring’s problem
with friable variables.
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1.3. Past works. If the variables are only required to be mildly friable
(more precisely with the friability parameter exp(c(logN log logN)1/2) for
some c > 0 instead of (logN)κ), then the existence of solutions to (1.1)
with friable variables has been proved by Balog–Sárközy [1] (for k = 1), and
Harcos [15] (for larger k, using a key ingredient from [35]). In the case k = 3,
Brüdern and Wooley [9] proved that one can take s = 8 mildly friable
variables.

The case k = 2 with 4 variables or less is particularly interesting, due
to the failure of a naive application of the circle method. Without any re-
strictions on the variables, Kloosterman’s refinement of the circle method
can work (see [23, Section 20.3]), but there is no clear way to use it with
friability restrictions. The best bound so far, achieved by Blomer, Brüdern,
and Dietmann [2] from Buchstab’s identity to relax the friability condition,
gets the allowable friable parameter y = x365/1184.

Finally, the most recent breakthrough came in the case k = 1. This was
first studied in the aforementioned work of Balog and Sárközy [1] who ob-
tained a lower bound for the number of solutions with s = 3 mildly friable
variables. Assuming the Riemann Hypothesis for Dirichlet L-functions, La-
garias and Soundararajan [26] improved the friability level to y = (logN)8+ε

for any ε > 0. An asymptotic formula for the number of solutions was first
reached in [6], using earlier results on friable exponential sums [12, 5]. Sub-
sequent works [7, 11] eventually led to the friability level

y = exp{c(logN)1/2(log logN)}

for some absolute c > 0.

The situation changed drastically with the work of Harper [18] who
proved unconditionally that for k = 1 one can take s = 3 and y = (log x)C for
large enough C. This is the starting point of our present work; we show that
Harper’s approach can be adapted to treat higher powers as well, yielding
results of comparable strength with what was previously known for mildly
friable variables.

2. Overview of results. In this section, we state the main result on
Waring’s problem with friable variables, as well as the exponential sum
estimates required.

To begin, we recall the “saddle point” α(x, y) for 2 ≤ y ≤ x, introduced
by Hildebrand and Tenenbaum [21] and which is now standard in modern
studies of friable numbers. It is defined by the implicit equation

(2.1)
∑
p≤y

log p

pα − 1
= log x.
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By [21, Theorem 2], we have

(2.2) α(x, y) ∼ log(1 + y/log x)

log y

as y →∞. In particular, for fixed κ ≥ 1, we get

α(x, (log x)κ) = 1− 1/κ+ o(1) (x→∞).

The relevance of α to the distribution of friable numbers is hinted by the
estimate Ψ(x, y) = xα+o(1) as x, y → ∞ (see de Bruijn [10] and also [21,
Theorem 1] for a more precise asymptotic of Ψ(x, y) in terms of the saddle
point).

2.1. Exponential sum estimates. Throughout this paper, we use the
standard notation

e(x) := e2πix (x ∈ C).

To study Waring’s problem via the circle method, we need to understand
the exponential sums

Ek(x, y;ϑ) :=
∑

n∈S(x,y)

e(nkϑ) (ϑ ∈ R).

When ϑ is approximated by a reduced fraction a/q, we will frequently write

ϑ =
a

q
+ δ, Q = q(1 + |δ|xk),

where 0 ≤ a < q and (a, q) = 1. Our estimate for Ek(x, y;ϑ) involves the
“local” singular integral and singular series, defined by

Φ̌(λ, s) := s

1�

0

e(λtk)ts−1 dt (s ∈ C, Re(s) > 0, λ ∈ C),(2.3)

Ha/q(s) :=
∑
d1d2|q

P (d1d2)≤y

µ(d2)

(d1d2)sϕ(q/d1)

∑
b (mod q)
(b,q)=d1

e

(
abk

q

)
(s ∈ C).(2.4)

In Section 4 we prove the following major arc estimate, which general-
izes [7, Théorème 4.2] and [11, Théorème 1.2] to higher powers.

Theorem 2.1. Fix a positive integer k. There exists C = C(k) > 0
such that the following statement holds. Let 2 ≤ y ≤ x be large and let α =
α(x, y). Let ϑ ∈ [0, 1] and write

ϑ =
a

q
+ δ, Q = q(1 + |δ|xk)

for some 0 ≤ a < q with (a, q) = 1. For any A, ε > 0, if y ≥ (log x)CA
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and Q ≤ (log x)A, then

Ek(x, y;ϑ)

Ψ(x, y)
= Φ̌(δxk, α)Ha/q(α) +Oε,A(Q−1/k+2(1−α)+εu−1y ),

where uy is defined in (2.6) below. In particular, under the same conditions
we have

(2.5) Ek(x, y;ϑ)�ε,A Ψ(x, y)Q−1/k+2(1−α)+ε.

Here u = (log x)/log y as usual. By (2.2), we can make 1 − α in the
statement above arbitrarily small by taking A large enough. Thus the upper
bound (2.5) has nearly the same strength as the classical major arc estimates
for complete exponential sums.

In Section 5 we prove the following minor arc bound, which involves
generalizing [18, Theorem 1] to higher powers.

Theorem 2.2. Fix a positive integer k. There exists K = K(k) > 0
and c = c(k) > 0 such that the following statement holds. Let 2 ≤ y ≤ x be
large with y ≥ (log x)K . Assume that |ϑ − a/q| ≤ 1/q2 for some 0 ≤ a < q
with (a, q) = 1. Then

Ek(x, y;ϑ)� Ψ(x, y)

(
1

q
+

q

xk

)c
.

For mildly friable variables, this was proved by Wooley [36, Theorem 4.2],
with a very good exponent c(k) � (k log k)−1. By following the proof, one
can establish Theorem 2.2 with c(k) depending on k−1 polynomially.

2.2. Mean value estimates. We complement the estimates of the pre-
vious sections by the study of moments:

1�

0

|Ek(x, y;ϑ)|p dϑ (p ≥ 0).

Indeed, the exponential sum estimates described above lead to Theorem 1.1
for some (potentially large) s. To reduce the number of variables, we need the
following mean value estimate, which generalizes [18, Theorem 2] to higher
powers. We refer to the introduction of [18] for a detailed explanation on
the necessity of such a mean value estimate when dealing with a sparse set
of friable numbers.

Theorem 2.3. Fix a positive integer k. Let 2 ≤ y ≤ x be large and
let α = α(x, y). There exists p0 = p0(k) ≥ 2k such that for any p > p0 we
have

1�

0

|Ek(x, y;ϑ)|p dϑ�p,k Ψ(x, y)px−k,
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provided that 1−α ≤ cmin(1, p−p0) for some sufficiently small c = c(k) > 0.
Moreover, we may take p0(1) = 2, p0(2) = 4, and p0(3) = 8. If y ≤ xc for
some sufficiently small c = c(k) > 0, then we may take p0(3) = 7.5907
and p0(k) = k(log k + log log k + 2 +O(log log k/log k)) for large k.

Conjecturally, the choice p0(k) = 2k should be admissible. The admis-
sible choices of p0(k) for k = 3 and for large k in the statement above are
essentially the same as the best known thresholds for the corresponding
problem with mildly friable numbers. This ultimately allows us to prove
Theorem 1.1 with essentially the same number of variables as in previous
works for mildly friable numbers.

2.3. Application to Waring’s problem. For readers familiar with
the circle method, it is a rather routine matter to deduce from the esti-
mates above the following theorem, of which Theorem 1.1 is an immediate
consequence. This deduction will be carried out in Section 8.

Theorem 2.4. Fix a positive integer k. There exists s0 = s0(k) such
that the following statement holds for all positive integers s ≥ s0. Let N be
a large positive integer, let x = N1/k, and let 2 ≤ y ≤ x. Then the number
of ways to write

N = nk1 + · · ·+ nks

with each nj in S(x, y) is

x−kΨ(x, y)s
(
β∞
∏
p

βp +Os(u
−1
y )
)
,

where uy is defined in (2.6) below, provided that y ≥ (log x)C for some
sufficiently large C = C(k) > 0. Here the archimedean factor β∞ and the
local factors βp are defined in (8.1) and (8.2) below, respectively. Moreover,
we may take s0(1) = 3, s0(2) = 5, and s0(3) = 9. If y ≤ xc for some
sufficiently small c = c(k) > 0, then we may take s0(3) = 8 and

s0(k) = k
(
log k + log log k + 2 +O(log log k/log k)

)
for large k.

By Propositions 8.2 and 8.4 below, both β∞ and
∏
p βp are positive with

the given choices of s0(k) and the assumption on y. Thus Theorem 1.1 indeed
follows.

Our technique (in particular Proposition 6.1 below), combined with esti-
mates in [36], allows us to show that every large positive integer is the sum
of six friable cubes and one unrestrained cube. In the mildly friable case,
this was observed by Kawada [24]. We will not give the details here.

Notation. We use the following standard notation. For 2 ≤ y ≤ x, we
write
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(2.6)

u :=
log x

log y
,

1

uy
:= min

(
1

u
,
log(1 + u)

log y

)
, H(u) := exp

{
u

(log(u+ 1))2

}
.

Furthermore,

(2.7)

Y := min(y, e
√
log x), Yε := e(log y)

3/5−ε
, Tε := min(e(log y)

3/2−ε
, H(u)).

Throughout, we fix a positive integer k, and all implied constants are al-
lowed to depend on k. We will always write α = α(x, y), and will frequently
assume that 1−α is sufficiently small, or equivalently y ≥ (log x)C for some
sufficiently large C.

3. Lemmas

3.1. Friable numbers. We recall the definition (2.1) of the saddle
point α(x, y). It is the positive real saddle point of the associated Mellin
transform xsζ(s, y), where

ζ(s, y) :=
∑

P (n)≤y

n−s =
∏
p≤y

(1− p−s)−1 (Re(s) > 0).

Let

σ2(α, y) := − d

dα

∑
p≤y

log p

pα − 1
=
∑
p≤y

(log p)2pα

(pα − 1)2
.

Then from Hildebrand–Tenenbaum [21], we have the uniform estimate

(3.1) Ψ(x, y) =
xαζ(α, y)

α
√

2πσ2(α, y)

{
1 +O

(
1

u
+

log y

y

)}
(2 ≤ y ≤ x).

Note that for y � log x we have

(3.2) σ2(α, y) � (log x) log y.

The saddle point α belongs to the interval (0, 1) for large enough x (inde-
pendently of y with 2 ≤ y ≤ x). We have

(3.3) 1− α =
log(u log(u+ 1))

log y
+O

(
1

log y

)
(log x ≤ y ≤ x).

3.2. Friable character sums. In this section, we regroup facts about
the character sums

Ψ(x, y;χ) :=
∑

n∈S(x,y)

χ(n),

where χ is a Dirichlet character. We quote the best known results from work
of Harper [17]. For some absolute constants K, c > 0, with K large and c
small, the following is true. Assume that

3 ≤ (log x)K ≤ y ≤ x.



8 S. Drappeau and X. C. Shao

We recall the notation (2.7). Proposition 3 of [17] implies that the bound

(3.4) Ψ(x, y;χ)� Ψ(x, y)Y −c

is valid for any Dirichlet character χ of modulus less than x, of conductor
less than Y c, and whose Dirichlet L-function has no zero in the interval
[1−K/log Y, 1].

Secondly, among all primitive Dirichlet characters χ of conductor at
most Y c, there is at most one which does not satisfy the above bound.
If such a character χ1 exists and has conductor q1, say, then any character χ
induced by χ1 and of modulus q ≤ x satisfies

(3.5) Ψ(x, y;χ)� Ψ(x, y)
log q1
log x

( ∑
d|q/q1

d−α
)
{y−c +H(u)−c}.

This is deduced from the computations in [17, §3] (see in particular the first
formula on p. 16 there, and the last formula on p. 17).

3.3. Higher order Gauss sums. Important for our study will be the
following generalization of Gauss sums. Given integers k, q ≥ 1, a residue
class a (mod q) and a character χ (mod q), we let

Gk(q, a, χ) :=
∑

b (mod q)×

χ(b)e

(
abk

q

)
.

We have the following bound.

Lemma 3.1. Suppose q, a, a′ are positive integers, and χ is a character
modulo q. Suppose (a′, q) = 1, and let q∗ | q denote the conductor of χ. Then

|Gk(q, aa′, χ)| ≤ 2kω(q)τ(q) min(q/
√
q∗,
√
aq).

Proof. By using orthogonality of additive and multiplicative characters
modulo q, it is easily seen that∑

b (mod q)×

χ(b)e

(
aa′bk

q

)
=

∑
χ̃ (mod q)

χ̃kχ=χ0

∑
c (mod q)×

e

(
aa′c

q

)
χ̃(c).

For each χ̃ in the above, the inner sum over c is a Gauss sum, so that by
e.g. [23, Lemma 3.2],∣∣∣∣ ∑

c (mod q)×

e

(
aa′c

q

)
χ̃(c)

∣∣∣∣ ≤√q′ ∑
d|(q/q′,a)

d

where q′ | q is the conductor of χ̃. Here we have used our assumption that
(a′, q) = 1. The fact that χ̃kχ = χ0 implies that q∗ | q′. Writing q′ = rq∗,
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we have r | q/q∗, and so

|Gk(q, aa′, χ)| ≤ |{χ̃ (mod q) : χ̃kχ = χ0}|
(

sup
r|q/q∗

√
rq∗

∑
d|(q/(rq∗),a)

d
)
.

The sum over d has at most τ(q) terms, and so we trivially have

sup
r|q/q∗

√
rq∗

∑
d|(q/(rq∗),a)

d ≤ τ(q)
√
q∗ sup

r∈[1,q/q∗]
min(q/(q∗

√
r), a
√
r).

The supremum over r evaluates to min(q/q∗,
√
aq/q∗). Therefore,

sup
r|q/q∗

√
rq∗

∑
d|(q/(rq∗),a)

d ≤ τ(q) min(q/
√
q∗,
√
aq).

To conclude, it suffices to show that there are at most 2kω(q) charac-
ters χ̃ satisfying χ̃kχ = χ0. By the Chinese remainder theorem, the group
of characters of (Z/qZ)× is isomorphic to a product of ω(q) cyclic groups
(where ω(q) is the number of distinct prime factors of q), and possibly {±1}.
Therefore, the number of characters χ̃ (mod q) satisfying χ̃kχ = χ0 is at
most 2kω(q). This yields our lemma.

3.4. Friable numbers in short intervals. We will need the following
two upper bounds on the number of y-friable numbers in short intervals.
These upper bounds are almost sharp for a very wide range of y and the
length of the short intervals.

Lemma 3.2. For any 2 ≤ y ≤ x and d ≥ 1, we have

Ψ(x/d, y)� d−α(x,y)Ψ(x, y).

Proof. See [8, Theorem 2.4].

Lemma 3.3. Let log x ≤ y ≤ x be large. For any arithmetic progres-
sion I ⊂ [x, 2x] ∩ Z, we have

|{n ∈ I : P+(n) ≤ y}| � |I|αΨ(x, y)

xα
log x,

where α = α(x, y).

Proof. When |I| ≥ y, this is Smooth Number Result 3 in [18, Section
2.1]. When |I| ≤ y, we can bound the left side trivially by |I| and the right
side is � |I|α log x� |I| by (3.3).

3.5. Equidistribution results. In our proof of the mean value esti-
mates, we will need the following equidistribution-type results. The first is
the classical Erdős–Turán inequality, connecting equidistribution of points
with exponential sums.



10 S. Drappeau and X. C. Shao

Lemma 3.4 (Erdős–Turán). Let ϑ1, . . . , ϑN ∈ R/Z. Then for any inter-
val I ⊂ R/Z and any positive integer J , we have

|#{1 ≤ n ≤ N : ϑn ∈ I} −N ·meas(I)| ≤ N

J + 1
+ 3

J∑
j=1

1

j

∣∣∣ N∑
n=1

e(jϑn)
∣∣∣.

Proof. See [27, Corollary 1.1].

We also need the following result about well spaced points in major arcs,
used in the restriction argument of Bourgain [3] (see also [18, Section 2.2]).

Lemma 3.5. Let x be large. Let Q ≥ 1 and 1/x ≤ ∆ ≤ 1/2 be parameters.
For ϑ ∈ R define

Gx,Q,∆(ϑ) =
∑
q≤Q

1

q

q−1∑
a=0

1‖ϑ−a/q‖≤∆

1 + x‖ϑ− a/q‖
.

For any ϑ1, . . . , ϑR ∈ R satisfying the spacing conditions ‖ϑr − ϑs‖ ≥ 1/x
whenever r 6= s, we have∑

1≤r,s≤R
Gx,Q,∆(ϑr − ϑs)�ε,A

(
RQε +

R2Q

x
+
R2

QA

)
log(1 +∆x)

for any ε,A > 0.

When we apply this, the first term on the right will dominate, showing
that the main contribution to the sum on the left comes from the diagonal
terms with r = s.

3.6. Variants of the Vinogradov lemma. We also need the following
variants of the Vinogradov lemma, which concerns diophantine properties
of strongly recurrent polynomials. The proof of the following lemma can be
found in [14, Lemma 4.5].

Lemma 3.6. Let k be a fixed positive integer and let ε, δ ∈ (0, 1/2) be
real. Suppose that, for some ϑ ∈ R, there are at least δM elements m ∈
[−M,M ] ∩ Z satisfying ‖mkϑ‖ ≤ ε. If ε < δ/5, then there is a positive
integer q � δ−O(1) such that ‖qϑ‖ � δ−O(1)ε/Mk.

The next lemma allows us to deal with cases where diophantine infor-
mation is only available in a sparse set A, which will be taken to be the set
of friable numbers in our application.

Lemma 3.7. Let k be a fixed positive integer and let ε, δ ∈ (0, 1/2) be
real. Let 1 ≤ L ≤ M be positive integers and let A ⊂ [M, 2M ] ∩ Z be a
non-empty subset satisfying

|A ∩ P | ≤ ∆ |A| |P |
M
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for any arithmetic progression P ⊂ [M, 2M ] ∩ Z of length at least L and
some ∆ ≥ 1. Suppose that, for some ϑ ∈ R with ‖ϑ‖ ≤ ε/(LMk−1), there
are at least δ|A| elements m ∈ A satisfying ‖mkϑ‖ ≤ ε. Then either ε� δ/∆
or ‖ϑ‖ � ∆δ−1ε/Mk.

If the host set A is equidistributed, we can expect to take ∆ � 1, and
thus the lemma upgrades the diophantine property of ϑ significantly (if M
is much larger than L) under the strong recurrence of mkϑ.

Proof of Lemma 3.7. We may assume that ε < 4−k and ϑ 6= 0, since
otherwise the conclusion holds trivially. We may also assume ϑ ∈ [−1/2, 1/2],
so that ‖ϑ‖ = |ϑ|. Let L′ = min(1/(4kMk−1|ϑ|),M) be a parameter, and
note that L′ ≥ min(L/(4kε),M) ≥ L by our assumption on ϑ. Let P ′ ⊂
[M, 2M ] ∩ Z be any interval of length L′, and take any m1,m2 ∈ A ∩ P ′
with ‖mk

1ϑ‖, ‖mk
2ϑ‖ ≤ ε. Note that

|mk
1ϑ−mk

2ϑ| ≤ k(2M)k−1|(m1 −m2)ϑ| ≤ k(2M)k−1L′|ϑ| < 1/2

by our choice of L′. Thus from the inequality

‖mk
1ϑ−mk

2ϑ‖ ≤ ‖mk
1ϑ‖+ ‖mk

2ϑ‖ ≤ 2ε

we deduce that |mk
1ϑ−mk

2ϑ| ≤ 2ε, and thus

|m1 −m2| �
ε

Mk−1|ϑ|
.

We have just shown that all the integers m ∈ A ∩ P ′ with ‖mkϑ‖ ≤ ε must
lie in an interval of length O(ε/(Mk−1|ϑ|)). Since ε/(Mk−1|ϑ|) ≥ L by the
assumption on |ϑ|, our hypothesis implies that the number of integers m ∈
A ∩ P ′ with ‖mkϑ‖ ≤ ε is

O

(
∆|A|
M
· ε

Mk−1|ϑ|

)
= O

(
∆ε|A|
Mk|ϑ|

)
.

By covering [M, 2M ] ∩ Z by O(M/L′) intervals of length L′ and recalling
the choice of L′, we obtain∑
m∈A

1‖mkϑ‖≤ε �
∆ε|A|
Mk|ϑ|

·M
L′
� ∆ε|A|

Mk−1|ϑ|

(
Mk−1|ϑ|+ 1

M

)
= ∆ε|A|+∆ε|A|

Mk|ϑ|
.

The left side above is at least δ|A| by hypothesis, and thus

max

(
∆ε,

∆ε

Mk|ϑ|

)
� δ.

This immediately leads to the desired conclusion.

4. Major arc estimates. The goal of this section is to prove Theo-
rem 2.1. We recall that the local factors Φ̌(λ, s) and Ha/q(s) were defined
in (2.3) and (2.4), respectively. The following lemmas give bounds for them.
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Lemma 4.1. Fix a positive integer k. For all λ, s ∈ C with σ = Re(s) ∈
(0, 1] and Im(s)� 1, and all j ≥ 0, we have

∂jΦ̌

∂sj
(λ, s)�j

(log(2 + |λ|))j + σ−j

1 + |λ|σ/k
.

Proof. This follows from [11, Lemma 2.4], by the change of variable
t← t1/k.

Lemma 4.2. Fix a positive integer k. For all 0 ≤ a < q with (a, q) = 1,
and all α ∈ (0, 1], we have

Ha/q(α)�ε q
−α/k+ε

for any ε > 0.

Proof. This follows from Lemmas A.1 and A.4 in the Appendix.

The plan of this section is the following. A standard manipulation de-
composes the exponential phase e(nkϑ) into a periodic part e(nka/q) and a
perturbation e(nkδ). In Section 4.1, we handle the twist by e(nka/q) using
results about friable character sums. In Sections 4.2 and 4.3, we evaluate
the exponential sum around ϑ = 0, using the asymptotic formula for Ψ(x, y)
and partial summation for large y, and the saddle point method for small y.
In Section 4.4, we extend the analysis to all of the major arcs, using “semi-
asymptotic” results about Ψ(x, y).

4.1. Handling the non-principal characters. For ϑ = a/q + δ with
0 ≤ a < q and (a, q) = 1, we define the contribution of the principal charac-
ters to be

(4.1) Mk(x, y;ϑ)

=
∑
d1d2|q

P (d1d2)≤y

µ(d2)

ϕ(q/d1)

∑
b (mod q)
(b,q)=d1

e

(
abk

q

)
Ek

(
x

d1d2
, y; (d1d2)

kδ

)
.

The exact form of this contribution will be clear from the first few lines of
the proof of Proposition 4.3 below, which says that the contributions from
non-principal characters are negligible. Recall the notation from (2.7).

Proposition 4.3. There exist K, c > 0 such that under the conditions

(4.2) (log x)K ≤ y ≤ x, q(1 + |δ|xk) ≤ Y c

we have

(4.3) Ek(x, y;ϑ)

= Mk(x, y;ϑ) +OA
(
Ψ(x, y)(1 + |δ|xk)(y−c +H(u)−c(log x)−A)

)
for any A > 0.
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Proof. Consider first the case when δ = 0 (so that ϑ = a/q). We decom-
pose

Ek(x, y; a/q) =
∑

b (mod q)

e

(
bka

q

) ∑
n∈S(x,y)
n≡b (mod q)

1

=
∑
d|q

P (d)≤y

∑
b (mod q)
(b,q)=d

e

(
abk

q

) ∑
n∈S(x/d,y)

n≡b/d (mod q/d)

1

=
∑
d|q

P (d)≤y

1

ϕ(q/d)

∑
χ (mod q/d)

Gk(q/d, ad
k−1, χ)Ψ(x/d, y;χ).

The contribution of the principal character χ = χ0 is precisely Mk(x, y; a/q)
since

Ψ(x/d, y;χ0) =
∑

n∈S(x/d,y)
(n,q/d)=1

1 =
∑
d2|q/d

µ(d2)Ek(x/(dd2), y; 0).

For the non-principal characters, we apply the bounds (3.4) and (3.5). We
split the non-principal characters into two categories, according to whether
or not the associated Dirichlet series has a real zero in the interval
[1 −K/log Y, 1]. Define a character to be normal if its Dirichlet series has
no such zero, and exceptional if it does. The exceptional characters, if any,
consist of characters induced by a unique real primitive character χ1 of
conductor q1, say. Let

N :=
∑
d|q

P (d)≤y

1

ϕ(q/d)

∑
χ (mod q/d)
χ is normal

Gk(q/d, ad
k−1, χ)Ψ(x/d, y;χ),

E :=
∑
d|q/q1
P (d)≤y

1

ϕ(q/d)

∑
χ (mod q/d)

χ is exceptional

Gk(q/d, ad
k−1, χ)Ψ(x/d, y;χ).

To bound N , we use the trivial bound

(4.4) |Gk(q/d, adk−1, χ)| ≤ q/d
and Lemma 3.2. Note that log(x/q) � log x, so that uniformly over d ≤ q
and all normal characters χ we have

Ψ(x/d, y;χ)� d−αΨ(x, y)Y −c.

Combining this with (4.4), we obtain

(4.5) N � Ψ(x, y)Y −cq
∑
d|q

d−1−α � Ψ(x, y)Y −c/2,

given our hypothesis (4.2).
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We now bound E . The upper bound we have for the character sum
Ψ(x, y;χ) is very poor when u is small, so more care must be taken. We
have, by Lemma 3.1,

(4.6) |Gk(q/d, adk−1, χ)|

≤ 2kω(q)τ(q) min(q/(d
√
q1),

√
dk−2q)�ε q

ε√q1
(
q

q1

)1−1/k
.

Thus

E � qε
√
q1

(
q

q1

)1−1/k ∑
d|q/q1

|Ψ(x/d, y;χq/d)|
q/d

where χq/d stands for the character mod q/d induced by χ1. For the same
reason as before, since log(x/d) � log x, the character sum bound (3.5) can
be applied with x replaced by x/d and yields

|Ψ(x/d, y;χq/d)| �ε d
−αqεΨ(x, y)(H(u)−c + y−c).

We deduce

E � Ψ(x, y)(H(u)−c + y−c)qε
√
q1

q

(
q

q1

)1−1/k ∑
d|q/q1

d1−α

� Ψ(x, y)(H(u)−c + y−c)
qε
√
q1

(
q

q1

)1−α−1/k
.

Assuming that K is so large that 1− α < 1/(4k), we obtain

E � q
−1/4
1 Ψ(x, y)(H(u)−c + y−c).

If y < e
√
log x, then (log x) = Oε(H(u)ε) for any ε > 0, so that the required

bound

E � Ψ(x, y)
(
H(u)−c/2(log x)−A + y−c

)
follows immediately from q1 ≥ 1. If y ≥ e

√
log x, then by Siegel’s theorem,

we have q1 �A (log Y )A = (log x)A/2 for any A > 0 (the constant being
ineffective unless A < 2). We deduce

(4.7) E �A Ψ(x, y)
(
H(u)−c(log x)−A + y−c

)
.

Grouping our bounds (4.5) and (4.7), we have shown

(4.8) Ek(x, y; a/q) = Mk(x, y; a/q)+O
(
Ψ(x, y)(y−c+H(u)−c(log x)−A)

)
,

the implicit constant being effective if A = 0.
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For general δ, by integration by parts, we may write

Ek(x, y;ϑ) = e(δxk)Ek(x, y; a/q)− 2πiδ

x�

x/Y

ktk−1e(δtk)Ek(t, y; a/q) dt

+O(Ψ(x/Y, y)).

The error term here is O(Ψ(x, y)/Y α) which is acceptable. Note that for
t ∈ [x/Y, x], we have log t � log x, so that by (4.8), we get

Ek(t, y; a/q) = Mk(t, y; a/q) +OA
(
Ψ(t, y)(y−c +H(u)−c(log x)−A)

)
(x/Y ≤ t ≤ x).

Note that |δ|
	x
x/Y kt

k−1 dt ≤ |δ|xk, so that by (4.2) we obtain

Ek(x, y;ϑ) = e(δxk)Mk(x, y; a/q)− 2πiδ

x�

x/Y

ktk−1e(δtk)Mk(t, y; a/q) dt

+O
(
Ψ(x, y)(1 + |δ|xk)(y−c +H(u)−c(log x)−A)

)
.

Integrating by parts, we regroup the main terms above into

Mk(x, y;ϑ) +O(Ψ(x/Y, y)),

which yields our claimed bound.

The next step is to evaluate the contribution from the principal charac-
ter Mk(x, y;ϑ). As is classically the case in the study of friable numbers, we
shall use two different methods according to the relative sizes of x and y.

4.2. The main term in the neighborhood of ϑ = 0 for large values
of y. In this section, we evaluate the contribution of principal characters
on the major arc centered at 0, when y is large. The target range for (x, y)
is

(Hε) exp{(log log x)5/3+ε} ≤ y ≤ x.

Recall that Yε is defined in (2.7).

Proposition 4.4. Let ε > 0 be small and fixed. Let δ ∈ R and write Q =
1 + |δ|xk. Then whenever x and y satisfy (Hε), we have

Ek(x, y; δ) = Ψ(x, y)

{
Φ̌(δxk, 1) +Oε

(
log(2Q)

Q1/k
· log(u+ 1)

log y
+QY−1ε

)}
.

Proof. For k = 1, this follows from theorems of de la Bretèche [6, Propo-
sition 1] and de la Bretèche–Granville [7, Théorème 4.2]. It is based on
integration by parts and the theorem of Saias [29] stating that

(4.9) Ψ(x, y) = Λ(x, y){1 +O(Y−1ε )} ((x, y) ∈ (Hε)).
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Here de Bruijn’s function Λ(x, y) (see [10]) is defined by

Λ(x, y) := x

∞�

−∞
ρ(u− v) d

(
byvc
yv

)
(x 6∈ N)

and Λ(x, y) = Λ(x+0, y) for x ∈ N, where ρ denotes Dickman’s function [30,
Section III.5.3]. This implies in particular the theorem of Hildebrand [20]:

(4.10) Ψ(x, y) = xρ(u)

{
1 +O

(
log(u+ 1)

log y

)}
((x, y) ∈ (Hε)).

For arbitrary k, the arguments transpose almost identically, so we only
sketch the proof. We first use Lemma 3.2 to approximate

Ek(x, y; δ) =
∑

x/Yε<n≤x
P (n)≤y

e(nkδ) +O(Ψ(x, y)/Yαε ).

The error term here is acceptable. We integrate by parts and use (4.9) to
obtain

(4.11)
∑

x/Yε<n≤x
P (n)≤y

e(nkδ) =

x+�

z=x/Yε+

e(zkδ) d(Λ(z, y)) +O(Ψ(x, y)QY−1ε ).

For z ≥ 1, we let Fδ(z) :=
	z
0 e(δtk) dt and

λy(z) :=
Λ(z, y)

z
+

1

log y

∞�

−∞
ρ′
(

log z

log y
− v
)
d

(
{yv}
yv

)
.

Note that Fδ(z) = O(z/(1 + z|δ|1/k)). Using [7, p. 310, first formula], we
write

(4.12)

x+�

z=x/Yε+

e(zkδ) d(Λ(z, y))

=

x�

x/Yε

λy(z)F
′
δ(z) dz −

x�

x/Yε

zF ′δ(z) d({z}/z).

By integration by parts, the second integral on the right side of (4.12) is

[{z}F ′δ(z)]xz=x/Yε −
x�

x/Yε

(
F ′δ(z)

z
+ F ′′δ (z)

)
{z} dz = O(logYε + |δ|xk),
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and the first integral is

(4.13)

x�

x/Yε

λy(z)F
′
δ(z) dz

= λy(x)Fδ(x)− λy(x/Yε)Fδ(x/Yε)−
x�

x/Yε

Fδ(z) d(λy(z)).

To evaluate this, we use [7, formula (2.3)] and obtain

(4.14) λy(x)Fδ(x)− λy(x/Yε)Fδ(x/Yε)

= ρ(u)Fδ(x) +O

(
Ψ(x, y)

Q1/k

log(u+ 1)

log y
+ Ψ(x, y)Y−αε

)
.

Next, using [7, formula (4.16)] and integration by parts, we obtain

(4.15)

x�

x/Yε

Fδ(z) d(λy(z))

= O

(
ρ(u)

log(u+ 1)

log y

x�

x/Yε

|Fδ(z)| dz
z

)
+

1

log y

x�

x/Yε

Fδ(z) d

(
{z/y}
z/y

)
.

The integral in the error term is bounded by x log(2Q)Q−1/k, and partial
summation yields

x�

x/Yε

Fδ(z) d

(
{z/y}
z/y

)
� min(yYε, x)Q−1/k + logYε

� xρ(u){Q−1/k + Y−1ε }.
Inserting this into (4.15), we get

(4.16)

x�

x/Yε

Fδ(z) d(λy(z))� xρ(u)

{
log(2Q)

Q1/k

log(u+ 1)

log y
+ Y−1ε

}
.

Combining the estimates (4.16), (4.14), (4.13) and (4.11), we obtain

Ek(x, y;ϑ) = xρ(u)

{
Fδ(x)

x
+O

(
log(2Q)

Q1/k

log(u+ 1)

log y
+QY−αε

)}
.

Using (4.10) and rescaling ε completes the argument.

4.3. The main term in the neighborhood of ϑ = 0 for small values
of y. For smaller values of y, we employ the saddle point method [21] based
on exploiting the nice analytic behavior of the Mellin transform

ζ(s, y) :=
∏
p≤y

(1− p−s)−1
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associated with the set of y-friable integers. By Perron’s formula,

Ek(x, y; δ) =
1

2πi

κ+i∞�

κ−i∞
ζ(s, y)Φ̌(δxk, s)xs

ds

s
(x 6∈ N),

where κ > 0 is arbitrary. The saddle point α = α(x, y), defined in terms
of x and y by means of the implicit equation (2.1), is the unique positive
real number σ achieving the infimum infσ>0 x

σζ(σ, y). Recall the definition
of Tε from (2.7).

Proposition 4.5. Let ε > 0 be small and fixed. Let δ ∈ R and write Q =
1 + |δ|xk. Then whenever x and y satisfy (log x)1+ε ≤ y ≤ x, we have

Ek(x, y; δ) = Ψ(x, y)

{
Φ̌(δxk, α) +O

(
1

Qα/k−ε
· 1

u
+QT −cε

)}
for some constant c > 0.

Proof. One option is to transpose the arguments of [11, Proposition 2.11].
Instead we take a simpler route, inspired from a remark of D. Koukoulopou-
los. When y > x1/(log log x)

2
, we have 1 − α � 1/u by (3.3), and thus the

estimate is a consequence of Proposition 4.4 since

(4.17) Φ̌(δxk, α)− Φ̌(δxk, 1)� (1− α)
log 2Q
Qα/k

by Lemma 4.1.

We assume henceforth that y ≤ x1/(log log x)2 , with the consequence that
log x�ε H(u)ε. Using Lemma 3.2, we write

(4.18) Ek(x, y;ϑ) =

x�

x/Tε

e(δtk) d(Ψ(t, y)) +O(Ψ(x, y)T −αε ).

Let αt := α(t, y) and ut := (log t)/log y. Then for t ∈ [x/Tε, x], by [21,
Lemma 10] we have

Ψ(t, y) =
1

2πi

αt+i/log y�

αt−i/log y

ζ(s, y)
ts ds

s

+O
(
tαtζ(αt, y){e−(log y)3/2−ε

+H(ut)
−c}
)
.

Note that log Tε � u/(log u)2, so that certainly ut = u + O(u/log y) � u,
and thus H(ut)

−c � H(u)−c
′
. On the other hand, from (3.1), (3.2), and

Lemma 3.2 we have

tαtζ(t, y) = O(Ψ(t, y) log x) = O

((
t

x

)α
Ψ(x, y) log x

)
.

By our assumption that (log x)1+ε ≤ y ≤ x1/(log log x)
2
, we can absorb the
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log x factor into the error terms and obtain

(4.19) Ψ(t, y) =
1

2πi

αt+i/log y�

αt−i/log y

ζ(s, y)
ts ds

s
+O

((
t

x

)α
Ψ(x, y)T −cε

)
.

We now shift the contour of integration to the line between α ± i/log y.
For t ∈ [x/Tε, x], by (3.2) we have

σ2(αt, y) � (log x) log y � σ2(α, y).

By [21, Lemma 8(i)], we therefore get∣∣∣∣ζ(α+ i/log y, y)

ζ(α, y)

∣∣∣∣ ≤ e−cu.
This implies

(4.20)
1

2πi

αt+i/log y�

αt−i/log y

ζ(s, y)
ts ds

s

=
1

2πi

α+i/log y�

α−i/log y

ζ(s, y)
ts ds

s
+O

(
(αt − α)e−cu

tαζ(α, y)

α

)
.

Here, we have used the bound supβ∈[α,αt] t
βζ(β, y) ≤ tαζ(α, y), which follows

by unimodality and the definition of the saddle point.

If we view αt as a function of ut, then

dαt
dut

= − log y

σ2(αt, y)

by the definition of σ2 and the saddle point αt. It thus follows from (3.2)
that

αt − α ≤ (ut − u) sup
t

log y

|σ2(αt, y)|
� log Tε

log y
· 1

log x
.

Using (3.1) and (3.2) to bound ζ(α, y), we deduce

(αt − α)e−cu
tαζ(α, y)

α
� log Tε

log y
· 1

log x
· e−cu

(
t

x

)α
Ψ(x, y) log x

�
(
t

x

)α
Ψ(x, y)T −c′ε .

Inserting this into (4.19) and (4.20), we obtain

Ψ(t, y) =
1

2πi

α+i/log y�

α−i/log y

ζ(s, y)
ts ds

s
+O

((
t

x

)α
Ψ(x, y)T −cε

)
.
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We insert this estimate into (4.18) and integrate by parts to obtain

Ek(x, y;ϑ) =
1

2πi

α+i/log y�

α−i/log y

ζ(s, y)

x�

x/Tε

e(δtk)ts−1 dt ds+O(Ψ(x, y)QT −cε ).

Note that
x�

x/Tε

e(δtk)ts−1 dt =

x�

0

e(δtk)ts−1 dt+O((x/Tε)α)

=
xs

s
Φ̌(δxk, s) +O((x/Tε)α).

The contribution to Ek(x, y;ϑ) from the error term O
(
(x/Tε)α

)
above is

bounded by
ζ(α, y)xα

(log y)T αε
� Ψ(x, y)T −cε .

Therefore,

Ek(x, y; δ) =
1

2πi

α+i/log y�

α−i/log y

ζ(s, y)Φ̌(δxk, s)xs
ds

s
+O(Ψ(x, y)QT −cε ).

The evaluation of the remaining integral can now be done as in [11, Propo-
sition 2.11] (in particular the treatment of the segment C4 on p. 623), by
splitting the integral depending on the size of the imaginary part of s rel-
ative to T0 := (u1/3 log y)−1. Large values of |τ | are handled using [21,
Lemma 8(i)], while the contribution of small values of |t| is estimated by a
Taylor formula at order 4. After some routine calculations, we find

1

2πi

α+i/log y�

α−i/log y

ζ(s, y)Φ̌(δxk, s)xs
ds

s
= Ψ(x, y)Φ̌(δxk, α) +O

(
Ψ(x, y)

Qα/k−ε
· 1

u

)
.

This concludes the proof of Proposition 4.5.

4.4. The main term for general major arcs. In this section we
estimate the main term Mk(x, y;ϑ) (defined in (4.1)) in all of the major
arcs, using the estimates proved in the previous two sections. This mirrors
analogous calculations in [18, Section A.2]. We recall the notation in (2.7).

Proposition 4.6. Let ε > 0 be small and fixed. Let 2 ≤ y ≤ x be large,
and let ϑ = a/q + δ with 0 ≤ a < q ≤ Y η for some sufficiently small η > 0
and (a, q) = 1. Write Q = q(1 + |δ|xk).

(1) Whenever x and y satisfy (Hε), we have

Mk(x, y;ϑ)

Ψ(x, y)
= Φ̌(δxk, 1)Ha/q(1) +O

(
q1−α

Q1/k−ε
log(u+ 1)

log y
+QY−1ε

)
.
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(2) Whenever x and y satisfy (log x)1+ε ≤ y ≤ x, we have

Mk(x, y;ϑ)

Ψ(x, y)
= Φ̌(δxk, α)Ha/q(α) +O

(
q1−α

Qα/k−ε
1

u
+QT −cε

)
for some constant c > 0.

Proof. We only give the details of deducing the first part of the statement
from (4.1) and Proposition 4.4; the proof of the second part is similar, using
Proposition 4.5 instead. Write Q′ = 1+ |δ|xk so that Q = qQ′. Since q ≤ Y η,
we have log(x/q) � log x, so that for all d1, d2 with d1d2 | q and P (d1d2)
≤ y, we can apply Proposition 4.4 and obtain

Ek(x/(d1d2), y; (d1d2)
kδ)

= Ψ

(
x

d1d2
, y

){
Φ̌(δxk, 1) +O

(
1

Q′1/k−ε
log(u+ 1)

log y
+Q′Y−1ε

)}
.

By [8, Théorème 2.4] we have, uniformly for d1d2 ≤ q ≤ yη,

Ψ

(
x

d1d2
, y

)
=
Ψ(x, y)

(d1d2)α

(
1 +O

(
(log q)

log(u+ 1)

log y

))
.

Combining this with the bounds Ψ(x/(d1d2), y) � (d1d2)
−αΨ(x, y) from

Lemma 3.2 and Φ̌(δxk, 1)� (1 + |δ|xk)−1/k from Lemma 4.1, we deduce

Ek(x/(d1d2), y; (d1d2)
kδ)

=
Ψ(x, y)

(d1d2)α

{
Φ̌(δxk, 1) +O

(
log q

Q′1/k−ε
log(u+ 1)

log y
+Q′Y−1ε

)}
.

Inserting this estimate into (4.1) and recalling the definition of Ha/q(α)
in (2.4), we obtain

(4.21)
Mk(x, y;ϑ)

Ψ(x, y)

= Φ̌(δxk, 1)Ha/q(α) +O

((
1

Q′1/k−ε
log(u+ 1)

log y
+Q′Y−1ε

)
R
)
,

where

R :=
∑
d1d2|q

P (d1d2)≤y

(log q)

(d1d2)αϕ(q/d1)
|Gk(q/d1, adk−11 , χ0)|.

Using the estimate (4.6) with q1 = 1 (a consequence of Lemma 3.1) to bound
the Gauss sum Gk(q/d1, ad

k−1
1 , χ0) above by q1−1/k+ε, we obtain

(4.22) R � q1−1/k+ε
∑
d1d2|q

(d1d2)
−α

ϕ(q/d1)
� q1−α−1/k+ε.
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Finally, to see that Ha/q(α) is close to Ha/q(1), note that the derivative H ′a/q
satisfies the bound H ′a/q(σ) = O(qεR) for all σ ∈ [α, 1]. Thus (3.3) gives

(4.23) Ha/q(α) = Ha/q(1) +O(qεR log(u+ 1)/log y).

In view of (4.22) and Lemma 4.1, we may replace Ha/q(α) in (4.21) by
Ha/q(1) at the cost of an acceptable error.

4.5. Deduction of Theorem 2.1. Let the situation be as in the state-
ment of Theorem 2.1. By choosing C large enough, we may assume that
the hypotheses of Propositions 4.3 and 4.6 are satisfied, and moreover that
the error term in (4.3) is acceptable. We divide into two cases depending on
whether to apply the first or the second part of Proposition 4.6.

Assume first that e
√
log x log log x ≤ y. Then 1/u � log(u + 1)/log y and

log x � Yo(1)ε , so that the error term in Proposition 4.6(1) is acceptably
small. To see that we may replace Φ̌(δxk, 1)Ha/q(1) by Φ̌(δxk, α)Ha/q(α),
note that by (4.17) and (4.23) we have

Φ̌(δxk, 1)Ha/q(1) = Φ̌(δxk, α)Ha/q(α) +O

(
q1−α

Qα/k−ε
log(u+ 1)

log y

)
.

This error term is again acceptable.

Assume next (log x)CA ≤ y ≤ e
√
log x log log x. Then 1/u� log(u+1)/log y

and log x� T o(1)ε , so that the error term in Proposition 4.6(2) is acceptably
small, and the conclusion follows.

Finally, the upper bound (2.5) follows from Lemmas 4.1 and 4.2.

5. Minor arc estimates. The goal of this section is to prove Theo-
rem 2.2. It is convenient to prove the following equivalent form. For param-
eters Q,X ≥ 1 and 0 ≤ a ≤ q ≤ Q with (a, q) = 1, define

M(q, a;Q,X) = {ϑ ∈ [0, 1] : |qϑ− a| ≤ QX−k}
and

(5.1) M(Q,X) :=
⋃

0≤a<q≤Q
(a,q)=1

M(q, a;Q,X).

In particular, for any ϑ = a/q + δ with 0 ≤ a ≤ q and (a, q) = 1, we
must have q(1 + |δ|Xk) ≥ Q whenever ϑ /∈M(Q,X). Note also the obvious
inclusion M(Q1, X) ⊂M(Q2, X) whenever Q1 ≤ Q2.

Proposition 5.1. Fix a positive integer k. There exist K = K(k) > 0
and c = c(k) > 0 such that the following statement holds. Let 2 ≤ y ≤ x be
large with y ≥ (log x)K . If ϑ ∈ [0, 1] rM(Q, x) for some Q ≥ 1, then

Ek(x, y;ϑ)� Ψ(x, y)Q−c.
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Proof that Proposition 5.1 implies Theorem 2.2. We may assume 10 ≤
q ≤ 0.1xk, since otherwise the claim is trivial. Let Q = (1/3) min(q,

√
xk/q).

Aiming at Theorem 2.2, it suffices to show that ϑ /∈ M(Q, x). Suppose, on
the contrary, that ϑ = a′/q′ + δ for some 0 ≤ a′ ≤ q′ ≤ Q with (a′, q′) = 1,
and |δ| ≤ Qx−k. Then by our choice of Q we have

q ≥ 3Q ≥ 3q′,
Q

xk
≤ 1

9qQ
≤ 1

9qq′
.

Hence ∣∣∣∣aq − a′

q′

∣∣∣∣ ≤ 1

q2
+ |δ| ≤ 1

3qq′
+

1

9qq′
<

1

qq′
.

It follows that a = a′ and q = q′, but this is impossible since q ≥ 3Q and
q′ ≤ Q.

The bulk of the proof of Proposition 5.1 lies in Section 5.3, which applies
when y = (log x)K for some constant K. In Sections 5.1 and 5.2, we quote
and prove some complimentary results valid for larger y.

5.1. Estimates for complete Weyl sums. We start with the follow-
ing estimate for complete Weyl sums.

Lemma 5.2. Fix a positive integer k. Let x be large, and let ϑ = a/q+ δ
for some 0 ≤ a ≤ q and (a, q) = 1. Assume that |δ| ≤ 1/(qx), and write Q =
q(1 + |δ|xk). Then ∣∣∣∑

n≤x
e(ϑnk)

∣∣∣� x

(
1

x
+

q

xk
+

1

Q

)σ(k)
for some σ(k) > 0.

Compared with classical estimates, the bound here decays not only with q
but also with δ. This will be necessary in the proof of Proposition 5.7 below.
The extra dependence on δ can be easily obtained by following the standard
Weyl differencing argument, which was done in [14, Lemma 4.4]. In fact,
Lemma 5.2 is nothing but a reformulation of [14, Lemma 4.4].

Proof of Lemma 5.2. Let D = 0.1 min(x, xk/q,Q). If the desired expo-
nential sum estimate fails, then by [14, Lemma 4.4] there is a positive inte-
ger d ≤ D such that ‖dϑ‖ ≤ D/xk. By the choice of D and the assumption
on δ, we have

|dδ| ≤ D|δ| ≤ 0.1x|δ| < 1/(2q).

In the case when q - d, we have

‖dϑ‖ ≥ 1/q − |dδ| > 1/(2q) > D/xk,

where the last inequality follows again from the choice of D. This is a con-
tradiction. In the case when q | d, we have ‖dϑ‖ = |dδ| and d ≥ q. This is
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again a contradiction since |dδ| ≥ |qδ| > D/xk by the choice of D and the
definition of Q.

Remark 5.3. To get a better exponent σ(k) in the statement above,
one should follow Vaughan’s treatment [32, Chapter 5] while using works
on the Vinogradov main conjecture, which has recently been proved (trivial
for k = 1, 2, in the case k = 3 by Wooley [41], and for all k > 3 by Bourgain–
Demeter–Guth [4]). We will not pursue this further.

5.2. Friable Weyl sums for large values of y. The following minor
arcs estimate due to Wooley [37, Theorem 4.2] is useful for mildly friable
numbers.

Proposition 5.4. Fix a positive integer k and some λ ∈ (0, 1]. There
exist η, σ > 0, depending on k and λ, such that the following holds. Let
2 ≤ y ≤ x be large with y ≤ xη, and let ϑ ∈ [0, 1] r M(xλ, x). Then
Ek(x, y;ϑ)� x1−σ.

Proof. This follows from [37, Theorem 1.1] when λ = 1. In the general
case, this follows from [38, Theorem 4].

The following proposition covers the range xη ≤ y ≤ x. In its proof we
adopt the natural strategy of factoring out largest prime factors of non-
y-friable numbers.

Proposition 5.5. Fix a positive integer k and some η ∈ (0, 1]. Let 2 ≤
y ≤ x be large with y ≥ xη, and let ϑ ∈ [0, 1] r M(Q, x) for some Q ≥ 1.
Then Ek(x, y;ϑ)� xQ−c for some c = c(k, η) > 0.

Proof. When η = 1, the conclusion follows from Lemma 5.2. Now assume
that the conclusion holds when η ≥ 1/s for some positive integer s, and
let η ∈ [1/(s+ 1), 1/s). We may write

Ek(x, y;ϑ) = Ek(x, x
1/s;ϑ)−

∑
y<p≤x1/s

∑
n∈S(x/p,p)

e((pn)kϑ).

The bound |Ek(x, x1/s;ϑ)| � xQ−c follows from the induction hypothesis.
To treat the double sum, split it into dyadic intervals so that we need to
prove

(5.2) S(P ) =
∑

P<p≤2P

∑
n∈S(x/p,p)

e((pn)kϑ)� xQ−c

for y ≤ P ≤ x1/s. We divide into two cases depending on whether P ≤ x/Qc
or not (in fact, P ≤ x/Qc is the only case unless s = 1).

Assume first P ≤ x/Qc so that x/P ≥ Qc. We bound S(P ) by

S(P ) ≤
∑

P<m≤2P

∣∣∣ ∑
n∈S(x/m,m)

e((mn)kϑ)
∣∣∣.
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Here we have dropped the primality condition on m. Let R ≥ 1 be a pa-
rameter that will be chosen to be a small power of Q, and letM be the set
of m ∈ (P, 2P ] with mkϑ ∈M(R, x/m). Since m ≥ (x/m)1/s, we may apply
the induction hypothesis to the inner sum when m /∈M to obtain

S(P )� x

P
|M|+ xR−c.

To complete the proof of (5.2) in this case, it suffices to show that |M| �
PR−1. Suppose, for the sake of contradiction, that |M| ≥ PR−c. For each
m ∈ M, we may find qm ≤ R such that ‖mk(qmϑ)‖ ≤ R(x/m)−k. By the
pigeonhole principle, there exists q0 ≤ R such that ‖mk(q0ϑ)‖ � RP k/xk

for at least |M|/R values of m ∈M.
Now apply Lemma 3.6 to the angle q0ϑ with ε = R(x/P )−k ≤ RQ−c

and δ = |M|/(RP ) ≥ R−2. Since ε < δ/5 if R is a sufficiently small power
of Q, we conclude that there is a positive integer q � δ−O(1) � RO(1) such
that

‖qq0ϑ‖ �
δ−O(1)ε

P k
� RO(1)

xk
.

This contradicts the assumption that ϑ /∈M(Q, x) if R is a sufficiently small
power of Q.

It remains to deal with the case when P ≥ x/Qc (which only happens
when s = 1). From the assumption ϑ /∈ M(Q, x) we may deduce that for
all n ≤ Qc we have nkϑ /∈M(Q1/2, 2P ). Upon bounding S(P ) in (5.2) by

S(P ) ≤ x

P
sup
n≤x/P

∣∣∣ ∑
P<p≤min(2P,x/n)

e((pn)kϑ)
∣∣∣,

the conclusion follows from estimates for Weyl sums over primes stated
below.

Lemma 5.6. Fix a positive integer k. Let x be large, and let ϑ ∈ [0, 1] r
M(Q, x) for some Q ≥ 1. Then∣∣∣∑

p≤x
e(pkϑ)

∣∣∣� xQ−c

for some c = c(k) > 0.

Proof. We may assume that Q ≥ (log x)A for some large constant A,
since otherwise the statement is trivial. If ϑ ∈ M(x0.1, x), then the con-
clusion follows from [25, Theorem 2]. Now assume that ϑ /∈ M(x0.1, x). By
diophantine approximation, we may find 0 ≤ a ≤ q ≤ xk−0.1 with (a, q) = 1
such that |qϑ − a| ≤ x−k+0.1. Since ϑ /∈ M(x0.1, x), we have q ≥ x0.1. The
conclusion then follows from a standard minor arc bound such as∣∣∣∑

p≤x
e(pkϑ)

∣∣∣� x1+ε(q−1 + x−1/2 + qx−k)4
1−k

from [16].
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5.3. Friable Weyl sums for small values of y. Note that Propo-
sition 5.4 does not apply to ϑ in minor arcs when q and |δ|xk grow more
slowly than any positive power of x. In this section, we take care of this situ-
ation by a variant of Vinogradov’s method, roughly following the argument
of Harper [18].

Proposition 5.7. Fix a positive integer k ≥ 2. Let 2 ≤ y ≤ x be large
and let α = α(x, y). Let ϑ = a/q + δ for some 0 ≤ a ≤ q and (a, q) = 1.
Write Q = q(1 + |δ|xk), and assume that 4y2Q3 ≤ x. Then for some σ =
σ(k) > 0 we have

Ek(x, y;ϑ)� Ψ(x, y)Q−σ+2(1−α)(log x)5.

Proof. We may assume that y ≥ (log x)6, since otherwise the claim is
trivial by taking σ < 1/6. Extracting the gcd d = (n, q∞), we may write

Ek(x, y;ϑ) =
∑
d|q∞

P+(d)≤y

∑
n≤x/d
P+(n)≤y
(n,q)=1

e((nd)kϑ).

The contribution from those terms with d ≥ Q is bounded by∑
d|q∞
d≥Q

Ψ(x/d, y)� Ψ(x, y)
∑
d|q∞
d≥Q

d−α �ε Q−α+εΨ(x, y),

where the first inequality follows from Lemma 3.2 and the second follows by
Rankin’s trick. Hence

Ek(x, y;ϑ) =
∑
d|q∞
d≤Q

P+(d)≤y

∑
n≤x/d
P+(n)≤y
(n,q)=1

e((nd)kϑ) +O

(
Ψ(x, y)

Qα/2

)
.

We may also discard the terms with n ≤ x/Q from the above, since their
contribution is bounded by∑

d|q∞
d≤Q

Ψ(x/Q, y)� Q−αΨ(x, y)
∑
d|q∞
d≤Q

�ε Q−α+εΨ(x, y),

where, again, the first inequality follows from Lemma 3.2 and the second
from Rankin’s trick. Consequently,

Ek(x, y;ϑ) =
∑
d|q∞
d≤Q

P+(d)≤y

∑
x/Q<n≤x/d
P+(n)≤y
(n,q)=1

e((nd)kϑ) +O

(
Ψ(x, y)

Qα/2

)
.

Let L = 4yQ be a parameter. For the inner sum over n, factoring out
a divisor m of size about L by taking the product of the smallest prime
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factors of n, we may write

Ek(x, y;ϑ) =
∑
d|q∞
d≤Q

P+(d)≤y

∑∑
L<m≤P+(m)L

x/(mQ)<n≤x/(md)
P+(m)≤P−(n)

P+(n)≤y, (mn,q)=1

e((mnd)kϑ) +O

(
Ψ(x, y)

Qα/2

)
,

which is allowed by our hypothesis yL ≤ x/Q. For M ∈ [L, yL], define

E(M) :=
∑
d|q∞
d≤Q

P+(d)≤y

∑∑
M<m≤min(2M,P+(m)L)

x/(mQ)<n≤x/(md)
P+(m)≤P−(n)

P+(n)≤y, (mn,q)=1

e((mnd)kϑ).

Now move the sum over n inside, and bound this inner sum by its absolute
value. It is also convenient to remove the dependence on m in the condition
x/(mQ) < n ≤ x/(md), which can be achieved by a standard Fourier-
analytic argument. We obtain

E(M)� (log x) sup
β∈[0,1)

∑
d|q∞
d≤Q

∑
M<m≤2M
P+(m)≤y

∣∣∣ ∑
x/(2MQ)<n≤x/(Md)

P+(n)≤y
P−(n)≥P+(m)

(n,q)=1

e((mnd)kϑ+ βn)
∣∣∣.

By the Cauchy–Schwarz inequality and factoring out the largest prime fac-
tor p = P+(m) of m, we deduce that for some β ∈ [0, 1),

(5.3) E(M)�ε (log x)QεM1/2S1(M)1/2

for any ε > 0, where

S1(M) :=
∑
d|q∞
d≤Q

∑
p≤y

∑
M/p<m≤2M/p

∣∣∣ ∑
x/(2MQ)<n≤x/(Md)
P−(n)≥p, P+(n)≤y

(n,q)=1

e((pmnd)kϑ+ βn)
∣∣∣2.

After expanding the squares and switching the order of summation, we ob-
tain

S1(M)�
∑
d|q∞
d≤Q

∑
p≤y

∑
x/(2MQ)<n1≤n2≤x/(Md)

(ni,q)=1, P+(ni)≤y

∣∣∣ ∑
M/p<m≤2M/p

e((pmd)kϑ(nk1−nk2))
∣∣∣.

By the hypotheses and the choice of L, it is straightforward to verify that

|(pd)kδ(nk1 − nk2)| ≤ p

2qM
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for 1 ≤ n1, n2 ≤ x/(Md). Thus we may apply Lemma 5.2 and obtain∑
M/p<m≤2M/p

e((mdp)kϑ(nk1 − nk2))� M

p
· (q, (pd)k(nk2 − nk1))σ(
q(1 + |δ|(Md)k(nk2 − nk1))

)σ
for some small σ = σ(k) > 0. It follows that

S1(M)� q−σM

(∑
p≤y

(q, pk)σ

p

)
S2(M),

where

S2(M) :=
∑
d|q∞
d≤Q

∑
x/(2MQ)<n1≤n2≤x/(Md)

(ni,q)=1, P+(ni)≤y

(q, dk(nk2 − nk1))σ

(1 + |δ|(Md)k(nk2 − nk1))σ
.

Since ∑
p≤y

(q, pk)σ

p
� log log y + ω(q)�ε M

ε,

we have

(5.4) S1(M)� q−σM1+εS2(M).

To bound S2(M), splitting according to the value of r = (q, dk(nk2 − nk1)),
we obtain

(5.5) S2(M) ≤
∑
r|q

rσ
∑
d|q∞
d≤Q

S3(M ; r, d),

where

S3(M ; r, d) :=
∑

x/(2MQ)<n1≤n2≤x/(Md)
(ni,q)=1, P+(ni)≤y

r|dk(nk
2−nk

1)

1

(1 + |δ|(Md)k(nk2 − nk1))σ
.

Note that r | dk(nk2 − nk1) is equivalent to nk1 ≡ nk2 (mod r′), where r′ :=
r/(r, dk). Since (ni, q) = 1, and since there are O((r′)ε) residue classes
b (mod r′) such that (b, r′) = 1 and bk ≡ 1 (mod r′), we deduce

(5.6) S3(M ; r, d)�ε r
ε

∑
x/(2MQ)<n1≤x/(Md)

P+(n1)≤y

sup
b (mod r′)
(b,r′)=1

S4(M ; r′, d;n1, b)

for any ε > 0, where

S4(M ; r′, d;n1, b) :=
∑

n1≤n2≤x/(Md)
P+(n2)≤y

n2≡b (mod r′)

1

(1 + |δ|(Md)k(nk2 − nk1))σ
.
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We dyadically decompose this sum with respect to the size of n2 − n1 ∈
[0, x/(Md)], noting that if T/2 ≤ n2 − n1 ≤ T , then we have nk2 − nk1 ≥
(n2 − n1)nk−11 � Tnk−11 . Therefore,

(5.7) S4(M ; r′, d;n1, b)� (log x) sup
1≤T≤x/(Md)

S5(M ; r′, d′;n1, b
′;T )

(1 + |δ|(Md)kTnk−11 )σ
,

where

S5(M ; r′, d;n1, b;T )

:= |{n2 ∈ Ψ(x/(Md), y) : |n2 − n1| ≤ T, n2 ≡ b (mod r′)}|.

An application of Lemma 3.3 yields

S5(M ; r′, d;n1, b;T )�
(
T/r′

x/Md

)α
Ψ(x/(Md), y) log x+ 1,

where we have used α(x/Md, y) ≥ α(x, y). Combining this with (5.7) and
noting that the bound is an increasing function of T assuming σ < α (which
we may), we obtain

S4(M ; r′, d;n1, b)� (log x)2
{

Ψ(x/(Md), y)

(r′)α(1 + |δ|x(Mdn1)k−1)σ
+ 1

}
.

Inserting this into (5.6) and recalling r′ = r/(r, dk), we find that

S3(M ; r, d)� (log x)2(r, dk)α

rα−ε
{S ′3(M ; d) + Ψ(x/(Md), y)},

where

S ′3(M ; d) := Ψ(x/(Md), y)
∑

x/(2MQ)<n1≤x/(Md)
P+(n1)≤y

1

(1 + |δ|x(Mdn1)k−1)σ

� Ψ(x/(Md), y)2

(1 + |δ|xk)σ

by partial summation assuming σ < α/k (which we may). Since Md ≤
yLQ ≤ x/Q by our hypothesis, from Lemma 3.2 we get

Ψ(x/(Md), y)�
(

x

Md

)α
� Qα � (1 + |δ|xk)σ,

and thus

S3(M ; r, d)� (log x)2(r, dk)α

rα−ε
Ψ(x/(Md), y)2

(1 + |δ|xk)σ

� (log x)2(r, dk)α

rα−εd2α
Ψ(x/M, y)2

(1 + |δ|xk)σ
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again by Lemma 3.2. Inserting this bound into (5.5), we obtain

S2(M)� (log x)2
Ψ(x/M, y)2

(1 + |δ|xk)σ
∑
r|q

∑
d|q∞
d≤Q

(r, dk)α

rα−σ−εd2α
.

Writing r′ = (r, dk), we can bound the double sum over r and d above by

qε
∑
r|q

rσ−α
∑
r′|r

(r′)α
∑
d|q∞
r′|dk

d−2α.

The inner sum over d is less than(
min{r′′ : r′ | (r′′)k}

)−2α ∑
d|q∞

d−2α � (r′)−2α/k,

so that∑
r|q

∑
d|q∞
d≤D

(r, dk)α

rα−σ−εd2α
� qε

∑
r|q

rσ−α
∑
r′|r

(r′)α(1−2/k) � qε
∑
r|q

rσ−2α/k � q2ε.

It follows that

S2(M)�ε q
ε(log x)2

Ψ(x/M, y)2

(1 + |δ|xk)σ
� qε(log x)2M−2αΨ(x, y)2

(1 + |δ|xk)σ

for any ε > 0. Finally, inserting this into (5.4) we obtain

S1(M)�ε
(log x)2M1−2α+εΨ(x, y)2

(q(1 + |δ|xk))σ−ε
,

and thus by (5.3) we have

E(M)�ε (log x)2M1−α+εΨ(x, y)Q−σ/2+ε

for any ε > 0. The desired bound follows from a dyadic summation over M ,
since M1−α ≤ (yL)1−α � (y2Q2)1−α � (log x)2Q2(1−α).

5.4. Deduction of Theorem 2.2. We now have all the ingredients
to deduce Proposition 5.1 (and thus Theorem 2.2). Let the situation be
as in the statement of Proposition 5.1. Let η > 0 be a sufficiently small
constant. If y ≥ xη, then the conclusion follows from Proposition 5.5. Now
assume that y ≤ xη. If ϑ /∈ M(x0.1, x), then Proposition 5.4 applies with
λ = 0.1 to give the desired conclusion. Finally, assume that y ≤ xη and
ϑ ∈M(x0.1, x). Then ϑ = a/q + δ for some 0 ≤ a ≤ q ≤ x0.1 with (a, q) = 1
and |δ| ≤ q−1x−k+0.1. Thus Q := q(1 + |δ|xk) ≤ 2x0.1, and the hypothesis of
Proposition 5.7 is satisfied. Moreover, the assumption ϑ /∈M(Q, x) implies
that Q ≥ Q, and thus the conclusion of Proposition 5.7 implies that

Ek(x, y;ϑ)� Ψ(x, y)Q−c(log x)5
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for some constant c > 0, when 1 − α is sufficiently small. This gives the
desired bound when Q is at least a large power of log x. If Q ≤ (log x)A

for some constant A, then Theorem 2.1 applies and the conclusion follows
from (2.5).

6. Mean value estimates: statements of results. The goal of this
section and the next is to prove Theorem 2.3. In this section, we reduce the
task of proving Theorem 2.3 to proving Proposition 6.2 below that controls
large values of friable exponential sums. We start with the following mean
value estimate, which holds with the optimal exponent when restricted to
(relatively wide) major arcs.

Proposition 6.1. Fix a positive integer k. The following statement
holds for some sufficiently small c = c(k) > 0. Let 2 ≤ y ≤ x be large.
Let (an)1≤n≤x be an arbitrary sequence of complex numbers, and write f(ϑ)
for the normalized exponential sum

f(ϑ) =
( ∑
n∈S(x,y)

|an|2
)−1/2 ∑

n∈S(x,y)

ane(nkϑ).

Then for any s > k we have�

M

|f(ϑ)|2s dϑ�s Ψ(x, y)sx−k,

where

M = {ϑ ∈ [0, 1] : |f(ϑ)|2 ≥ x−cΨ(x, y)},
provided that 1− α(x, y) ≤ cmin(1, s− k).

Proposition 6.1 is a straightforward consequence of the following result,
controlling the number of (well spaced) phases with large values of expo-
nential sums.

Proposition 6.2. Fix a positive integer k. Let 2 ≤ y ≤ x be large
and let α = α(x, y). Let (an)1≤n≤x and f(ϑ) be as in Proposition 6.1. Let
ϑ1, . . . , ϑR ∈ [0, 1] be reals satisfying ‖ϑr−ϑs‖ ≥ x−k for any r 6= s. Suppose
that

|f(ϑ)|2 ≥ γ2Ψ(x, y)

for each 1 ≤ r ≤ R and some γ ∈ (0, 1]. If γ ≥ x−c and 1− α ≤ c for some
sufficiently small c = c(k) > 0, then R�ε γ

−2k−O(1−α)−ε for any ε > 0.

Large value estimates for complete Weyl sums of this type first appeared
in [3]. The case k = 1 of Proposition 6.2 was proved by Harper [18].

In the remainder of this section, we give the standard deduction of Propo-
sition 6.1 from Proposition 6.2, and also deduce Theorem 2.3 from Proposi-
tion 6.1. The proof of Proposition 6.2 is the content of Section 7.
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6.1. Proof of Proposition 6.1 assuming Proposition 6.2. Note
the trivial bound |f(ϑ)|2 ≤ Ψ(x, y), which follows from the Cauchy–Schwarz
inequality. For any γ ∈ (0, 1], define

S(γ) = {ϑ ∈ [0, 1] : |f(ϑ)|2 ≥ γ2Ψ(x, y)}.

Let c > 0 be sufficiently small. We claim that if γ ∈ (x−c, 1], then

meas(S(γ))�ε γ
−2k−O(1−α)−εx−k

for any ε > 0. To prove this claim, pick a maximal x−k-separated set of
points {ϑ1, . . . , ϑR} ⊂ S(γ). In other words, the set {ϑ1, . . . , ϑR} satisfies
‖ϑr − ϑs‖ ≥ x−k for any r 6= s, and moreover for any ϑ ∈ S(γ) we have
‖ϑ − ϑr‖ ≤ x−k for some r. Hence S(γ) is contained in the union of arcs
centered around ϑr (1 ≤ r ≤ R) with length 2x−k, and the claim follows
from Proposition 6.2. By the assumption on 1− α, we may ensure that

meas(S(γ))� γ−s−kx−k.

Now write

�

S(x−c)

|f(ϑ)|2s dϑ = 2sΨ(x, y)s
1�

0

1�

0

γ2s−11ϑ∈S(γ)∩S(x−c) dγ dϑ

= Ψ(x, y)s
(

2s

1�

x−c

γ2s−1 meas(S(γ)) dγ +O
(
x−2cs meas(S(x−c))

))
.

The conclusion follows since
1�

x−c

γ2s−1 meas(S(γ)) dγ �s x
−k

1�

x−c

γs−k−1 dγ �s x
−k

and

x−2cs meas(S(x−c))� x−c(s−k)x−k � x−k.

6.2. Proof of Theorem 2.3 assuming Proposition 6.1. In view of
Proposition 6.1, Theorem 2.3 follows from Lemma 6.3 below.

Lemma 6.3. Fix a positive integer k. There exists p = p(k) ≥ 2k such
that

1�

0

|Ek(x, y;ϑ)|p dϑ�p,ε x
p−k+ε

for any ε > 0. Moreover, we may take p(1) = 2, p(2) = 4, and p(3) = 8.
If y ≤ xc for some sufficiently small c = c(k) > 0, then we may take
p(3) = 7.5907 and p(k) = k(log k + log log k + 2 + O(log log k/log k)) for
large k.
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Indeed, to deduce Theorem 2.3 from this lemma, let c > 0 be sufficiently
small and denote by m the set of ϑ ∈ [0, 1] with

|Ek(x, y;ϑ)| ≤ x−cΨ(x, y).

The contribution to the mean value integral from ϑ /∈ m is dealt with by
Proposition 6.1. Thus it suffices to show that

�

m

|Ek(x, y;ϑ)|2s dϑ� Ψ(x, y)2sx−k

whenever 2s > p, where p = p(k) is the exponent in Lemma 6.3. To prove
this, bound the left hand side by

(x−cΨ(x, y))2s−p
�

m

|Ek(x, y;ϑ)|p dϑ�p,ε x
−c(2s−p)+p−k+εΨ(x, y)2s−p

using Lemma 6.3. This bound is O(Ψ(x, y)2sx−k) if 1−α ≤ [c(2s−p)−ε]/p.
The conclusion follows if we choose ε = c(2s− p)/2.

Proof of Lemma 6.3. First note that for p(k) = 2k we have

1�

0

|Ek(x, y;ϑ)|2k dϑ ≤
1�

0

|Ek(x, x;ϑ)|2k dϑ

by considering the underlying diophantine equation. The right side above
is bounded by x2

k−k+ε for any ε > 0 by Hua’s lemma (see [32, Lem-
ma 2.5]). This proves the existence of p(k), and justifies the choice of p(k) for
k ∈ {1, 2, 3}.

Now assume that y ≤ xc for some sufficiently small c = c(k) > 0.
The fact that we may take p(3) = 7.5907 follows from [40, Theorem 1.4 or
formula (6.3)]. For large k, the claimed choice for p(k) follows from Wooley’s
work on Waring’s problem and friable Weyl sums [35, 37], together with
arguments very close to those in [31, Section 5] that deal with major arcs.
For completeness, we include the details here.

Let k be large and let p = k(log k+log log k+2+C log log k/log k) be an
even integer for some large constant C > 0. By considering the underlying
diophantine equation, we obtain

1�

0

|Ek(x, y;ϑ)|p dϑ ≤
1�

0

|Ek(x, xc;ϑ)|p−2|Ek(x, x;ϑ)|2 dϑ.

The two copies of the complete exponential sum are required in the major
arc analysis. Call the right hand side above T , and our goal is to show
that T � xp−k. For 0 ≤ a ≤ q ≤ x and (a, q) = 1, define

M(q, a) = {ϑ ∈ [0, 1] : |qϑ− a| ≤ 1/(2kxk−1)},
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and let M be the union of all these. Split T into two integrals,

T1 =
�

M

|Ek(x, xc;ϑ)|p−2|Ek(x, x;ϑ)|2 dϑ,

T2 =
�

[0,1]rM

|Ek(x, xc;ϑ)|p−2|Ek(x, x;ϑ)|2 dϑ.

To bound T1, by Hölder’s inequality we have

T1 ≤
(1�
0

|Ek(x, xc;ϑ)|p dϑ
)(p−2)/p( �

M

|Ek(x, x;ϑ)|p dϑ
)2/p

.

The first integral above is at most T by considering the underlying diophan-
tine equation, and the second integral over M can be bounded by xp−k (see
[31, Lemma 5.1]). Hence

T1 � T (p−2)/px2(p−k)/p.

To bound T2, we use the trivial estimate |Ek(x, x;ϑ)| ≤ x and take out
t copies of the minor arc exponential sum, where t ∈ {k, k + 1} is even:

T2 ≤ x2
(

sup
ϑ/∈M
|Ek(x, xc;ϑ)|

)t 1�
0

|Ek(x, xc;ϑ)|p−2−t dϑ.

From [37, Theorem 1.1] we have

sup
ϑ/∈M
|Ek(x, xc;ϑ)| �ε x

1−ρ(k)+ε

for any ε > 0, provided that c is sufficiently small depending on ε. Here
ρ(k) > 0 satisfies ρ(k)−1 = k(log k + O(log log k)). From [37, Lemma 2.1],
for any positive integer s we have

1�

0

|Ek(x, xc;ϑ)|2s dϑ�ε x
2s−k+∆s,k+ε

for any ε > 0, where ∆s,k = ke1−2s/k. Apply this with 2s = p− 2− t to get

T2 � xp−k+εx∆s,k−ρ(k)t

for any ε > 0. Since we have 2s = p − 2 − t ≥ k(log k + log log k + 1 +
(C − 1) log log k/log k) for large k, it follows that

∆s,k ≤
1

log k
exp

(
−(C − 1)

log log k

log k

)
≤ 1

log k

(
1− C

2
· log log k

log k

)
.

This implies that

ρ(k)t−∆s,k ≥ ρ(k)k −∆s,k ≥
C

4
· log log k

(log k)2
,
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and thus T2 � xp−k. Combining the bounds for T1 and T2 we obtain

T � T (p−2)/px2(p−k)/p + xp−k.

This implies the desired bound T � xp−k.

7. Proof of the large value estimates. The goal of this section is
to prove Proposition 6.2. Let c > 0 be a sufficiently small constant. We
may clearly assume that ε ≤ c. We may also assume that y ≤ xc, since
otherwise Ψ(x, y) � x and the conclusion follows from Bourgain’s work [3,
Section 4]. Recall also that we are allowed to assume 1−α ≤ c and γ ≥ x−c.

By using the major arc estimates in Theorem 2.1, Bourgain’s argu-
ment [3] can be followed to treat the case when γ−1 is smaller than a fixed
power of log x. When γ−1 is larger, we will use well-factorability of friable
numbers to arrive at a double sum, and after applying the Cauchy–Schwarz
inequality we will be able to drop the friability restriction on one of the
sums, in order to take advantage of good major arc estimates for complete
exponential sums.

We now turn to the details. For each 1 ≤ r ≤ R, let ηr be a complex
number with |ηr| = 1 such that |f(ϑr)| = ηrf(ϑr). From the assumption
that

|f(ϑr)|2 ≥ γ2Ψ(x, y)

for each 1 ≤ r ≤ R, we obtain∑
1≤r≤R

ηr
∑

n∈S(x,y)

ane(nkϑr) ≥ γRΨ(x, y)1/2
( ∑
n∈S(x,y)

|an|2
)1/2

.

An application of the Cauchy–Schwarz inequality after changing the order
of summation in r and n leads to

(7.1)
∑

n∈S(x,y)

∣∣∣ ∑
1≤r≤R

ηre(nkϑr)
∣∣∣2 ≥ γ2R2Ψ(x, y).

7.1. The case of large γ. Let us assume that γ−1 ≤ min((log x)B, yc)
for some large constant B = B(k, ε). In this subsection, we allow all implied
constants to depend on B. Expand the square in (7.1) to find

(7.2)
∑

1≤r,s≤R

∣∣∣ ∑
n∈S(x,y)

e(nk(ϑr − ϑs))
∣∣∣ ≥ γ2R2Ψ(x, y).

Let Q be the set of ϑ ∈ [0, 1] with |Ek(x, y;ϑ)| ≥ γ2Ψ(x, y)/2. Then

(7.3)
∑

1≤r,s≤R
ϑr−ϑs∈Q

|Ek(x, y;ϑr − ϑs)| ≥
1

2
γ2R2Ψ(x, y).
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Lemma 7.1. Let the notation and assumptions be as above (in particular,
assume γ−1 ≤ (log x)B). If ϑ ∈ Q, then ϑ = a/q + δ for some (a, q) = 1
with Q = q(1 + |δ|xk)� γ−3k. Moreover,

|Ek(x, y;ϑ)| �ε,B Ψ(x, y)Q−1/k+2(1−α)+ε

for any ε > 0.

Proof. Since Ek(x, y;ϑ) ≥ γ2Ψ(x, y)/2, Proposition 5.1 implies that ϑ ∈
M(γ−C , x) for some C = C(k) > 0. Since γ−1 ≤ min((log x)B, yc), we may
apply Theorem 2.1 (in particular the estimate (2.5)) to obtain the desired
upper bound for Ek(x, y;ϑ). Combining this upper bound with the lower
bound Ek(x, y;ϑ) ≥ γ2Ψ(x, y)/2, we get Q � γ−3k as desired.

We are now in a position to apply Lemma 3.5. Let Q = Cγ−3k for some
large constant C > 0, and let ∆ = Qx−k. Consider the function G = Gxk,Q,∆
defined by

G(ϑ) =
∑
q≤Q

1

q

q−1∑
a=0

1‖ϑ−a/q‖≤∆

1 + xk‖ϑ− a/q‖
.

Lemma 7.1 implies that

Ek(x, y;ϑ)� Ψ(x, y)G(ϑ)1/kγ−6k(1−α+ε)

whenever ϑ ∈ Q. Comparing this with (7.3) we obtain

γ2R2Ψ(x, y)� Ψ(x, y)γ−6k(1−α+ε)
∑

1≤r,s≤R
G(ϑr − ϑs)1/k,

which simplifies to∑
1≤r,s≤R

G(ϑr − ϑs)1/k � R2γ2+6k(1−α+ε).

On the other hand, by Hölder’s inequality and Lemma 3.5 we have∑
1≤r,s≤R

G(ϑr − ϑs)1/k ≤ R2(k−1)/k
( ∑
1≤r,s≤R

G(ϑr − ϑs)
)1/k

� R2(k−1)/k[(Rγ−ε + x−kR2γ−3k + γAR2) log(1 + γ−3k)]1/k

for any A > 0. Combining this with the lower bound we arrive at

R2γ2+6k(1−α+2ε) � R2−1/k +R2x−1γ−3 +R2γA

for any A > 0. The second and the third terms on the right above are clearly
smaller than the left hand side. Hence

R2γ2+6k(1−α+2ε) � R2−1/k.

This leads to the desired upper bound on R.
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7.2. The case of small γ. In the remainder of this section, we will
assume that γ−1 ≥ min((log x)B, yc) for some large enough B = B(k, ε) > 0.
In particular, this implies that either γ−1 ≥ (log x)B or γ−(1−α) ≥ (log x)c/2.
Let K = (γ−1 log x)A be a parameter, where A = A(k) > 0 is a large
constant to be specified later. By the assumption γ ≥ x−c we may assume
that K ≤ x1/2k. Observe that any integer in S(x, y) can be written as a
product mn, where m ∈ [x(yK)−1, xK−1] is y-friable, and n ≤ xm−1. In
this way, from (7.1) we get∑

x(yK)−1≤m≤xK−1

P+(m)≤y

∑
1≤n≤xm−1

∣∣∣ ∑
1≤r≤R

ηre(nkmkϑr)
∣∣∣2 ≥ γ2R2Ψ(x, y).

Expand the square and move the sum over n inside to get

(7.4)
∑

x(yK)−1≤m≤xK−1

P+(m)≤y

∑
1≤r,s≤R

∣∣∣ ∑
1≤n≤xm−1

e(nkmk(ϑr −ϑs))
∣∣∣ ≥ γ2R2Ψ(x, y).

This is similar to (7.2) in Section 7.1, but we have arranged the inner sum
to be a complete Weyl sum, at some cost since the trivial bound for the
left hand side is now larger. The assumption γ−1 ≥ min((log x)B, yc) will
ultimately ensure that this cost is acceptable.

It is convenient to perform a dyadic division in m. For each M in
[x(yK)−1, xK−1] and ϑ ∈ R, define

IM (ϑ) =
∑

M≤m≤2M
P+(m)≤y

∣∣∣ ∑
1≤n≤xm−1

e(nkmkϑ)
∣∣∣,(7.5)

IM =
∑

1≤r,s≤R
IM (ϑr − ϑs).(7.6)

For ease of notation we write N = xM−1 so that N ∈ [K, yK]. We will show
in Sections 7.3 and 7.4 that, for all fixed ε > 0,

(7.7) IM �ε R
2NΨ(2M,y)(R−1/k +K−c)K1−α+ε log x.

Let us temporarily assume (7.7) and deduce the conclusion of Proposi-
tion 6.2. Note that Ψ(2M,y) � N−αΨ(x, y) from Lemma 3.2. We may
combine (7.7) with (7.4) to deduce, after summing over M (or N) dyadi-
cally, that

γ2R2Ψ(x, y)� R2Ψ(x, y)(R−1/k +K−c)K2(1−α)+ε(log x)3,

where we have used the following estimate for the dyadic sum:∑
0≤j≤dlog2 ye

(2jK)1−α � (yK)1−α

21−α − 1
� K1−α(log x)2.



38 S. Drappeau and X. C. Shao

This simplifies to

γ2 � (R−1/k +K−c)K2(1−α)+ε(log x)3.

If the second term on the right hand side dominates, then

γ2 � K−c+2(1−α)+ε(log x)3 � K−c/2(log x)3,

and thus K � (γ−1 log x)8/c, contradicting our choice of K if A is large
enough. Thus we must have

γ2 � R−1/kK2(1−α)+ε(log x)3.

After rearranging and recalling the choice of K we get

R� γ−2kK2k(1−α)+kε(log x)3k = γ−2k−2kA(1−α)−kAε(log x)3kA.

Since either γ−1 ≥ (log x)B or γ−(1−α) ≥ (log x)c/2, the (log x)3kA term can
be absorbed, so that

R� γ−2k−O(1−α)−2kAε.

The proof is completed after reinterpreting ε as ε/(10kA). We are therefore
left to prove the bound (7.7).

7.3. Handling the minor arcs. Fix M ∈ [x(yK)−1, xK−1] and N =
xM−1 ∈ [K, yK]. In this section we prove that

(7.8) IM (ϑ)� NK−cΨ(2M,y)

whenever ϑ ∈ n, where the minor arc n is the complement of N = M(K1/2, x)
(recall the notation (5.1)). In particular, this means that those pairs (r, s)
with ϑr − ϑs ∈ n make an acceptable contribution in the sum (7.6) towards
the bound in (7.7).

For the rest of this subsection, fix some ϑ ∈ n. We also need the auxiliary
major arc Q = M(Kη, N) for some small η > 0 to be specified later. Let q
be the complement of Q. If mkϑ ∈ q for some m ∈ [M, 2M ], then by Weyl’s
inequality (Lemma 5.2)∣∣∣ ∑

1≤n≤xm−1

e(nkmkϑ)
∣∣∣� NK−ση

for some σ = σ(k) > 0. Hence,

IM (ϑ) =
∑

M≤m≤2M
P+(m)≤y
mkϑ∈Q

∣∣∣ ∑
1≤n≤xm−1

e(nkmkϑ)
∣∣∣+O(NK−σηΨ(2M,y)).

Bounding the inner sum over n above trivially by O(N), we reduce (7.8) to
proving the bound

(7.9)
∑

M≤m≤2M
P+(m)≤y

1mkϑ∈Q � K−cΨ(2M,y).
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We will now divide into two cases, depending on whether or not ϑ lies in
the auxiliary major arcs P = M(K1/5,M) (which is wider than N). Let p
be the complement of P. We use the Erdős–Turán inequality when ϑ ∈ p,
and use the combinatorial lemma, Lemma 3.7, when ϑ ∈ P ∩ n.

Case 1. First assume that ϑ ∈ p. Since Q is the union of at most K2η in-
tervals of length at most 2KηN−k, the Erdős–Turán inequality (Lemma 3.4)
gives ∑

M≤m≤2M
P+(m)≤y

1mkϑ∈Q

� K2η

(
Kη

Nk
Ψ(2M,y) +

Ψ(2M,y)

J
+
∑
j≤J

1

j

∣∣∣ ∑
M≤m≤2M
P+(m)≤y

e(mkjϑ)
∣∣∣),

where J = K4η. The first two terms clearly make an acceptable contribution
towards the bound in (7.9). Thus it suffices to show that for each 1 ≤ j ≤ J
we have

(7.10)
∣∣∣ ∑
M≤m≤2M
P+(m)≤y

e(mkjϑ)
∣∣∣� K−cΨ(2M,y),

and then (7.9) follows if η is chosen small enough. Now fix j ≤ J . Since ϑ /∈
P = M(K1/5,M), a moment’s thought reveals that jϑ /∈ M(K1/5−4η,M).
The desired bound (7.10) then follows from Proposition 5.1.

Case 2. Now let ϑ ∈ P = M(K1/5,M). We may choose 0 ≤ a ≤
q ≤ K1/5 with (a, q) = 1 so that ϑ ∈ M(q, a;K1/5,M). Let A := {m ∈
[M, 2M ] : P+(m) ≤ y}, and assume that the proportion of elements m ∈ A
satisfying mkϑ ∈ Q = M(Kη, N) is δ. Suppose that δ ≥ K−c. We wish to
show that this contradicts our hypothesis ϑ ∈ n.

If m ∈ A satisfies mkϑ ∈ Q, then ‖mkqmϑ‖ ≤ Kη/N for some qm ≤ Kη.
By the pigeonhole principle, we may find q′ ≤ Kη such that the proportion of
elements m ∈ A satisfying ‖mkq′ϑ‖ ≤ Kη/Nk is at least δK−η. In particular,
for those m we have

‖mk(q′qϑ)‖ ≤ K1/5+η/Nk.

We will soon apply Lemma 3.7 to the set A and the phase q′qϑ, with ε =
K1/5+η/Nk, but first we need to figure out the permissible choices of the
parameters L and ∆. Since

‖q′qϑ‖ ≤ Kη‖qϑ‖ ≤ K1/5+η/Mk,

the condition ‖q′qϑ‖ ≤ ε/(LMk−1) is satisfied with the choice L = M/Nk.
By Lemma 3.3, for any arithmetic progression P ⊂ [M, 2M ] ∩ Z of length
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at least L we have

|A ∩ P | � |P |αΨ(2M,y)

Mα
logM.

Thus we may choose ∆ with

∆�
(
M

|P |

)1−α
logM � Nk(1−α) log x ≤ Kk(1−α)(log x)2k+1 ≤ K1/4,

where we have used y1−α � (log x)2 and (log x)2k+1 ≤ K1/8 if A (in the
choice of K) is large enough. The conclusion of Lemma 3.3 then says that
either

K1/5+η/Nk � δK−1/4−η,

or else

‖q′qϑ‖ � K1/4(δK−η)−1K1/5+η/(MN)k = δ−1K9/20+2ηx−k.

The first case clearly implies that δ � K−1/2, a contradiction. In the second
case, since δ−1 ≤ Kc, we have

‖q′qϑ‖ ≤ K9/20+2η+cx−k.

If we recall that q′q ≤ K1/5+η, this implies ϑ ∈ N, giving the desired con-
tradiction.

7.4. Handling the major arcs. In view of (7.8), in order to prove (7.7)
it suffices to show that

(7.11)
∑

1≤r,s≤R
ϑr−ϑs∈N

IM (ϑr−ϑs)� R2NΨ(2M,y)(R−1/k+K−1)K1−α+ε(log x).

If ϑ ∈ N then mkϑ also lies in appropriate major arcs so that the inner sum
over n in the definition of IM (ϑ) in (7.5) can be controlled quite precisely.
This analysis will lead to the following lemma (cf. Lemma 7.1 above).

Lemma 7.2. Let the notation be as above. Suppose ϑ ∈M(q, a;K1/2, x)
for some 0 ≤ a ≤ q ≤ K1/2 and (a, q) = 1. Write ϑ = a/q + δ and
let Q = q(1 + |δ|xk). Then

IM (ϑ)�ε NΨ(2M,y)Q−1/kq(1−α)/k+ε

for any ε > 0.

Proof. Recall the definition of IM (ϑ) from (7.5). Fix m ∈ [M, 2M ], and
write q′ = q/(q,mk) and a′ = amk/(q,mk). From standard major arc esti-
mates for complete Weyl sums (see [32, Lemma 2.8, Theorems 4.1 and 4.2]),
we have ∑

1≤n≤xm−1

e(nkmkϑ) = q′−1S(q′, a′)v(δmk) +O(Q1/2qε),
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where the (local) singular series S(q′, a′) and the (local) singular integral
satisfy the bounds

S(q′, a′)� q′1−1/k, v(β)� min(N, ‖β‖−1/k)
for |β| ≤ 1/2. It follows that∑

1≤n≤xm−1

e(nkmkϑ)� N

(
(q,mk)

Q

)1/k

+Q1/2qε.

Since Q � K1/2, the term Q1/2qε clearly makes an acceptable contribution
towards the desired bound for IM (ϑ). The first term contributes

NQ−1/k
∑

M≤m≤2M
P+(m)≤y

(q,mk)1/k.

The sum here is at most∑
d|q

d1/k
∑

M≤m≤2M
P+(m)≤y
d|mk

1 ≤
∑
d|q

d1/kΨ(2M/d1/k, y)� q(1−α)/kτ(q)Ψ(2M,y)

in view of Lemma 3.2 and the inequality α(2M,y) ≥ α(x, y).

We are now in a position to apply Lemma 3.5. Let Q = K1/2 and ∆ =
Qx−k. Consider the function G = Gxk,Q,∆ defined by

G(ϑ) =
∑
q≤Q

1

q

q−1∑
a=0

1‖ϑ−a/q‖≤∆

1 + xk‖ϑ− a/q‖
.

Lemma 7.2 implies that

IM (ϑ)� NΨ(2M,y)G(ϑ)1/kK1−α+ε

whenever ϑ ∈ N. Therefore,∑
1≤r,s≤R
ϑr−ϑs∈N

IM (ϑr − ϑs)� NΨ(2M,y)K1−α+ε
∑

1≤r,s≤R
G(ϑr − ϑs)1/k.

To prove (7.11) it thus suffices to show that∑
1≤r,s≤R

G(ϑr − ϑs)1/k � R2(R−1/k +K−1)Kε(log x)

for any ε > 0. This is a straightforward consequence of Hölder’s inequality
and Lemma 3.5:∑
1≤r,s≤R

G(ϑr − ϑs)1/k ≤ R2(k−1)/k
( ∑
1≤r,s≤R

G(ϑr − ϑs)
)1/k

� R2(k−1)/k[(RKε + x−kR2K1/2 +K−kR2) log x]1/k,
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on noting that the second term on the right hand side is dominated by the
third term since x−kK1/2 ≤ K−k. This completes the proof of (7.11), hence
of (7.7). By the arguments at the end of Section 7.2, we have finished the
proof of Proposition 6.2.

8. Waring’s problem in friable variables. In this section we prove
Theorem 2.4, getting an asymptotic formula for the number of represen-
tations of a large enough positive integer N as the sum of s kth powers
of (logN)C-friable numbers for some sufficiently large C, as long as s ex-
ceeds a threshold depending on k which is essentially the same as that in
the classical Waring problem.

Let the notation and assumptions be as in the statement of Theorem 2.4.
We start by defining the archimedean factor β∞ and the local factors βp that
appear in the statement of Theorem 2.4.

Definition 8.1 (The archimedean factor). The archimedean factor β∞
is defined by

(8.1) β∞ =

∞�

−∞
Φ̌(δ, α)se(−δ) dδ,

where Φ̌ is defined in (2.3).

We have the following explicit formula for β∞, showing that β∞ �s 1 as
long as α is bounded away from 0.

Proposition 8.2. The archimedean factor β∞ defined above satisfies

β∞ = Γ (sα/k)−1Γ (α/k + 1)s.

Proof. A change of variables t ← t1/k shows that δ 7→ Φ̌(δ, α) is the
Fourier transform of Φα(t) := (10<t<1)(α/k)tα/k−1. Fourier inversion then
implies that β∞ is the value of the convolution sth power (Φα)∗s(1). This
value is computed using e.g. [30, Exercice 144] applied with n← s−1 and f
approaching u 7→ (1− u)α−1.

To define the non-archimedean factors, we first define a probability mea-
sure µq on Z/qZ for q = pm a prime power, reflecting the bias that friable
numbers are more likely to be divisible by a given small prime. For b ∈ Z/qZ
with (b, pm) = pv for some 0 ≤ v ≤ m, we define

µpm(b) =


0, v > 0 and p > y,

ϕ(pm)−1, v = 0 and p > y,

ϕ(pm)−1p(1−α)v(1− p−α), v < m and p ≤ y,

p−αm, v = m and p ≤ y.



Waring’s problem with friable numbers 43

Note that the value of µpm(b) depends only on v. This is consistent with the
heuristic model suggested by the approximation

Ψ(x/pm, y) ≈ p−mαΨ(x, y)

(see [8, Théorème 2.4]).

Definition 8.3 (The local factors). For p prime, the local factor βp is
defined by

(8.2) βp = lim
m→∞

pm
∑

n1,...,ns (mod pm)

nk
1+···+nk

s≡N (mod pm)

µpm(n1) · · ·µpm(ns)

whenever the limit exists.

Note that the sum above is the probability of the event nk1 + · · ·+ nks ≡
N (mod pm) when n1, . . . , ns are chosen according to the probability mea-
sure µpm . When α = 1 and p ≤ y, this reduces to the uniform measure. In
the Appendix we will prove that the limit in (8.2) does exist, and that the
following estimates on the local factors hold.

Proposition 8.4. The local factors βp are well defined for every p and
satisfy ∏

p

βp � 1

whenever α > 2k/s and s ≥ s0(k) for some constant s0(k). Moreover, we
may take s0(1) = 3, s0(2) = 5, s0(3) = 5, and s0(k) = O(k) for large k.

To prove Theorem 2.4, let Q = (log x)A for some sufficiently large con-
stant A. Let M = M(Q, x) (recall (5.1)), and let m := [0, 1) r M. By the
circle method, the number of representations of N is

1�

0

Ek(x, y;ϑ)se(−Nϑ) dϑ.

Theorem 2.4 is easily seen to follow from the two lemmas below.

Lemma 8.5 (Major arcs for Waring’s problem). Let the notation and
assumptions be as in Theorem 2.4, and let M be defined as above. Then�

M

Ek(x, y;ϑ)se(−Nϑ) dϑ = x−kΨ(x, y)s
(
β∞
∏
p

βp +Os(u
−1
y )
)
.

Lemma 8.6 (Minor arcs for Waring’s problem). Let the notation and
assumptions be as in Theorem 2.4, and let m be defined as above. Then�

m

|Ek(x, y;ϑ)|s dϑ�s x
−kΨ(x, y)sQ−c

for some c = c(k) > 0.
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Indeed, to deduce Theorem 2.4 from Lemmas 8.5 and 8.6, it suffices to
take Q = (log x)A for some large enough A so that Q−c � u−1y . In the
remainder of this section, we prove the two lemmas.

8.1. Major arc analysis. We start by proving Lemma 8.5. For ϑ ∈
M(q, a) for some 0 ≤ a ≤ q ≤ Q and (a, q) = 1, write ϑ = a/q+ δ with |δ| ≤
Qx−kq−1. Then Q = q(1 + |δxk|) ≤ Q. By Theorem 2.1 we have

Ek(x, y;ϑ)

Ψ(x, y)
= Φ̌(δxk, α)Ha/q(α) +O(Q−1/k+2(1−α)+εu−1y )

for any ε > 0. Since

Φ̌(δxk, α)Ha/q(α)� Q−α/k+ε � Q−1/k+1−α+ε

by Lemmas 4.1 and 4.2, we have

�

M(q,a)

(
Ek(x, y;ϑ)

Ψ(x, y)

)s
e(−Nϑ) dϑ

= Ha/q(α)se(−aN/q)
�

|δ|≤Qx−kq−1

Φ̌(δxk, α)se(−Nδ) dδ

+O
(
u−1y

�

|δ|≤Qx−kq−1

Q−s/k+2s(1−α)+ε dδ
)
.

For s ≥ s0(k), the exponent t = s/k− 2s(1−α)− ε satisfies t > 2, and thus
the integral in the error term above is bounded by

q−t
�

|δ|≤Qx−kq−1

(1 + |δxk|)−t dδ � q−tx−k.

Moreover, we may extend the integral in the main term above to all δ ∈ R
with an error O(x−k(Q/q)1−sα/k) (see Lemma 8.7 below), so that

�

M(q,a)

(
Ek(x, y;ϑ)

Ψ(x, y)

)s
e(−Nϑ) dϑ

= x−k
(
β∞Ha/q(α)se(−aN/q) +O(q−1+εQ1−sα/k + u−1y q−t)

)
.

Summing over all 0 ≤ a ≤ q ≤ Q with (a, q) = 1, we obtain

�

M

(
Ek(x, y;ϑ)

Ψ(x, y)

)s
e(−Nϑ) dϑ

= x−k
(
β∞

∑
q≤Q

∑
(a,q)=1

Ha/q(α)se(−aN/q) +O(Q2−sα/k+ε + u−1y )
)

since
∑
q−t+1 = O(1). The restriction q ≤ Q in the sum above can be

removed with an error O(Q2−sα/k+ε) (see Lemma 8.8 below). Finally, for
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s ≥ s0(k), the exponent 2−sα/k is negative and bounded away from 0, and
thus the error O(Q2−sα/k+ε) can be absorbed into O(u−1y ) if Q = (log x)A

with A large enough. This completes the major arc analysis.

Lemma 8.7 (Truncated singular integral). Let the notation and assump-
tions be as above. For any ∆ ≥ 1, we have�

|δ|≤∆x−k

Φ̌(δxk, α)se(−Nδ) dδ = x−k
(
β∞ +O(∆1−sα/k)

)
.

Proof. After a change of variable, the left side above becomes

x−k
�

|δ|≤∆

Φ̌(δ, α)se(−δ) dδ.

The conclusion of the lemma follows from the definition of β∞ in (8.1) and
the estimate �

|δ|≥∆

|Φ̌(δ, α)|s dδ �
�

|δ|≥∆

δ−sα/k dδ � ∆1−sα/k.

Lemma 8.8 (Truncated singular series). Let the notation and assump-
tions be as above. For any Q ≥ 1, we have∑

q≤Q

∑
(a,q)=1

Ha/q(α)se(−aN/q) =
∏
p

βp +O(Q2−sα/k+ε).

Proof. In the Appendix we will show that

+∞∑
q=1

∑
(a,q)=1

Ha/q(α)se(−aN/q) =
∏
p

βp(α).

The conclusion of the lemma then follows from∑
q>Q

∑
(a,q)=1

|Ha/q(α)|s �
∑
q>Q

q1−sα/k+ε � Q2−sα/k+ε.

8.2. Minor arc analysis. Now we prove Lemma 8.6, bounding the
minor arc integral by

sup
ϑ∈m
|Ek(x, y;ϑ)|0.1 ·

1�

0

|Ek(x, y;ϑ)|s−0.1 dϑ.

For s ≥ s0(k), the exponent s − 0.1 exceeds the threshold p0(k) in Theo-
rem 2.3, so that the integral above can be bounded by O(Ψ(x, y)s−0.1x−k).
On the other hand, the minor arc estimate (Proposition 5.1) implies

sup
ϑ∈m
|Ek(x, y;ϑ)| � Ψ(x, y)Q−c.

This completes the proof of Lemma 8.6.
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Appendix. The local factors in friable Waring’s problem. The
aim of this appendix is to establish Proposition 8.4 about local factors,
by first connecting βp with exponential sums weighted by µpm , and then
expressing the exponential sum in terms of the classical ones (corresponding
to y = x).

Let the notation and assumptions be as in Theorem 2.4, and recall Def-
inition 8.3. We have defined µq for q = pm a prime power. Now extend µq
multiplicatively to all q (so that µq1q2(b) = µq1(b)µq2(b) for any b when-
ever (q1, q2) = 1), and note that the value of µq(b) depends only on (b, q).
For 0 ≤ a ≤ q and (a, q) = 1, define the exponential sum

S(x, y; q, a) =
∑

b (mod q)

µq(b)e

(
abk

q

)
,

which should be compared with the exponential sum appearing in the clas-
sical Waring problem:

S(q, a) =
1

q

∑
b (mod q)

e

(
abk

q

)
.

Recall the definition of Ha/q(α) in (2.4).

Lemma A.1. For any 0 ≤ a ≤ q and (a, q) = 1, we have S(x, y; a, q) =
Ha/q(α).

Proof. By definitions, it suffices to show that for any b (mod q) with (b, q)
= d1 we have

µq(b) =
∑
d1d2|q

P (d1d2)≤y

µ(d2)

(d1d2)αϕ(q/d1)
.

As functions of q, both sides above are multiplicative in q, so that it suffices
to verify this for q = pm a prime power. This is a straightforward comparison
with the definition of µpm(b).

The following lemma says that the probability measure µpm behaves well
under the natural projection Z/pmZ→ Z/pm−`Z.

Lemma A.2. For any prime p, any integers 0 ≤ ` ≤ m, and any b ∈ Z,
we have the identity ∑

u∈Z/p`Z

µpm(upm−` + b) = µpm−`(b).

Proof. First assume that (b, pm) < pm−`. Then (upm−`+b, pm) = (b, pm)
for each u, and thus the sum is equal to p`µpm(b). This is easily seen to be
equal to µpm−`(b) from the definition.
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Now assume that (b, pm) ≥ pm−`. Then the sum becomes

S =
∑

u∈Z/p`Z

µpm(upm−`) =
m∑

v=m−`
ϕ(pm−v)µpm(pv),

where ϕ(pm−v) is the number of b ∈ Z/pmZ with (b, pm) = pv. If p > y,
then the only non-zero term in the sum above appears when ` = m, and
thus S = 1`=m = µpm−`(0) as desired. If p ≤ y, then

S =

m−1∑
v=m−`

ϕ(pm−v)ϕ(pm)−1p(1−α)v(1−p−α)+p−αm = p−α(m−`) = µpm−`(0),

as desired.

For any positive integer q, define

S(q) =
∑

a (mod q)×

S(x, y; q, a)se

(
−aN
q

)
=

∑
a (mod q)×

Ha/q(α)se

(
−aN
q

)
.

From the standard fact that

S(x, y; q, a)S(x, y; q′, a′) = S(x, y; qq′, aq′ + a′q)

for (q, q′) = (a, q) = (a′, q′) = 1, it follows that S(q) is multiplicative in q.

Lemma A.3. For any positive integer q, let M(q) be the number of so-
lutions to nk1 + · · ·+ nks ≡ N (mod q) counted with weights given by µq:

M(q) =
∑

n1,...,ns∈Z/qZ
nk
1+···+nk

s≡N (mod q)

µq(n1) · · ·µq(ns).

Then ∑
d|q

S(d) = qM(q).

Proof. Since both sides are multiplicative in q, it suffices to prove the
assertion when q = pm is a prime power. By orthogonality, we can write

M(q) =
1

q

q∑
a=1

( q∑
b=1

µq(b)e(abk/q)
)s

e(−aN/q).

For any d | q, the contribution from those terms with (a, q) = d is

Md(q) =
1

q

∑
1≤a≤q/d
(a,q/d)=1

( q∑
b=1

µq(b)e(adbk/q)
)s

e(−adN/q).
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Suppose that d = p` for some 0 ≤ ` ≤ m. If we write b = upm−` + v for
some 1 ≤ v ≤ pm−` and 0 ≤ u < p`, the inner sum over b becomes

p`−1∑
u=0

pm−`∑
v=1

µpm(upm−` + v)e(avk/pm−`)

=

pm−`∑
b=1

( p`−1∑
u=0

µpm(upm−` + b)
)

e(abk/pm−`) = S(x, y; pm−`, a)

by Lemma A.2. It follows that

Mp`(p
m) =

1

pm

∑
1≤a≤pm−`

(a,p)=1

S(x, y; pm−`, a)se(−aN/pm−`) =
1

pm
S(pm−`).

The following lemma provides an upper bound for the exponential sum
S(x, y; q, a) by expressing it in terms of the classical sum S(q, a) (alterna-
tively, one may also proceed directly from the definition (2.4)).

Lemma A.4. For any 0 ≤ a ≤ q with (a, q) = 1, we have

|S(x, y; q, a)| ≤ Cω(q)q−α/k,

where C ≥ 1 is an absolute constant. In particular,

|S(q)| � q1−sα/k+ε

for any ε > 0.

Proof. By multiplicativity it suffices to prove these when q = pm is
a prime power. By definition we may express S(x, y; q, a) in terms of the
classical S(q, a) as follows. If p > y, then

S(x, y; pm, a) =


1

p− 1
(pS(pm, a)− 1) if m ≤ k,

1

p− 1
(pS(pm, a)− S(pm−k, a)) if m > k.

If p ≤ y, then

S(x, y; pm, a)

=
(1− p−α)(1− pα−1)

1− p−1
∑

1≤v<v0

p−vαS(pm−vk, a) +
1− p−α

1− p−1
S(pm, a)

+
1

ϕ(pm)
[pm−αv0(1− pα−1) + (p(1−α)(m−1) − 1)(1− p−α)],

where v0 = dm/ke. Note that
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1

ϕ(pm)
[pm−αv0(1− pα−1) + (p(1−α)(m−1) − 1)(1− p−α)]

� p−αv0 + p−αm−1+α � p−αm/k.

The bound on S(x, y; q, a) follows from these by using the classical esti-
mate |S(q, a)| � q−1/k (see [32, Theorem 4.2]) after some straightforward
algebra, and the bound on S(q) is a consequence of the triangle inequality.

Proof of Proposition 8.4. We start by justifying the existence of the limit
in the definition of βp. By Lemma A.3, we have

(A.1) βp = lim
m→∞

pmM(pm) =
∞∑
`=0

S(p`).

By Lemma A.4, the infinite sum above is absolutely convergent, and more
precisely

|βp − 1| �
∑
`≥1

p`(1−sα/k+ε) � p1−sα/k+ε.

Hence the infinite product
∏
p βp converges for s ≥ s0(k).

It remains to show that βp > 0 for each prime p. For p > y, this follows
from the bound on |βp − 1| above. For p ≤ y, from the definition of µpm(b)
we have

µpm(b) ≥ p−m 1− p−α

1− p−1

for any b. This shows that βp is at least(
1− p−α

1− p−1

)s
times the value of βp in the classical case y = x, which is positive when
s ≥ s0(k) (see [32, Lemmas 2.12, 2.13, and 2.15]).

Observe that by (A.1) and the multiplicativity of S(q), we have∏
p

βp =

∞∑
q=1

S(q) =

∞∑
q=1

∑
a (mod q)×

Ha/q(α)se(−aN/q).

This was used in proving Lemma 8.8 in the major arc analysis.
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[30] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, 3rd
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Abstract (will appear on the journal’s web site only)

In this paper we study Weyl sums over friable integers (more precisely,
y-friable integers up to x when y = (log x)C for a large constant C). In
particular, we obtain an asymptotic formula for such Weyl sums in major
arcs, non-trivial upper bounds for them in minor arcs, and moreover a mean
value estimate for friable Weyl sums with exponent essentially the same as
in the classical case. As an application, we study Waring’s problem with
friable numbers, with the number of summands essentially the same as in
the classical case.
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